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Abstract

Single molecule Förster resonance energy transfer experiments have added a great deal to

the understanding of conformational states of biologically important molecules. While great

progress has been made in studying structural dynamics of biomolecular systems, much is still

unknown for systems with conformational heterogeneity particularly those with high flexibil-

ity. For instance, with currently available techniques, it is difficult to work with intrinsically

disordered proteins, particularly when freely diffusing smFRET experiments are used. Simu-

lated smFRET data allows for the control of the underlying process that generates the data to

examine if a given smFRET data analysis technique can detect these underlying differences.
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Here, we extend the PyBroMo software that simulates freely diffusing smFRET data to include

a distribution of inter-dye distances generated using Langevin dynamics in order to model pro-

teins with conformational flexibility within a given state. We compare standard analysis tech-

niques for smFRET data to validate the new module relative to the base PyBroMo software

and observe qualitative agreement in the results of standard analysis for the two timestamp

generation methods. The Langevin dynamics module provides a framework for generating

timestamp data with an known underlying heterogeneity of inter-dye distances that will be

necessary for the development of new analysis techniques that study flexible proteins or other

biomolecular systems.

1 Introduction

Structure and dynamics of proteins and other biomolecules are fundamental to their function1.

Static structural data from high-resolution structure determination techniques such as x-ray crys-

tallography and cryogenic electron microscopy can provide a detailed picture of these systems but

they lack information on the transitions between the states. Other experimental techniques may al-

low for quantitative characterization of the transitions between states2, however, with a much less

spatial resolution as compared to One such technique is single-molecule Förster resonance energy

transfer (FRET) spectroscopy or smFRET2.

FRET is the non-radiative transfer of energy initially absorbed by a "donor" chromophore dye

to a nearby "acceptor" dye3,4. The energy transferred between a donor and acceptor dye is depen-

dent on the distance between the dyes and can be used to provide information on this distance.

Therefore, FRET is often considered as a "spectroscopic ruler".5 Ensemble FRET experiments,

with simultaneous excitation of multiple donors at the same time, contain distance information but

they suffer from bulk averaging that can obscure the protein conformational dynamics underlying

the process. Through clever experimental design, valuable conformational information can still be

gleaned6–8.

The advent of single molecule spectroscopic techniques transformed biophysics into a source
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of dynamic data on molecular structure as well as function9. smFRET experiments avoid ensemble

averaging by taking advantage of exciting the donors and detecting the donor and acceptor signals

at a single molecule level10,11. These techniques have become a popular source of spatio-temporal

information on the conformational landscape of a molecule and have been applied in studies of a

variety of systems from DNA12, and RNA13–15, to protein folding16,17.

The two broad varieties of smFRET experiments are distinguished by how the labeled molecule

is isolated from other FRET signals when it is excited. First, surface immobilized experiments fix

the labeled molecule to a substrate, expose it to laser light to excite the donor dye, and collect the

resulting photon timestamp data. This experimental procedure uses long exposure times to collect

data on slower conformational dynamics, greater than 1 ms18. Despite experimental difficulties

arising from surface impacts on dynamics and signal issues from photo-bleaching or other noise

sources, surface immobilized experiments have been a fruitful area of study.

Second, freely diffusing smFRET methods record photon emissions from labeled molecules as

they diffuse through a solution with a confocal laser focused inside the solution. Periodically, the

path of a molecule will cross the focal region of the laser, where the probability of photon absorp-

tion and emission are high. The diffusion rates and concentrations of the molecules in solution as

well as the size of the focal region are selected so that the observation of simultaneous excitations

of more than one molecule is vanishingly rare within a particular observation time window. Pho-

ton detectors, tuned for the wavelengths of the donor and acceptor dyes, record timestamp data for

each photon detected. The photon signal occurs in bursts as molecules diffuse into and out of the

focal beam of the confocal laser. Freely diffusing experiments can capture dynamics occurring on

faster scales2 and avoid the potential impacts of the surface on conformational dynamics19–21, but

the short bursts of data provide a challenge for analysis.

While sophisticated statistical methodology is essential to the analysis of any smFRET experi-

ment, the literature on this topic has primarily focused on surface-immobilized smFRET22. These

techniques include histograms, Gaussian mixture models23, hidden Markov models (HMM)12,24–26,

and Bayesian non-parametric approaches27. The freely diffusing smFRET technique is gaining in
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popularity due to its simpler experimental methodology with no need for surface immobilization28.

To further advance the developing fields of smFRET analysis, the ability to realistically simulate

the underlying molecular processes in a systematic, controlled, and repeatable manner is a neces-

sity.

Simulated smFRET data has been used in other studies29,30 though it frequently focuses only

on the generation of just the binned photon data. PyBroMo31, an open source smFRET timestamp

simulation software suite, uses a physical model of a diffusion smFRET experiment that combines

a Brownian motion simulation to model the molecular diffusion in a solution, a numerical point

spread function (PSF) to model the laser, and Poisson background noise to model background pho-

ton rates for each channel. These features provide a framework to generate timestamps for multiple

populations of freely diffusing molecules with distinct diffusion constants and FRET efficiencies

that have a single efficiency state or exhibit dynamic efficiency state switching. As an open source

project, researchers can also extend the code to include other features not currently included in the

software. For instance, PyBroMo uses a fixed efficiency for each population throughout the dura-

tion of the simulation. We propose an extension of PyBroMo to include heterogeneous efficiency

states by modeling the underlying distances between the dyes as a dynamic process.

In reality, the distances between the dyes on a labeled molecule (dye-dye distance) are dynamic

due to the thermal fluctuations of the molecule. A fixed efficiency assumes that the heterogeneity

of dye-dye distances from molecular motion in a freely diffusing molecule is negligible compared

to the other parts of the simulation. This simplification may be justifiable for highly structured

molecules or at low temperatures. Reductions in molecular structures and greater fluctuations, like

those observed in disordered proteins32,33, will invalidate the assumption. This is especially true

for disordered proteins with reduced secondary and tertiary structure to stabilize the conformations.

The flexibility of the molecule leads to a heterogeneous conformational ensemble that poses further

challenges to the analysis of experimental data. Biologically important systems often contain large

heterogeneity of conformational states34.

To more accurately model the conformational heterogeneity of dye-dye distances of a flex-
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ible molecule during an smFRET simulation, an overdamped Langevin method of simulation

was added to PyBroMo’s existing software to model the internal conformational dynamics of

the molecule. The Langevin dynamics will produce a trajectory of dye-dye distances for each

molecule that conform to an underlying ground truth related to the potential energy used in the

Langevin dynamics. This addition provides a more realistic smFRET simulation, particularly im-

portant for unstructured proteins or those associated with intrinsic disorder. This added realism

will be necessary in the development of new analysis techniques that account for confomational

heterogeneity.

The remaining sections of this paper will provide a more detailed description of PyBroMo,

followed by a description of overdamped Langevin dynamics used to generate the distribution of

dye-dye distances. Then, two example simulations are described to generate simulated data for

molecules in a single state (Example 1) and for molecules that interconvert between two states

(Example 2), in section 2. Section 3 shows the results of typical analysis methods applied to the

example simulations. A standard analysis for smFRET data using thresholds and Gaussian mixture

models was applied to the timestamp data for Example 1 using the base PyBroMo software (non-

Langevin) and the extended PyBroMo using the added Langevin dye-dye distances (Langevin).

Then, an analysis of the dynamic state model using the non-Langevin and Langevin timestamp

data in section 2.4 uses a skew Gaussian mixture model, as well as changepoint analysis and

hidden Markov models (HMMs) to assess the dynamics states. Section 4 provides a discussion

of the results presented. Finally, section 5 presents conclusions based on the comparison of the

analysis for the two simulated data sets.

2 Simulation methods

2.1 PyBroMo

PyBroMo31 was developed by Ingargiola et al. to simulate photon emission from fluorescent dye

pairs attached to freely diffusing molecules while recording the timestamps from those emissions,
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similar to experimental FRET data. This software was designed to generate realistic FRET data

by handling multiple populations of molecules with their own diffusion coefficients and FRET

efficiencies, as well as generating background photons with separate emission rates for the donor

and acceptor channels.

The first step in generating FRET timestamps is defining the basic elements of the simulation

in the form of a Python script. In the script, the molecules are defined by a population number and

diffusion coefficient, DB. The simulation is defined by providing box dimensions, Lx,Ly, and Lz,

as well as conditions for how to handle molecule interactions with the boundary. If a molecule’s

position is advanced across the box boundary, the position is either wrapped across the opposite

boundary, or reflected back across the same boundary that was crossed. A point spread function

(PSF) is defined to model the laser focal beam inside the simulation box. The PSF represents the

emission probability of a molecule at any position within the simulation box. A Gaussian PSF is

available where the emission probability in all dimensions is defined by

f (x) =
1

σx
√

2π
e−

1
2(

x−µx
σx )

2

(1)

where µx is the mean coordinate for the center of the function and σx is the standard deviation. Eq.

(1) can be extended to include other Cartesian coordinates y and z. PyBroMo is also capable of

importing custom PSF functions from tools like PSFLab35 that can generate a custom numerical

PSF that includes factors like light polarization. PyBroMo includes a default numeric PSF for use

without the user having to create their own.

Next, the simulation inputs are passed to the Brownian motion simulation module along with

a timestep (δ t) and a maximum time to advance the molecules through the simulation box. The

Brownian motion is a stochastic process where the position in each dimension are advanced from

the current position by a random number drawn from a normal distribution,

x(t +δ t) = x(t)+ξ (2)
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where ξ ∼ N(0,2DBδ t) for the white noise contribution. The Brownian motion simulation then

repeatedly advances each molecule’s position in three dimensions by the δ t until the maximum

time is reached. At each time step, the PSF calculates the normalized emission probability for every

molecules position in a trajectory vector, P . Molecules in regions of high emission probability,

near the center of the PSF, emit more photons up to the maximum emission rate.

Finally, the timestamp generation module creates the number of photon emissions events, κ ,

through a discrete random Poisson process

f (κ,λ ) =
λ κe−λ

κ!
(3)

where λ is the expected number of emissions. The values needed to calculate the λ values for

every time step are a maximum total emission rate, εT , efficiency, E, for each population, and the

emission probabilities, P from the Brownian motion simulation. Emission rates for the acceptor,

εAcc, and donor , εDon, channels are then calculated

εAcc = εT E (4)

εDon = εT (1−E) (5)

The efficiency, E, is constant for all timesteps. Separate expected counts for the acceptor, λAcc and

donor, λDon are then calculated

λAcc = PεAccδ t (6)

λDon = PεDonδ t (7)

and used to randomly draw emission events at every time step. Similarly, background emissions

rates are also determined for the acceptor and donor detector channels by randomly drawn num-

bers from a Poisson distribution with expected values, λBGAcc,λBGDon, supplied as a simulation

parameter.
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The timestamps are merged and sorted into a single trajectory for output. A vector of labels is

also generated to label the timestamp as being from the acceptor or donor channel. Other values

of interest that may be included are the molecule ID that generated the photon emission or the

position of the molecule in the PSF.

2.2 Overdamped Langevin Dynamics

The use of a static efficiency in the base PyBroMo software implies an underlying static relation-

ship between the two fluorescent dyes labeling the molecule. Fluctuations in molecular structure,

particularly in unstructured proteins, could impact how smFRET data is interpreted. To extend the

PyBroMo software beyond the static efficiency assumptions, an overdamped Langevin dynamics

module is added to simulate realistic dye-dye distance fluctuations over the simulation time as a

one dimensional diffusion process within a potential energy field.

The Langevin trajectories are calculated according to the Euler-Maruyama method36, where at

each time step, the dye-dye distance is updated by calculating the contributions from the distance

derivative of the potential energy function, V (r) and a stochastic random contribution. This step

update is defined as

r(t + δ t) = r(t)−βDL
dV (r)

dr δ t + ξL (8)

where DL is the diffusion coefficient, ξL ∼ N(0,2DLδ t), and β = 1
kBT with kB being the Boltzmann

constant, and T is the system temperature. The diffusion coefficient for the dye-dye distance, DL,

is unique from the Brownian motion diffusion coefficient. The user defined potential energy field

acts on the molecules as the white noise element perturbs the molecule.

A FRET efficiency model converts the dye-dye distance trajectories to efficiency trajectories.

Two different efficiency models are used for the two example scenarios described in greater detail

in sections 2.3 and 2.4. However, a constant that is common in efficiency models is the Förster

radius, R0, defined as the distance from the donor dye at which FRET efficiency is 0.5. This R0
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value is specific to the fluorescent dyes used in a smFRET experiment and based on the quantum

yield of the donor dye and the spectral overlap of the two dyes.

Eq. (4) and (5) then generate vectors for the acceptor and donor emission rate εA and εD

and Eq. (6) and (7) calculate the expected values λAcc and λDon. As with the base PyBroMo,

random numbers are drawn from a Poisson distribution defined in Eq. (3) for each timestep. The

background timestamp generation is unaffected by the Langevin dynamics module and contributes

to the Poisson distributed background timesteps as before. Finally, the timestamps from acceptor,

donor, and background are merged, as before, into a single trajectory with channel labels for each

photon detected.

Next, we describe the two example simulations to demonstrate the ability of the Langevin

dynamics module to generate timestamps.

2.3 Example 1: Molecules in a Single State

To demonstrate the generation of timestamps using the Langevin dynamics module, a simple ex-

ample system of molecules in a harmonic potential is simulated for three independent simulations

with all parameters held constant. The harmonic potential energy, VH is defined as

VH(r) =
kH

2
(r− rc)

2 (9)

where kH is the harmonic force constant, and rc is the center of the potential function. 100

molecules are contained in a simulation box with lengths Lx = Ly = 8 µm, Lz = 12 µm. The

Brownian diffusion coefficient, DB, is set to 30 µm2/s for all molecules. The Gaussian PSF is

centered in the simulation box with a σx = σy = 0.3 µm, and σz = 0.5 µm. Three independent

simulations are run for 10s each with a time step of 50 ns. For timestamp generation, a maximum

emission rate of 200,000 counts per second (CPS) is used in all the simulations, as well as a back-

ground rate of 1,200 CPS for the acceptor channel and 1,800 CPS for the donor channel. The CPS

values will be kept consistent for all simulations used in this work.
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For the Langevin dynamics parameters, the thermodynamic coefficient β is 1.339 (kcal/mol)−1

which corresponds to a relatively high temperature of 378 K for large thermal fluctuations. The

Langevin diffusion coefficient, DL, is 13 Å2/ms. The harmonic potential is defined by Eq. (9) with

the coefficient kH set at 0.025 (kcal/(mol Å2)) with the center of the harmonic potential at 40 Å for

50 of the molecules, and at 65 Å for the remaining 50 molecules. Eq. (11) is used to convert the

distances to efficiencies. In efficiency conversions, an R0 of 56 Å is used.

A short trajectory of Langevin dye-dye distances is shown in Figure 1. The molecules in
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Figure 1: (A) A portion of a trajectory of Langevin dynamics for the dye-dye distance of 4
molecules in a harmonic potential centered at 40 Å (colored green) and 4 molecules in a har-
monic potential centered at 65 Å (colored gray). (B) A histogram of the dye-dye distances for the
combined populations along with the analytic solution for the distribution in red.

each population oscillate in the harmonic potential over time, with a probability of some dye-dye

distance, P(r), following the relation

P(r) =
1

2
√

2π
βk

(
e−βVH1(r)+ e−βVH2(r)

)
(10)
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where VH1 and VH2 are the harmonic potentials applied to the two molecule populations in the

Langevin dynamics simulation.

For the harmonic simulations, an efficiency model developed for conformationally heteroge-

neous proteins33 relating the dye-dye distances to FRET efficiency is,

E =
1

1+0.975
(

r
R0

)2.65 , (11)

where r is the dye-dye distance and R0 was 56 Å. The FRET efficiencies used for photon gener-

ation are 0.41 and 0.71, which corresponded to Eq. (11) applied to distances of 40 Å and 65 Å,

respectively. The distances matched the centers of the harmonic potentials used in the Langevin

dynamics simulations. The other photon generation parameters for maximum emission rate and

background noise were held constant.

To compare the results of the new Langevin dye-dye distance module with the base PyBroMo,

three sets of simulated timestamps were generated with the base (non-Langevin) PyBroMo. These

simulations used the same number of molecules, and other Brownian motion parameters for diffu-

sion coefficient, simulation box, PSF, and background photons as described above. 50 molecules

had an efficiency of E = 0.71 while the other 50 had an efficiency of E = 0.41. These efficiency

values correspond to Eq. (11) applied to the harmonic centers from the Langevin dynamics, 40 Å

and 65 Å respectively. The results of this comparison are provided in section 3.1.

2.4 Example 2: Molecules with Inter-conversion Between Two States

The harmonic Langevin simulations described above approximate a system where the dye-dye

distance fluctuates around a single state for the duration of the simulation. However, biophysical

intuition as well as experimental smFRET data suggest that many biomolecular systems correspond

to two or more interconverting conformational states at equilibrium37.

To simulate a system that dynamically moves between different states, a bistable potential

energy with two symmetric wells are applied to a system of molecules in the Langevin dynamics
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module. 90 molecules were simulated using the Langevin dye-dye distance module using the same

Brownian diffusion coefficient, simulation box, and PSF as previously defined in Section 2.3. This

bistable potential, VB(r), is defined as

VB(r) =
kB

4
(
(r− rC)

2 −W 2)2
, (12)

where kB is the bistable force constant set at 10−4 (kcal/(mol Å2)). The location of the center of

the potential, rC, is set in this example at 50 Å, and W is the the offset from the center where the

potential wells were located, set at 15 Å. The locations of the potential energy minima is at rc±W ,

or 35 and 65 Å. Using the bistable potential, a Langevin molecule will explore a local potential

energy well until a large enough energetic contribution from the white noise in the Langevin dy-

namics gives the molecule the energy to overcome the energy barrier and explore the other well.

A Langevin diffusion coefficient of DL = 40 Å2/ms is used.

FRET efficiency is modeled using the commonly used relation

E =
1

1+
(

r
R0

)6 , (13)

where r is the dye-dye distance and R0 = 56 Å, as before. The efficiency model in Eq. (13) is based

on approximations of FRET theory and widely used in the smFRET literature. In order to gather

a sufficient amount of data for analysis, a total of approximately 20 minutes of smFRET data is

generated.

A short dye-dye distance trajectory using the bistable potential is shown in Figure 2. We see the

dye-dye distances oscillate inside one of the potential wells for some period of time before even-

tually overcoming the energy barrier between the two wells and switching states. The distribution

of dye-dye distances for the bistable Langevin simulation follows the relation

P(r) =
1
Z

e−βVB(r) (14)
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Figure 2: (A) A portion of Langevin dynamics trajectories for the dye-dye distance of 5 molecules
moving in a bistable potential centered at 50 Å with potential energy minima at 65 Å and 35 Å.
(B) A histogram of the the dye-dye distances is shown with the theoretical probability shown as a
red line.
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where the partition function for the bistable potential, Z =
∫ ∞

0 e−βVB(r)dr, normalizes the prob-

ability density to 1. A lower temperature, T = 300K, is used as compared to Example 1, with

β = 1.679 (kcal/mol)−1. The lower temperatures decrease the magnitude of thermal fluctuations

for each timestep so the molecule will explore the local well long enough to emit sufficient photons

for the state to be identifiable.

The analytical transition matrix of the bistable Langevin simulation, T (0), between different

states is related to the transition rate matrix, Q, by

T (0) = exp(τQ) (15)

Q :=

Q1,1 Q1,2

Q2,1 Q2,2

 (16)

where τ is the lag time between state determination measurements. The entry Qi, j represents the

transition rate from state i to state j. The transition rate between two non-identical states (here

reactant, R and product, P) is calculated using relations from Berezhkovskii and Szabo,38

QR→P =
1(∫ x∗

−∞ e−βV (x)dx
)(∫ P

R eβV (x)dx/D(x)
) , (17)

where the integration limit x∗ is the peak of the barrier at 50 Å, V (x) is the potential energy, D(x)

is the position dependent diffusion coefficient, and β = 1
kBT . Substituting the bistable potential,

V (x) =VB(x) and the constant Langevin diffusion coefficient, D(x) = DL, the transition matrix can

be computed theoretically as,

T (0) =

 0.968 0.032

0.032 0.968

 . (18)

In addition to the 90 molecules in the bistable Langevin simulation, 10 molecules were kept

in a constant "donor only" state of E = 0. Donor only states are present in experimental data and
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represent molecules where only the donor dye is attached, with no FRET possible. The donor only

population adds further realism to the analysis of dynamic state simulations as this is a source of

error encountered by experimenters.

To provide a comparison with the bistable Langevin timestamps, non-Langevin timestamps

were generated that simulated dynamic state switching. This is done by generating two timestamp

traces of approximately 20 minutes in length, using the same parameters for Brownian motion as

the bistable Langevin data. One set of timestamps used a fixed high efficiency state of E = 0.944,

while the other used a fixed low efficiency state of E = 0.290. The efficiencies correspond to Eq.

(13) using the locations of the well minima, rC = 35 Å for the high efficiency state and rC = 65

Å for the low efficiency state Also, a Förster radius of R0 = 56 Å was applied in all the efficiency

calculations. Again, the Brownian motion simulations parameters of Brownian diffusion constant,

simulation box size, PSF, and background photons were the same for the non-Langevin PyBroMo

as with the Langevin dye-dye distance module simulations above.

Transitions between states were simulated by drawing residence times from an exponential dis-

tribution with an average residence time of 31.126 ms. The trajectory of an efficiency state evolves

like a step function alternating between the two states. This residence time leads to a transition

matrix for the non-Langevin data that closely matches the transition rate matrix generated from

the bistable potential. Using these residence times, a set of timestamps is created that switched

between the two efficiency states, also 20 minutes in overall length.

The results from three analysis methods performed on the dynamic state model simulation

timestamps are contained in section 3.2.

3 Results

Techniques for simulating freely diffusing smFRET experiments are valuable, in large part, be-

cause they allow researchers to evaluate statistical methods using realistic data with a known

ground truth. With this in mind, we present a standard analysis of the timestamp data produced
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from the parameters described in sections 2.3 and 2.4.

3.1 Analysis of Example 1

The first experiment was simulated with the base PyBroMo software described in Section 2.1,

while the second experiment was simulated with the proposed Langevin dynamics module. The

timestamp data generated by both non-Langevin and Langevin simulations was in the form of a

column of ordered timestamps when a photon was detected. Additional columns label the channel

that detected the photon (donor or acceptor), and a label to identify the molecule that emitted the

photon. This molecule identifier would not be available in experimental data, but is information

that is available in the simulation.

Data analyses of freely diffusing smFRET experiments typically begin by binning and thresh-

olding the raw photon time stamp data22,39. The time bin size needs to be long enough to collect

sufficient data such that the signal from the fluorescent dyes can be distinguished from the noise

contributions. Conversely, the bin size needs to be small enough so that the FRET signal is only

from one molecule. The specific choice of time bin length will be dependent on background noise

rates, molecule diffusion rates, and confocal beam size, on the order of 1 ms.40 In our analyses,

we use a typical experimental bin width of one millisecond. For a given experiment, let ID
t and

IA
t denote the photon counts in the donor and acceptor channels during time bin t and define the

combined count IC
t = ID

t + IA
t . We restrict our analyses to those time bins with combined count

exceeding 40 photons. Based on the simulation parameters that are used, a combined photon count

at or above this magnitude indicates that the signal is very likely from a molecule diffusing across

the focal beam and thus the proportion of photons in the acceptor channel reflects the molecule’s

conformational state. Thesholding also ensures that our estimates of the efficiencies within each

time bin are not excessively variable due to low counts. No single method to determine photon

thresholds has been universally accepted41. In the literature, there are a number of heuristics for

choosing the threshold and many alternative approaches to identifying the diffusion of a molecule

across the focal beam42–44.
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Central to our analysis are the estimates of efficiencies within each bin, which we refer to as

apparent efficiencies. The apparent efficiency within bin t is defined as the proportion of the total

photon count from that bin which was detected in the acceptor channel:

Êt =
IA
t

IA
t + ID

t
. (19)

When analyzing real smFRET experiments, estimation of efficiencies should also take into ac-

count the so-called γ factor, which accounts for the difference in quantum yields of the donor and

acceptor dyes as well as the difference in photon detection efficiencies of the donor and acceptor

channels.45,46 This adjustment is not necessary for our analysis because the smFRET simulations

in this article were run with equivalent quantum yields and equivalent detection efficiencies.

We analyze the simulated smFRET experiments using a simple histogram of the apparent ef-

ficiencies as well as a Gaussian mixture model fit to the apparent efficiencies. The histogram

approximates the marginal distribution of efficiencies. It provides an idea of the relative amount of

time a molecule spends at each efficiency and whether there exist easily-distinguished conforma-

tional states. In comparison to a histogram-based analysis, the analysis based on a Gaussian mix-

ture model provides more quantitative information related to hypothesized latent conformational

states. We suppose that there is a latent conformational state st ∈ {1, ...,K} associated with each

time bin t and that these latent conformational states are independent and identically distributed

with probabilities π1, ...,πK. Given that st = k, we suppose that the apparent efficiency Êt follows

a Gaussian distribution with mean µk and variance σ2
k . The smFRET simulations were run with

K = 2 conformational states, and we take this as given. We compute the maximum likelihood es-

timates of the unknown parameters via an expectation-maximization algorithm47 as implemented

in the mixtools package48 in R49.

Figure 3 compares the non-Langevin and Langevin simulations in terms of apparent efficien-

cies and the corresponding dye-dye distances. Figure 3 (A), based on the non-Langevin simula-

tion, shows the estimated two-component Gaussian mixture density (in solid black) on top of a
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Figure 3: (A) The estimated Gaussian mixture density (solid black line) from the non-Langevin
simulation on top of a histogram of the apparent efficiencies along with the two true efficien-
cies (red vertical arrows). (B) The corresponding plot in the distance space. (C) The analogous
efficiency plot for the Langevin simulation. (D) The analogous distance plot for the Langevin
simulation.
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histogram of the apparent efficiencies. The dashed lines represent the (weighted) densities of the

estimated component distributions. The low efficiency component has a mean of 0.42, a standard

deviation of 0.07, and a mixture weight of 0.62. The high efficiency component has a mean of

0.70, a standard deviation of 0.05, and a mixture weight of 0.38. The vertical red arrows are

placed at the true efficiency values used in the simulation. Figure 3 (B) shows the corresponding

histogram, densities, and arrows after a transformation to the distance space. The probability dis-

tribution of distances is converted to a probability distribution of efficiencies through a change of

variable based on the efficiency model in Eq. (11)

Figure 3 (C) and Figure 3 (D), in the right half of the figure, are analogues of Figure 3 (A) and

Figure 3 (B) based on the Langevin simulation. The most substantial difference is that, instead

of vertical red arrows at two true efficiencies (or distances), we have densities representing the

true, non-degenerate theoretical distribution of efficiencies (or distances). In the distance space,

the theoretical distribution is the two component Gaussian mixture specified by Eq. (10). The

theoretical distribution in the efficiency space is again obtained through a change of variables

from efficiency to distance. In Figure 3 (C), the low efficiency component has a mean of 0.41,

a standard deviation of 0.07, and a mixture weight of 0.48, while the high efficiency component

has a mean of 0.68, a standard deviation of 0.09, and a mixture weight of 0.52. Figure 3 (D)

shows the corresponding histogram and densities after a transformation to the distance space, as

done with Figure 3 (B), and the underlying Langevin dye-dye distance distribution shown as a red

line. The distinct peaks observed in the non-Langevin timestamp analysis showed less overlap

in distribution of the two populations compared with the Langevin simulation timestamp analysis

which had a wider distributions with greater overlap. This small difference is reasonable due to

the the overlap between the underlying distance distributions of the Langevin dynamics for the

two populations. Overall, the analysis demonstrates that the addition of overdamped Langevin

dynamics in a simple scenario produces timestamps that contain valuable information from the

underlying distance distribution, like the location of efficiency peaks.
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3.2 Analysis of Example 2

Next, we describe two more sophisticated analyses that account for additional realistic features

included in the simulation, like donor-only particles and dynamic state changes, described in sec-

tion 2.4. A histogram based analysis as well as analyses to infer state dynamics were performed.

Again, the non-Langevin and Langevin timestamps generated using the simulation parameters de-

scribed in Section 2.4 contained information consistent with the simulation parameters that was

detectable by the analyses.

3.2.1 Skew Gaussian Mixture Model

We again analyze the non-Langevin and Langevin timestamps through mixture models. This time,

we fit three component skew-Gaussian mixture models to the timestamps generated from Example

2. Adding a third component is necessary because these simulations include donor-only molecules,

leading to a low FRET peak. The skew-Gaussian distribution has density

2
ω

ϕ
(

x−ξ
ω

)
Φ
[

α
(

x−ξ
ω

)]
(20)

where ϕ and Φ are the density and distribution functions of a standard Gaussian random variable,

ξ is a location parameter, ω is a scale parameter, and α is a shape parameter50,51. This more flex-

ible parametric family allows us to adequately model skewed distributions. Apparent efficiency

distributions which lie near the boundary of the unit interval, including the low FRET peak, typ-

ically exhibit strong skewness. We compute the maximum likelihood estimates of the unknown

parameters via an expectation-maximization algorithm as implemented in the mixsmsn package52.

The results appear in Figure 4, which compares the non-Langevin and Langevin simulations

in terms of apparent efficiencies and the corresponding dye-dye distances. Figure 4 is analogous

to Figure 3, except here they depict the results of the skew Gaussian mixture model. The skew

Guassian mixture analysis was able to recover the location of efficiency peaks from the timestamp

data reasonably well for both the non-Langevin and Langevin data, as well as the donor-only peak.
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Figure 4: (A) The estimated skew Gaussian mixture density (solid black line) from the non-
Langevin simulation on top of a histogram of the apparent efficiencies along with the true efficien-
cies (red vertical arrows). (B) The corresponding plot in the distance space. (C) The analogous
efficiency plot for the Langevin simulation. (D) The analogous distance plot for the Langevin
simulation.
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Again, the efficiency states for the non-Langevin simulation timestamps showed higher, more well

defined peaks with less overlap than the Langevin simulation timestamps, consistent with the point

mass distribution in the distance . This method aggregates all the timestamp information over time

into a histogram, losing temporal information about switches between states. The next two analysis

methods will explore the state switching in the timestamp data with more depth.

3.2.2 HMM Analysis

We analyze the Example 2 timestamp data using a hidden Markov model (HMM)53. Specifically,

we consider only the time-bins which are above a threshold (where the total photon count is above

40). In contrast to surface immobilized smFRET, in freely diffusing smFRET experiments the

molecule is only sometimes in front of the focal beam26,41. We define a burst as a set of consecutive

time bins such that for each of them, the total photon count is above the threshold. We then

evaluate the sequence of apparent efficiencies for each burst. To perform dynamical analysis and

detect transitions between the different FRET states, we treat the sequence of apparent efficiencies

from each burst as an independent time-series to be modeled with the HMM53,54, where the HMM

parameters are constant for all the independent time-series. We fit the apparent efficiencies using

two hidden states, and assume they are normally distributed conditionally on each state. Python’s

hmmlearn package was deployed to fit the HMM.

For the data generated using Langevin dynamics, the average photon burst duration is 2.18 bins

of 1ms. We fit the HMM using a total of 30053 such bursts and obtain a transition matrix estimate

T L =

 0.960 0.040

0.056 0.944

 , (21)

corresponding to two Gaussian states, for which we estimate means, µ1 = 0.321, µ2 = 0.883, and

variances σ2
1 = 0.029, σ2

2 = 0.004, respectively.

For comparison, we analyze the data generated using non-Langevin dynamics, where the aver-

age photon burst duration is 2.20 bins of 1ms. We fit the HMM using a total of 31354 such bursts.
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Fitting the data results in a Transition matrix:

T NL =

 0.956 0.044

0.061 0.939

 , (22)

corresponding to two Gaussian states, with means, µ1 = 0.291, µ2 = 0.910, and variances σ2
1 =

0.025, σ2
2 = 0.002, respectively. The analytical transition matrix is the same as for the Langevin

case.

Qualitatively, the measured transition matrices for both the Langevin and non-Langevin case

look reasonably similar to the analytical transition matrix in Eq. (15). We observed marginally

closer Gaussian state estimates for the non-Langevin transition matrix, while the error estimation

in the transition matrix elements marginally favored the Langevin data. We present a more quanti-

tative analysis of the error between the known and measured transition matrices for both cases in

the Supporting Information Section 2 where our analysis finds smaller measures of error for the

Langevin data, compared to the non-Langevin case.

A visualization of the transitions using changepoint analysis is presented in the Supporting

Information, Figure S2, and shows reasonable qualitative agreement between Langevin and non-

Langevin simulations. From these results we can infer that the Langevin dynamics module pro-

duces timestamps that include dynamic state changes in a controlled and realistic manner.

4 Discussion

The new Langevin module within the PyBroMo software allows for generating more realistic sm-

FRET data consistent with what one expects to observe from freely diffusing smFRET experiments

of molecules with flexible conformational states, where a fixed FRET efficiency or dye-dye dis-

tance does not provide a reasonable approximation. The comparison between the Langevin and

non-Langevin models here was not to show the superiority of the Langevin method over the non-

Langevin method as the Langevin method is considered an improvement simply because it is more
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realistic. Instead, the comparison was made to show the newly added Langevin model can be

recovered from the data using typical data analysis methods at least as accurately as the original

non-Langevin model and is this compatible with the PyBroMo software.

In the results presented above, the data from two example simulations using the Langevin and

the non-Langevin methods were analyzed using some typical methods applied to experimental sm-

FRET data. Example 1 used a simple model for a flexible molecule where the dye-dye distances

evolve dynamically using a Langevin simulation method in a harmonic potential, to give a distri-

bution of distances and FRET efficiencies in a physically justifiable way. Example 2 used the same

Langevin simulation method to evolve dye-dye distances in a bistable potential to model a system

that inter-coverts between two states. Both examples are compared with simulated data generated

with non-Langevin methods for single and bistable states with other parameters set to match the

Langevin simulations as closely as possible. This is done as a validation exercise to identify any

unintended artifacts from the new module when compared with the base PyBroMo software using

standard analysis methods including applying photon count thresholds, binning data over 1 ms,

creating histograms, and fitting HMMs for Example 2.

Our results demonstrate both, agreement between the Langevin and non-Langevin results as

well as reasonable accuracy in reproducing some of the major parameters of the underlying sim-

ulation. For instance, the histogram analyses reproduced the locations of efficiency peaks used

as Langevin simulation parameters, in approximately equal proportions for the dye-dye distance

distributions. Additionally, the HMM estimated similar transition matrices for the Langevin and

non-Langevin timestamp data. Importantly, the estimated transition matrices were reasonably ac-

curate to the ground truth transition matrix.

Qualitative differences were observed between the Langevin and non-Langevin timestamp data

in the histogram analysis. The histograms of the Langevin timestamp data showed broader distri-

butions of the efficiency states, in general. The comparatively narrow distributions of efficiencies

from the non-Langevin timestamp data were due solely to the Brownian motion of the molecule

through the PSF, but the underlying efficiency distributions are point masses. Both Langevin and
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non-Langevin simulation methods contained the same Brownian motion and PSF parameters so

any broadening of the efficiency distribution for the Langevin timestamp data can be attributed to

the ensemble of dye-dye distances from the Langevin module.

It is of note that the conversion between efficiency and distance, as done in the histogram

analysis, is generally non-linear. Qualitative observations, like relative peak heights, can change

after conversion. This is most obvious in Figure 4, where the two FRET states have different

efficiency peak heights but the peaks of distance histograms (and underlying distribution for the

Langevin simulation) are the same height. The two efficiency models used in this paper have

qualitative similarities but each model required its own conversion. FRET is most accurate near

the R0 value for the dye pair, with efficiency data becoming more distorted as it approaches zero

or one. Accurate conversion of efficiency histogram states into distance is required to infer the

underlying state information.

Beyond validation, the qualitative similarity in results implies the need for more sophisticated

analysis methods. Despite the stark differences in the ground truth of dye-dye distances, it would

be difficult to identify the Langevin results from the non-Langevin results. Some identifiers of the

underlying ground truth are present, like the wider spread of apparent efficiencies, but that is only

visible with a direct comparison and could be missed if viewed alone.

The conventional analysis methods we applied to the timestamp data used time bins to collect

the individual detected photons into an aggregate signal. An aggregate signal is necessary to collect

enough FRET signal to overcome the background noise. For the Langevin simulation method,

the time bins contain photons with an underlying ensemble of dye-dye distances and efficiencies,

but the ensemble becomes averaged over the time of each bin. This is especially true when the

underlying dynamics are significantly faster than the bin size. Reducing the size of time bins

may reduce the averaging of conformations but also increases the proportion of background noise

relative to the smFRET signal. A balance between time bin length and background noise limits

how short the time bins can be while containing significant photon counts.

Using the new Langevin module added to the existing PyBroMo software, researchers will have
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the ability to repeatedly generate large amounts of data with a known ground truth of heterogeneous

dye-dye distances. Different simulation parameters can easily be changed to generate timestamps

and test assumptions based on experimental diffusing smFRET data of flexible molecules with

heterogeneous states. New analysis methods beyond the standard time bin methods can then be

developed and tested against the simulated data with a known ground truth to assess the effec-

tiveness of such approaches with the ultimate goal of extracting more information from diffusing

smFRET experiments of flexible molecules.

5 Conclusion

In this work, we have shown that the addition of a Langevin dynamics module to the base PyBroMo

software is capable of generating freely diffusing smFRET timestamp data with more realistic het-

erogeneity of dye-dye distance dynamics and distribution. The implementation of the Langevin

dynamics provides a flexible approach for defining the underlying dynamics of the molecule with

full knowledge of the ground truth. Simulated data with known ground truth of realistic heteroge-

neous dye-dye distances will play an important role in developing new techniques for the analysis

of freely diffusing smFRET data for flexible molecules.
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