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Abstract

Motivation: Understanding the phylogenetic relationship among organisms is the key in contemporary
evolutionary study and sequence analysis is the workhorse towards this goal. Conventional approaches
to sequence analysis are based on sequence alignment, which is neither scalable to large-scale datasets
due to computational inefficiency nor adaptive to next-generation sequencing (NGS) data. Alignment-free
approaches are typically used as computationally effective alternatives yet still suffering the high demand
of memory consumption. One desirable sequence comparison method at large-scale requires succinctly-
organized sequence data management, as well as prompt sequence retrieval given a never-before-seen
sequence as query.
Results: In this paper, we proposed a novel approach, referred to as SAINT , for efficient and accurate
alignment-free sequence comparison. Compared to existing alignment-free sequence comparison
methods, SAINToffers advantages in two aspects: (1) SAINT is a weakly-supervised learning method
where the embedding function is learned automatically from the easily-acquired data; (2) SAINT utilizes
the non-linear deep learning-based model which potentially better captures the complicated relationship
among genome sequences. We have applied SAINT to real-world datasets to demonstrate its empirical
utility, both qualitatively and quantitatively. Considering the extensive applicability of alignment-free
sequence comparison methods, we expect SAINT to motivate a more extensive set of applications in
sequence comparison at large scale.
Availability: The open source, Apache licensed, python-implemented code will be available upon
acceptance.
Contact: ylu465@usc.edu; wangying@xmu.edu.cn;
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Understanding the phylogenetic relationship among organisms is the key
in contemporary evolutionary study (Delsuc et al., 2005). Owing to the
rapid developments in sequencing technologies, biologists nowadays have
been able to collect complete or near-complete genome sequences, without
relying on cultivation or reference genomes (Hug et al., 2016). These
readily available genome sequences are phylogenetically informative
to classify organisms and as a consequence, make the sequence-
based comparison methods popular and widely applicable to study the
phylogenetic relationship among a set of organisms (Eisen and Fraser,
2003; Bernard et al., 2019).

Due to the availability of complete or near-complete genome
sequences, it is straightforward to identify homologous regions that

are shared among different organisms by using in a multiple sequence
alignment (MSA) (Feng and Doolittle, 1987). The workhorse for MSA,
sequence alignment (Altschul et al., 1990), can be either global or
local, where global alignment focuses on the entirety (Needleman and
Wunsch, 1970) whereas local alignment only highlights local regions
of high similarity (Smith et al., 1981). Despite wide applicability and
great popularity, alignment-based sequence comparison methods are not
appropriate in some situations. First, alignment based methods are not
only computationally expensive, not also memory intensive in constructing
large-size indexing files, thus not scalable to large-scale sequence data.
Second, genomes of bacteria often contain DNA stretches acquired either
from unrelated organisms or from lateral gene transfer (Bernard et al.,
2019). However, alignment based methods are usually incapable of
distinguishing those lateral signals. And finally, with the advent of next-
generation sequencing (NGS) technologies, unprecedented high volumes
of short reads have been generated which is very challenging to assemble.
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Therefore, it is desirable yet infeasible for alignment-based methods to
compare genomes from unassembled sequence reads.

Alignment-free sequence comparison methods (Lu et al., 2017;
Zielezinski et al., 2017, 2019; Lu et al., 2020), as attractive alternatives,
are more resilient to complicated genetic rearrangements and much more
computationally efficient than conventional alignment-based methods for
studying the relationships among sequences. In brief, most alignment-free
methods compare the sequences in terms of the statistics of fixed-length
word (also known as k-mer) frequency. Specifically, the vectors comprised
of the composition of k-mers, usually referred to as k-mer frequency
vectors, need to be computed for comparison. The underlying rationale
of using k-mer is based upon the assumption that k-mer patterns shared
across a set of sequences can potentially capture the phylogeny informative
homology signals. However, the k-mer frequency vectors for large k of
practical interest demand excessive memory and storage consumption,
undermining the popularity of alignment-free methods in large scale.
Furthermore, existing alignment-free methods are all data-independent
in the sense that dissimilarity measures are predefined in a heuristic
manner and thus only provide rough approximation of the proximity among
organisms (Zheng et al., 2019).

Here, considering the comparison within a massive collection of
genomic sequences, one desirable sequence comparison method at this
scale requires succinctly-organized sequence data management, as well as
prompt sequence retrieval given a never-before-seen sequence as query.
In this paper, we propose a new method, referred to as SAINT (SiAmese
trIplet Network for Taxonomy embedding and categorization), for efficient
and accurate alignment-free sequence comparison (Figure 1). The key idea
of SAINT is: (1) break down a phylogenetic tree containing the interspecies
relationships among different organisms by the relative triplet comparison
in the form of “A is closer to B than C”; (2) use a specific deep neural
network to learn an embedding function for sequence triplets so that in the
embedding space, a small distance between similar sequence pair A and
B is favoured whereas dissimilar sequence pair A and C is pushed apart
by a large distance.

Compared to existing alignment-free sequence comparison methods,
SAINT offers following advantages:

• SAINT is more computationally fast and memory efficient because
sequence data are operated in a compressed embedding space which
is much faster to retrieval and succinct to store.

• SAINT is a weakly-supervised learning method where the embedding
function is learned automatically from the easily-acquired data.
Compared to existing deep learning-based alignment-free method
(Zheng et al., 2019), SAINT doesn’t require tedious labors to collect
accurate alignment distances to train.

We also apply SAINT to real-world datasets to demonstrate its
empirical utility, both qualitatively and quantitatively. Considering the
extensive applicability of alignment-free sequence comparison methods,
we expect SAINT to motivate a more extensive set of applications in
sequence comparison at large scale

2 Methods

2.1 Represent sequence by k-mer frequencies

The k-mer representation is prevalently used in alignment-free methods
(Lu et al., 2017; Zielezinski et al., 2017), serving as the basis for
genomic and metagenomic comparisons (Bernard et al., 2018; Wang et al.,
2014). Concretely, given an alphabet

∑
= {A,C,G, T} as well as

a pre-specified number k, these alignment-free methods first construct a
dictionary consisting of all possible subsequences of length k, then project

the input sequence into a feature vector where each entry encodes the
occurrence of the corresponding k-mer detected in the sequence. It is
worth mentioning that there exists several variants of such feature vector,
one commonly-used alternative, often referred to as the frequency vector, is
to normalize the k-mer counts into frequencies by dividing the total counts
of all k-mers; another popular alternative, often referred to as the indicator
vector, is to binarize the k-mer counts into the presence/absence of k-
mers. Since some previous studies suggested that using k-mer frequencies
is more informative and generalizable than the presence/absence of k-
mers (Lu et al., 2020), SAINT uses the k-mer frequencies as the sequence
feature throughout this paper.

2.2 Encode phylogeny into triplets

SAINT encodes a phylogenetic tree containing the interspecies relationships
among different organisms by the relative triplet comparison in the form of
“A is closer to B than C”. For example, two genome sequences belonging
to the same genus taxonomic level is more likely to be categorized into
the same operational taxonomic unit (OTU) than those in higher genus
levels such as family, order, class, etc. It is worth noting that such triplet
encoding is equally informative as a phylogenetic tree in the sense that the
phylogenetic tree can be accurately reconstructed based upon the triplets
(Ranwez et al., 2010).

Mathematically, we represent a triplet by t = (x, x+, x−) where
x, x+, and x− are the feature vectors of the anchor sequence, positive
sequence and negative sequence, respectively. The anchor and positive
sequences belong to the same taxonomic level, whereas the negative
sequence belongs to a different taxonomic level.

2.2.1 Triplet sampling
Given a phylogeny with N sequences, the number of possible triplets is on
the order ofO(n3). When constructing triplets from a large phylogeny, it
is computationally unfeasible to train a model on such a prohibitively large
number of triplets. Therefore, in practice it is often desirable to select a
small representative subset of triplets through some sampling strategy.

One straightforward strategy isk-negative sampling strategy (Wu et al.,
2017). In particular, each anchor and positive sequence pair (x, x+) is first
selected, followed by k randomly selected negative sequences. However,
it is not only challenging to determine a proper data-dependent k but
also computational intensive to take excessive random selections into
consideration. Another alternative sampling strategy is to select triplets
that nearly violate the triplet constraints (Le Capitaine, 2018). In other
words, given the anchor sequence x, the selected positive sequence x+

should be furthermost from the anchor in the positive space whereas the
negative sequence x− should be closest to the anchor among all possible
negatives. However, solely restricting to those difficult triplets may cause
the training procedure unstable to converge.

In this paper, SAINT follows a combined sampling strategy shown
as follows. Specifically, by firstly specifying the anchor sequence x and
a target taxonomic level we select the positive sequence x+ such that
the lowest common taxonomical ancestor (LCA) (Huson et al., 2007)
between x and x+ matches the target taxonomic level. Afterwards,
SAINT selects the negative sequence x− with respective to different
classification difficulty by enumerating the LCA between x and x− from
the immediate ancestor of the target taxonomic level to the most distal
one. For example, as shown in Figure 1(A), by specifying the anchor
and positive sequence S5 and S6 with the taxonomic level as Family,
SAINT constructs four triplets by selecting four negative sequences S4,
S3, S2, and S1 corresponding to the LCA as Order, Class, Phylum, and
Kingdom, respectively.
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Fig. 1. The workflow of SAINT . (A) SAINT encodes the phylogeny into a set of sequence triplets, each of which is represented as a k-mer frequency
vector; (B) Each triplet, comprised of anchor, positive and negative sequences, is passed through a Siamese triplet network as input, and ultimately
embedded into a common latent space for each sequence. The contrastive loss function penalizes far-apart anchor and positive sequences as well as nearby
anchor and negative sequences, up to a pre-specified margin; (C) An unknown sequence is passed through the trained Siamese triplet network, projected
into the embedding space among all trained sequences, and categorized by matching to the nearest neighbor.

2.3 Project triplets into a common embedding space

SAINT aims to learn a mapping function f(x) : R|
∑
|k 7→ Rd, where

|
∑
|k indicates the size of the k-mer frequency vector and d denotes

the dimensionality of common embedding space. Given a triplet t =

(xi, x
+
i , x

−
i ) for i = 1, 2, · · · , T where T is the total number of the

triplets, the learned function f(x) is expected to jointly pull similar
sequence pair xi and x+i closer and push the dissimilar sequence pair xi
and x−i apart, in terms of the Euclidean distance. The key to the learning
process is the contrastive loss function, defined as:

T∑
i

max
(
0, α+

∥∥∥f(xi)− f(x+i )
∥∥∥
2
−
∥∥∥f(xi)− f(x−i )

∥∥∥
2

)
(1)

where ‖·‖2 indicates the L1-norm and α > 0 is a margin to separate
the positive and negative pairs. Intuitively, Equation 1 penalizes far-apart
anchor and positive sequences as well as nearby anchor and negative
sequences, up to the pre-specified margin α. In this paper we fix α = 0.5.

The heart of learning the mapping function f(x) subject to the
contrastive loss is the “Siamese triplet network” (Hoffer and Ailon, 2015),
as illustrated in Figure 1(B). Specifically, the Siamese triplet network
takes triplet sequences as input, and feed them independently into three
identical embedding networks operated side by side. The embedding
network parameters are shared by the three networks so that updates
to one embedding network are always reflected in others. The shared
parameters are learned by minimizing the contrastive loss function defined
in Equation 1. Thus we allow the back-propagation from this loss function
to update the weights in the network with regard to all triplet sequences
simultaneously.

2.3.1 Network implementation
In our implementation, the embedding network is represented by a fully
connected multilayer perceptron (MLP), of which the number of nodes in
the input layer equals the size of the k-mer frequency vector, i.e., |

∑
|k .

The MLP network has multiple alternating linear transformation and

nonlinear activation layers. Each layer learns a mapping from its input
to a hidden space, and finally, the last layer learns a mapping directly from
the hidden space to the common embedding space of dimensionality d.
In this work, we use an MLP with 6 hidden layers, each containing 200

neurons with ReLU activation. And the size of the output layer (i.e., the
embedding dimensionality d) is set to be d = 100. We use Adam Kingma
and Ba (2014) to train the model using an initial learning rate of 10−4

and batch size 5000. See Section 3.4 for the effect of different embedding
dimensionality settings.

2.3.2 Triplet Weighting
Equation 1 assumes that all triplets are important, which may not be ideal in
model training. In particular, the contrastive loss, can be easily fulfilled in
the cases where the negative sequence is significantly dissimilar to the
anchor (e.g., the anchor and the negative sequence belong to different
Class), but fails to discriminate the cases where the negative sequence
is more or less similar to the anchor (e.g., the anchor and the negative
sequence belong to the same Family but different Genus). In other words,
attentions need to be paid on cases that are difficult to discriminate. In
this paper, instead of assigning identical weights, we propose to assign
a triplet-specific weight for each of the triplets so that difficult triplets
are weighed more highly than easy ones. More precisely, we adapt the
contrastive loss function in Equation 1 as follows:

T∑
i

w′i ·w′′i ·max
(
0, α+

∥∥∥f(xi)− f(x+i )
∥∥∥
2
−
∥∥∥f(xi)− f(x−i )

∥∥∥
2

)
(2)

wherew′i adjusts the i-th triplet inversely proportional to the frequencies of
its corresponding classification difficulty level in the training data. Andw′′i
highlights the importance of the i-th triplet with respect to its classification
difficulty level. Specifically, by letting di denote the LCA gap between(
xi, x

−
i

)
and
(
xi, x

+
i

)
, we definew′′i = 2−di . For example, as shown

in Figure 1(A), the LCA gap between Family and Order is 1.
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Fig. 2. The summary of the training and testing sets splitting on vertebrate
and bacteria datasets.

2.4 Categorize an unknown species by the phylogeny
embeddings

SAINT is able to automatically categorize an unseen sequence into a
trained phylogeny. To achieve this, briefly speaking, given an unseen
sequence x and a targeted taxonomy level t (e.g., Genus, Family, Order,
etc. ), SAINT first infers the embedding distances between x and all
sequences in the phylogeny, and then locates the best matching taxonomic
unit by averaging the taxonomy-specific sequences. Specifically, by
denoting the phylogeny sequence set as X and its possible taxonomic
units at the targeted taxonomy level as Ct = {xi ∈ X : T(xi, t)} where
T(xi, t) returns the corresponding taxonomic unit of xi at the targeted
taxonomy level t. SAINT aims to identify the best match in Ct:

arg min
c∈Ct

∑
xi∈X ‖f(x)− f(xi)‖2 · I{T(xi,t)=c}∑

xi∈X I{T(xi,t)=c}
(3)

where I{·} refers to an indicator function.

3 Results

3.1 Datasets

In the experiment, we constructed two genomic datasets downloaded from
NCBI RefSeq Database (Pruitt et al., 2005). Both datasets, comprised
of 1239 bacteria and 137 vertebrate sequences respectively, have detailed
taxonomic hierarchy from Species, Genus, up to Phylum. We observe that,
in each of the two datasets, when we go down the taxonomic hierarchy,
the number of distinct taxonomic units increases notably (Figure 2).
Accordingly, we adapt this observation in the training and testing division.
Specifically, we split the training and testing sets in a way not only the
taxonomic units under each taxonomic level are evenly split but each
taxonomic unit appearing in the testing set is ensured to be included
in the training set as well. We used the sampling method introduced in
Section 2.2.1 to generate 11200 triplets in our training set and 10026

in our testing set for the vertebrate dataset, and 896240 triplets in both

training and testing sets for the bacteria dataset, respectively. Within the
training set, we further applied a 2-fold splitting scheme to evenly split the
training and validation triplets.

3.2 Performance on triplets classification

We first investigated whether the SAINT model is well-trained and properly
behaved as expected. As shown in Figure 3(D) and 3(I), the contrastive
loss function in Equation 1 for the training set drops sharply during the
first dozens epochs before reaching a plateau, aligned with the trend for
the testing set. In addition to the loss in general, we further scrutinized the
actual learned relationship of triplets. As shown in both Figure 3(A)-(C)
for the bacteria dataset and Figure 3(F)-(H) for the vertebrate dataset,
the learned distances betweens the anchor and positive sequences are
consistently smaller than the ones between the anchor and negative
sequences. In short, SAINT successfully learned the embedding for all
genome sequences which are not only capable of pulling the sequence
pairs closer and pushing the dissimilar pairs apart, but also generalizable
to sequences never seen before.

We next evaluated SAINT in the context of triplet classification on
both datasets. We notice that the triplets in the testing set are valid, that
is, with the positive labels exclusively. Hence, we randomly chose half
triplets in the testing set as the negative set by swapping the corresponding
positive sequence and negative sequence. For each triplet t =

(xi, x
+
i , x

−
i ), the prediction score is measured by

∥∥∥f(xi)− f(x−i )
∥∥∥
2
−∥∥∥f(xi)− f(x+i )

∥∥∥
2

, where the large value indicates that the distance

between xi and x+i is much smaller than the one between xi and
x−i . Measured by the area under the receiver operating characteristic
curves (AUC), SAINT performs substantially better than a widely-used
alignment-free dissimilarity metric, Manhattan distance, by an average
increase of 10.18% on the bacteria dataset. For the vertebrate dataset,
despite the fact that the performance of Manhattan distance is already as
good as 0.99 in terms of AUC score, SAINT still improve the performance
by reaching 1.00. Furthermore, for the bacteria dataset, we examined
the performance of SAINT in three most common Phylums of bacteria,
Actinobacteria, Firmicutes, and Bacteroidetes, SAINT remains the notable
superiority in terms of AUC over Manhattan distance, by an average
increase of 9.17%.

3.3 Performance on taxonomy localization

In this section, we systematically evaluated the prediction accuracy of
SAINT in terms of each taxonomic level on both datasets. To alleviate
the intrinsic stochasticity brought from neural network training, we thus
repeated the 2-fold splitting on the training dataset for 6 times and
reported the averaged performance. For the bacteria dataset shown in
Figure 4(A), the taxonomic accuracy of SAINT reaches 0.84, 0.93, 0.95,
0.97, and 0.98 with respect to the level of Genus, Family, Order, Class,
and Phylum, respectively. In comparison, the taxonomic accuracy of
Manhattan distance only achieves 0.83, 0.87, 0.90, 0.94, and 0.96

correspondingly, with an average decrease of 3.88%. Analogously, for the
vertebrate dataset shown in Figure 5(A), the taxonomic accuracy obtained
by SAINT is 0.90, 0.97, 1.00, and 1.00with respect to the level of Family,
Order, Class, and Phylum, respectively, achieving an average increase of
4.60% compared to Manhattan distance. It is worth mentioning that the
Genus level comparison is not shown because there are too few samples
of each category in the genus layer.

In addition to the prediction accuracy, we also comprehensively
evaluated the superior performance of SAINT by treating it as a multi-
category classification problem. We used 8 standard measures including
precision, recall, F-measure (aka F1 score), homogeneity, completeness,
adjusted rand index (ARI), adjusted mutual information (AMI), and
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Fig. 3. The performance of SAINT in the triplet classification task on bacteria and vertebrate datasets, depicted by (A)-(E) and (F)-(J), respectively.
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normalized mutual information (NMI), to quantitatively assess the
performance of SAINT . Their definitions are given in the supplementary
material. As shown in Figure 6, SAINT outperformed the Manhattan
distance in the majority of cases across various measures. On the bacteria
dataset across all taxonomic levels, SAINT achieves an average increase

of 6.4%, 4.8%, 5.4%, 2.6%, 3.6%, 9.2%, and 7.2% compared to
the Manhattan distance in terms of precision, recall, F1, homogeneity,
completeness, ARI, AMI and NMI, respectively. And analogously on the
vertebrate dataset, SAINT achieves an average increase of 5.75%, 5%, 6%,
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Fig. 5. The performance of SAINT in the taxonomy localization task on vertebrate dataset. (A) The prediction accuracy of SAINT and Manhattan
distance in terms of different taxonomic level from Genus up to Phylum; (B) The embedding representation learned by SAINT can separate different
common vertebrate classes into distinct groups by using t-SNE visualization; (C) The predicted triplets which encode 52 vetebrate reference genomes in
the testing set are accurately aligned to the true phytogenetic tree downloaded from NCBI. Note that the branches marked in red indicate the inconsistency
between the prediction and the reference phytogeny.
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Fig. 6. The performance of SAINT treated as a multi-category classification on bacteria and vertebrate datasets, evaluated by multiple measures including
precision, recall, F-measure, homogeneity, completeness, adjusted rand index (ARI), adjusted mutual information (AMI), and normalized mutual
information (NMI).

1%, 1.75%, 2%, and 0.5% compared to the Manhattan distance in terms
of precision, recall, F1, homogeneity, ARI, AMI, and NMI, respectively

The quantitatively good performance of SAINT can also be
qualitatively supported, by visualizing the 2-D nonlinear embeddings by
using t-SNE (Maaten and Hinton, 2008). For the bacteria dataset shown in
Figure 4(B), common phylums, which contain many lower level taxonomic

units, such as Proteobacteria, Actinobacteria, and Firmicutes, can be well
separated into distinct groups. Meanwhile, relatively rare phylums such
as Spirochaetes and Deinococcus-thermus are also distinguishable from
others. Analogously, for the vertebrate dataset shown in Figure 5(B),
common classes such as Actinopteri, Aves, and Mammalia, can be well
separated into distinct groups.
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Fig. 7. The effect of test error with respect to different embedding
dimensionality.

Finally, we aligned the triplets predicted by SAINT with the reference
phylogenetic tree from NCBI RefSeq Database (Pruitt et al., 2005). To
facilitate an unbiased evaluation of SAINT , we consider those triplets
whose corresponding sequences are only used in the testing sets (307 out
of 1239 bacteria sequences and 52 out of 137 vetebrate sequences in
two datasets respectively ). For the bacteria dataset shown in Figure 4(C),
the 307 bacterial genomes was assigned to 10 phylums. Among the three
concentric circles, the outer, middle, and inner circle represent the result of
SAINT classification for each genome categorized with respect to Phylum,
Order, and Class, respectively. the branches marked in red indicate
the wrongly located genomes. Except for negligible bacterial genomes,
SAINT accurately locate the majority of genomes into the right place
consistently with the reference phylogeney throughout different taxonomic
levels. We notice that two misclassifications occur in the Tenericutes
phylum, which contains only 5 genomes overall, suggesting that the
accuracy of SAINT depends on having enough samples for particular
category. The similar conclusion can also be drawn for the vertebrate
dataset shown in Figure 5(C).

3.4 The effect of various embedding dimensionality

We also performed a parameter sensitivity analysis to investigate how
SAINT performs with respect to different embedding dimensionality.
As shown in Figure 7, the contrastive loss described in Equation 1
on the testing set exhibit a W-shaped curve. When the embedding
dimensionality is small, the contrastive loss drops quickly when the
embedding dimensionality increases, until reaching a plateau with training
fluctuation. In this paper, we fixed the embedding dimensionality as 100
and potentially, the reported performance can be improved by choosing
the dimension corresponding to the first dip.

4 Conclusion and discussions
In this paper, we developed a novel method, named SAINT , efficient
and accurate alignment-free sequence comparison (Figure 1). Compared
to existing alignment-free sequence comparison methods, the key
novelty of SAINT lies in two aspects: (1) SAINT is a weakly-supervised

learning method where the embedding function is learned automatically
from the easily-acquired data; (2) SAINT utilizes the non-linear deep
learning-based model which potentially better captures the complicated
relationship among genome sequences. We have applied SAINT to real-
world datasets to demonstrate its empirical utility, both qualitatively and
quantitatively. Considering the extensive applicability of alignment-free
sequence comparison methods, we expect SAINT to motivate a more
extensive set of applications in sequence comparison at large scale.

This work points to several promising directions for future research.
First, SAINT requires to represent the input genome sequence as a k-
mer frequency vector, which potentially lose the interdependent sequence
information. In the future, we plan to investigate using other deep neural
networks such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) to process the intact genome sequences as
input directly. Second, a desirable property of SAINT model should be
transferrable in the sense that the model trained on a particular dataset
should be directly applicable to a new dataset, which is vitally important
to classify never-before-seen sequences. To this end, we plan to train our
model by using a massive collection of sequences from datasets of high
volumes, such as the whole NCBI RefSeq Database (Pruitt et al., 2005).
And finally, aside from achieving a good classification performance, we
want SAINT delivers explanation alongside its predictions. For example,
if an unseen genome sequence is classified as a coronavirus, then the
biologist will want to know which parts of the sequence contribute to this
claim. Such explanation capability will enhance the credibility and utility
of its predictions for the practitioners.
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