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Abstract 
Single-cell RNA-sequencing (scRNA-seq) has enabled the unbiased, high-throughput 

quantification of gene expression specific to cell types and states. With the cost of scRNA-seq 

decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and 

thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. 

Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic 

variants on gene expression across a plethora of cell types and states, and promises to improve 

our understanding of genetic regulation across tissues in both health and disease. While 

previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL 

mapping, there are a number of open questions about how best to process scRNA-seq data and 

adapt bulk methods to optimise sc-eQTL mapping. Here, we evaluate the role of different 

normalisation and aggregation strategies, covariate adjustment techniques, and multiple testing 

correction methods to establish best practice guidelines. We use both real and simulated datasets 

across single-cell technologies to systematically assess the impact of these different statistical 

approaches and provide recommendations for future single-cell eQTL studies that can yield up to 

twice as many eQTL discoveries as default approaches ported from bulk studies. 
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Introduction 
Expression quantitative trait locus (eQTL, see Table 1a) mapping is an established tool for 

identifying genetic variants that play a regulatory role in gene expression. The approach has been 

widely applied to bulk RNA sequencing profiles from primary human tissues [1] and cell lines [2], 

[3], as well as sorted cell populations, e.g. blood cell types [4]. Statistical methods for (bulk) eQTL 

mapping have been extensively tested over the years, with key findings including the need to 

control for population structure and covariates [5] and to account for multiple testing to control the 

false discovery rate [6]. Linear mixed models (LMMs) in particular have become a popular 

framework for genetic analyses of molecular traits, due to their flexibility and ability to robustly 

control for confounding factors.  

 

Recent technological advances have allowed molecular phenotypes, including gene expression, 

to be assayed at the level of single cells. In particular, single-cell RNA sequencing (scRNA-seq) 

is now an established technique, and can be deployed at population scale, across many 

individuals, by exploiting multiplexed experimental designs and using appropriate demultiplexing 

tools [7–9]. The ability to identify cell types and cell states in an unbiased manner from scRNA-

seq data from a single experiment can be used to define homogeneous cell populations, quantify 

expression levels within them, and then map eQTL in each of them separately. As a consequence, 

studies where single-cell expression profiles (rather than bulk) are used to perform eQTL mapping 

have emerged recently [9–15], and promise to greatly improve our understanding of the genetic 

architecture of gene regulation across tissues, in both human disease and development [16]. 

 

As scRNA-seq in large sample sizes becomes feasible, it is important to establish ‘best practices’ 

and benchmark approaches for the design and analysis of genetic studies using single-cell data. 

Current efforts in this space have primarily focused on the experimental design of single-cell eQTL 

(sc-eQTL, Table 1a) studies, assessing trade-offs between sequencing depth, the number of 

donors, and the cell count per donor [17, 18]. Such studies conclude that statistical power can be 

improved on a fixed budget by performing lower-depth sequencing on more cells per sample or 

on more total samples.  

 

However, the statistical methods needed to adapt bulk methods to map single-cell eQTL have not 

yet been systematically benchmarked. Notably, several important processing steps need to be 

performed on single-cell expression profiles, before we can map the effects of genetic variants on 
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them (Fig. 1a). First, cell-level gene expression counts can be obtained using a variety of different 

methods that are summarised and reviewed elsewhere [19–21]. Second, quality control (QC) 

steps should be performed at the level of single cells to filter out low-quality cells (see for example 

[22] for an overview of best practices). Additionally, individual sequencing runs and batches 

should be examined to determine their overall quality, and poor quality batches should be 

discarded altogether. Lastly, traditional genetic analysis of gene expression is well-defined within 

homogeneous cell populations. Thus, cell type assignment needs to be performed prior to genetic 

mapping. Clustering and cell type assignment algorithms and approaches have been widely 

described and remain a focus of benchmarking efforts [22, 23].  

 

Here, we focused on all aspects downstream of these steps, as these upstream steps are largely 

dataset- and technology-dependent, and have been previously reviewed and benchmarked. 

Instead, we set out to optimise statistical analysis workflows that were originally developed for 

bulk RNA-seq studies in the sc-eQTL mapping setting. In particular, we take advantage of our 

unique, population-scale, dataset of matched (i.e. from the same individuals) single-cell and bulk 

expression data from a homogenous cell population (induced pluripotent cells; iPSCs) to evaluate 

the effect of different statistical choices. Because we have matched samples, we are able to 

measure performance both in terms of sc-eQTL yield (i.e. the number of significant sc-eQTL) and 

in terms of concordance with bulk-eQTL, which can be considered as the gold standard for eQTL 

mapping. We also validate these findings on simulated population-scale scRNA-seq datasets, 

where the eQTL effects are known, and performance can be measured in terms of power and 

false discovery rates. Using both empirical and simulated datasets, we identify best practices in 

terms of aggregation and normalisation, the type and number of expression covariates to include 

as fixed effects, methods to account for single-cell sampling variation in the model, and methods 

to guide multiple testing correction using information from bulk RNA sequencing data. Finally, we 

demonstrate how applying these best practices increases power to detect sc-eQTL and reduce 

the number of false discoveries. 
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Table 1. (a) Abbreviations used in the manuscript. (b) Summary of the six key aggregation-normalisation 
strategies used in this study. In particular, for each approach we specify the aggregation method used, the 
type of normalisation adopted, and the level of aggregation selected. 
 

1a Definition 

eQTL expression quantitative trait locus/loci 

sc-eQTL Single-cell eQTL 

eGene gene with at least one eQTL (at a given FDR threshold) 

LMM Linear mixed model 

Matched 
datasets 

(bulk and single-cell) expression data from the same set of individuals with 
closely matched expression quantification. 

a-bulk eQTL results obtained using bulk RNA-seq data from all donors (n=526) 

m-bulk matched bulk; eQTL results using bulk RNA-seq from matched donors (n=87) 

SV (single-cell) sampling variation 

FDR False discovery rate 

cFDR Conditional FDR 

FWER Family-wise error rate 

HVGs highly variable genes 

TMM trimmed mean of M-values; normalisation method proposed in [24] 

 
1b 

Definition 

Aggregation method Normalisation Aggregation level 

dr-mean mean Single-cell level (scran) Donor & run 

dr-median median Single-cell level (scran) Donor & run 

dr-sum sum Pseudo-bulk level (TMM) Donor & run 

d-mean mean Single-cell level (scran) Donor 

d-median median Single-cell level (scran) Donor 

d-sum sum Pseudo-bulk level (TMM) Donor 
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Results 

Aggregation and normalisation strategies 

Traditional bulk eQTL are germline genetic variants that are associated with differences in gene 

expression between donors, where the gene expression values represent the summary of a 

gene’s expression across all cells in the tissue sample. In order to use traditional bulk eQTL 

mapping methods for single-cell eQTL mapping, we first need to aggregate the multiple 

measurements (i.e. cells in cluster X or cells of cell-type X) from each donor to obtain bulk-like 

measurements. Here, we explore different aggregation methods (Fig 1b). In particular, we 

consider the mean, the median, and the sum as aggregation strategies. Initially, we performed 

aggregation at the donor (“d”) level, i.e. taking all cells for a donor, to maximise the numbers of 

cells per donor. We call the resulting methods “d-mean”, “d-median”, and “d-sum” (Table 1b). 

Additionally, given that single-cell RNA-sequencing allows for pooling of multiple donors into 

single sequencing runs (i.e. batches), and for post-hoc grouping of cells (for instance into cell 

types), we consider aggregating not only at the donor level but also for each individual sequencing 

run (i.e. all cells from a given donor in a single sequencing run within a single-cell type; designated 

“dr”, Table 1b). While this approach better accounts for variation across technical batches, it also 

introduces multiple measurements from the same donor. We can account for these repeated 

measurements in our linear mixed model by including replicate and population structure 

information as covariates (Methods). We call the corresponding methods “dr-mean”, “dr-median”, 

and “dr-sum”. We chose to explore the dr aggregation level because in the datasets we 

considered some donors are present in multiple runs [12, 13]. In all cases (i.e. using any of the 

aggregation methods), aggregated expression values were only calculated for samples (i.e. 

donors or donor-run combinations) with at least 5 cells. 
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Fig. 1. Overview of normalisation, aggregation and the single-cell eQTL mapping considered. (a) 
RNA pre-processing steps to obtain count matrices to perform eQTL mapping, including gene expression 
quantification, cell and gene-level quality control (QC) and cell type annotation. These steps are not 
optimised/tested in this work (shown in grey). (b) Different approaches tested to perform eQTL mapping 
using scRNA-seq profiles. Starting from one gene x cell count matrix obtained as in a, counts were 
aggregated per sample (i.e. donor, or donor-run combination), either by summing the data first at sample-
level and then normalising using methods designed for bulk RNA-seq (i.e. TMM [24]) as implemented in 
edgeR) or by first normalising the single-cell counts (using scran/scater [25, 26]) and then calculating the 
mean or the median at the sample-level. (c) eQTL mapping (cis). We map eQTL independently for each 
gene-SNP pair considered by fitting a linear mixed model. In particular, we model gene expression as the 
outcome variable (y), the SNP effect as well as additional covariates as fixed effects, and include one (or 
more) random effect (RE) term to account for population structure and sample variation. We considered 
various methods to compute covariates, and tested different numbers of covariates as well. (d) Multiple 
testing correction is performed in two steps. First, gene-level p-values are adjusted using a permutation 
scheme (Methods) to control the FWER across SNPs. Second, the top SNP per gene is selected (minimum 
adjusted p-value; Methods) and various methods are used to control the FDR and obtain globally corrected 
p-values. Steps that we optimise here are highlighted in blue in panels b, c, and d. 
 

Importantly, normalisation of the scRNA-seq data was performed in different ways depending on 

the aggregation method used. For the mean and median aggregation (both at the donor and the 

donor-run level), we performed single-cell-level normalisation using scran [26] implemented in 

scater [25], which is one of the standard methods used for single-cell normalisation. The mean 

and the median were then calculated on the resulting normalised (logged) counts (Fig. 1b, Table 
1). As an alternative to scran, we also tested bayNorm [27], another recent single-cell 

normalisation approach. We found that the normalised counts are highly correlated (Pearson’s R2 

mean: 0.88, median 0.93, Methods). On the other hand, summed count values (both dr-sum and 

d-sum) were obtained directly from the raw count data (i.e. non-normalised). Normalisation was 

then applied on the resulting pseudo-bulk counts, using methods typically used for bulk RNA-seq 

data. In particular, we perform TMM normalisation on the aggregated counts, as implemented in 

edgeR [28], one of the best-established methods for bulk RNA-seq normalisation (Fig. 1b, Table 
1), followed by log transformation. 

 

We test these approaches on two empirical datasets and two simulated datasets. The main 

analyses are performed on expression data gathered from iPSCs, for which we have bulk RNA-

sequencing [29] and Smart-Seq2 single-cell RNA-sequencing [12] data. This unique data allowed 

us to compare approaches to discovery of eQTL in single-cell expression data, using bulk eQTL 

results from the same samples as the gold standard for evaluating approaches for single-cell data. 

Specifically, we assessed the numbers of eGenes discovered in single-cell data and the extent of 

replication of bulk eQTL effects in single-cell analyses.  
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Additionally, we consider one cell type (midbrain floor plate progenitor; FPP) from a large 10X 

single-cell RNA-sequencing differentiation study, differentiating iPSCs towards dopaminergic 

neurons [13]. Lastly, to support our findings, we test our approaches on simulated single-cell 

eQTL datasets generated using SplatPop (Methods), based on either the Smart-Seq2 iPSC 

expression dataset or the 10X differentiating neuron dataset. In the simulations we could assess 

eQTL discovery power and the fraction of false positives at a given FDR using the simulated eQTL 

effects. 

Mapping eQTL using single-cell expression profiles 

Smart-Seq2 datasets 

We first focused on the single-cell data from Cuomo et al. [12], from which we selected the iPSC 

data (day0) to compare to bulk data from the HipSci consortium [2, 29]. We selected the iPSC 

data because the homogeneous expression profiles of these cells make it an ideal cell type for 

performing this kind of study. From the HipSci resource we selected 87 healthy donors of 

European descent for which we had quality controlled: 1) genotype data, 2) Smart-Seq2 sc-RNA-

seq, and 3) bulk RNA-seq (i.e. matched bulk, from hereon “m-bulk”). Additionally, we used a 

superset of 526 samples (including the previous 87) for which we had quality controlled: 1) 

genotype data, and 2) bulk RNA-seq data, for reference (i.e. all bulk, “a-bulk”). We (re)processed 

the raw RNA-seq data from the single-cell study to match the bulk processing as much as possible 

(Methods).  

 

We aggregated the single-cell information as described above (Fig. 1b) and we tested for cis- 

expression quantitative trait loci (eQTL) using a linear mixed model (LMM) as implemented in 

LIMIX [30], considering SNPs within 100Kb around the gene and with minor allele frequency 

(MAF) >10% and Hardy-Weinberg equilibrium P<0.001. We included in the model the first 20 

expression principal components (PCs; based on the relevant aggregation method), and used an 

identical-by-descent kinship matrix to reflect population structure and replicated donors. Each 

gene’s expression was quantile-normalised prior to being included in the model as phenotype to 

better suit the assumptions underlying the LMM. We considered the set of 20,545 highly variable 

genes (HVGs) based on the single-cell measurements (Methods). In some instances, to facilitate 

comparison between the different aggregation/normalisation strategies we selected the set of 

common HVGs that were tested in every cis-eQTL map (n=12,720 genes).  
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We identified between 602 and 1,835 genes with at least one eQTL (from hereon: “eGenes”, 

FDR<5%; Methods) using the different aggregation methods (out of 12,720 genes tested). To 

put these numbers in context, the equivalent eQTL map using matched samples with bulk RNA-

seq identified 2,590 eGenes (Table 2). The large difference in eGene discovery power between 

the bulk and single-cell methods is at least in part explained by the large difference in the total 

number of reads per donor and its variability across donors (Fig. S1).  

 
Table 2. Number of eGenes and replication of eQTL for the different aggregation & normalisation strategies 
in Smart-Seq2 iPSC cells. The same set of 12,720 genes were considered in all of the strategies. Discovery 
FDR was controlled at 5% for the discovery; replication was defined as FDR<10% and consistent direction 
of effect in the two bulk studies, i.e. matched bulk (N=87, m-bulk) and all bulk set (N=526, a-bulk). 
 

 Discovery  m-bulk replication  a-bulk replication 

 eGenes % tested # replicated % replicated # replicated % replicated 

dr-mean 1835 14.43% 889 48.45% 1367 74.50% 

dr-median 1337 10.51% 650 48.62% 952 71.20% 

dr-sum 1463 11.50% 819 55.98% 1153 78.81% 

d-mean 1305 10.26% 768 58.85% 1046 80.15% 

d-median 602 4.73% 378 62.79% 476 79.07% 

d-sum 1174 9.23% 709 60.39% 951 81.01% 

m-bulk 2590 20.36% - - 2448 94.52% 
 

Overall, we observe two main trends. First, aggregation at the donor-run level outperforms 

aggregation at the donor level only (e.g. dr-mean vs d-mean). Next, our results indicate that mean 

aggregation (after single-cell-specific normalisation; 1,835 eGenes) outperforms sum aggregation 

(followed by bulk-like normalisation; 1,463 eGenes), and median aggregation performs worst in 

all cases (1,337 eGenes). As well as finding the lowest number of eGenes, the median methods 

are also responsible for the low intersection of HVGs from 20,545 to 12,720, due to cells with low 

read counts. When dropping median from the comparison the increase from d-mean to dr-mean 

is even higher (40% increase in eGenes considering all shared genes vs 46% increase in eGenes 

considering all tested genes, Table S1)). For consistency, we assessed sc-eQTL mapping on the 

bayNorm [27] dr-mean normalised data and found that the results were virtually indistinguishable 

from the other dr-mean results (1,835 vs 1,860 eGenes, and Pearson’s correlation between both 

p-values and effect sizes: R=0.99, p-value < 2.2x10-16, total difference in effect sizes = 10-6). 
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Next, we used two selected sets of bulk iPSC RNA-seq data as described above, i.e. m-bulk 

(n=87) and a-bulk (n=526), to assess the replication of the iPSC sc-eQTL mapping results in bulk 

data (assumed to be the gold standard, Table 2, Fig. 2). We assess replication of the top eQTL 

effects in a single-cell method in bulk (i.e. direct eQTL replication), and define replication as 

FDR<10% (in the replication set) and a consistent effect direction. Replication rates from the two 

sets of samples show a very similar picture: on average we find slightly lower replication rates for 

the single-cell normalisation methods, but a substantially higher total number of replicated 

discoveries at the eQTL level. In particular, the highest number of replicated eQTL is found for dr-

mean (1,450 considering a-bulk) and highest fraction of replication is found for d-sum (82%, a-

bulk). Replication fractions remain consistent when considering all HVGs for eQTL (Table S1). 

Moreover, we see higher replication rates considering a-bulk as compared to m-bulk, indicating 

that some of the effects found in the single-cell data can only be picked up from bulk datasets 

with more samples. When specifically looking at the effects that get replicated, we observe that 

they are highly overlapping (86%) across aggregation strategies. This result indicates that the 

same effects that get replicated in d-sum, are also replicated in dr-mean, but since there are more 

effects found in dr-mean the fraction is lower.  

 

While the percentage of bulk-eQTL replicated by sc-eQTL mapping in a matched dataset is a 

powerful performance metric, a limitation of empirical benchmarks like this is that the ground truth 

is not known. To validate our results on a dataset with completely known true eQTL effects, we 

simulated single-cell expression profiles for genes on chromosome 2 for a population with known 

eQTL effects applied to 35% of genes (total expressed genes on chr2: n=1,255, eQTL 

Genes=439). To ensure the simulations reflected real data, expression statistics from the iPSC 

Smart-Seq2 dataset were used to estimate key parameters used in the simulations (Fig. S2; see 

Methods for details). We then performed aggregation, normalisation, and eQTL mapping as 

described for the empirical study on 10 replicate simulated datasets and quantified performance 

in terms of power (fraction of true eQTL detected), empirical FDR (i.e. fraction of false eQTL 

detected at an FDR < 5%), and effect size correlation (see Methods for details). There was a 

significant interaction between aggregation method and power (repeat measures two-way 

ANOVA; F(2,18)=11.89, p=0.015) (see results Table S2; see detailed statistical analysis Table 
S3). Analysing the main effects showed no significant difference between mean and median 

(paired-t-test; p.adj=0.89 (dr), 0.69 (d)), a moderate, nominally significant increase from sum to 

median (p.adj=0.055 (dr), 0.062 (d)), and a significant improvement for mean over sum 

(p.adj=0.002 (dr), 0.016 (d)) (Fig. 3a). 
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Fig. 2. Replication of bulk eQTLs in single-cells. Replication rates of bulk eQTL in sc-eQTLs as ranked 
by eGene significance (p-value) in bulk. Shown are the replication rates of a-bulk eQTL for the six different 
aggregation/normalisation approaches (mean, median, sum in blue, red, yellow respectively; dr-
aggregation level and d-aggregation level in solid and dashed lines respectively).  
 

These results corroborate findings from the empirical data analysis showing that mean 

aggregation after single-cell level normalisation performs better than sum aggregation followed 

by bulk-normalisation methods, however median aggregation performed better on the simulated 

data than the empirical data. The aggregation level did have a significant effect on the empirical 

FDR (F(1,9)=21.3, p=0.001)), with donor-run level aggregation resulting in fewer false positive 

eQTL (paired t-test: p=1.5x10-4) (Fig. 3b). Finally, we assessed performance in terms of the 

correlation between the simulated ground truth eQTL effect sizes and the estimated effect sizes 

(Fig. 3c). Here the interaction between aggregation method and level was also not significant 

(F(2,18)=1.43, p=0.26), but both were significant on their own (level: F(1,9)=40.4, p=1.3x10-4, 

method: F(2,18)=9.68, p=0.001), with donor-run level performing better than donor level 

aggregation (paired t-test: p=2.24x10-5) and sum performing better than mean (p.adj=0.041), 

albeit with a small magnitude of difference between the methods. 
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Fig. 3. Summary of eQTL mapping performance on simulated Smart-Seq2 iPSC datasets. (a) Power 
to detect simulated eQTL (# true positives / # simulated eQTL). (b) Empirical FDR (false discovery rate at 
FDR < 5%). (c) Pearson’s correlation between the ground truth and estimated effect sizes for genes 
simulated as eGenes. Colours and line types are as in Fig. 2. Box plots summarise the distribution, while 
the points show performance for each replicate (n=10).  
 
 

A remaining question was if the aggregation level and method would impact eQTL detection 

power the same way for different sized mapping populations (i.e. number of donors). Using the 

simulation framework to simulate and map eQTL for populations ranging from 50 to 400 donors, 

we found that as the number of donors increased the differences in performance between the 

different aggregation methods and levels decreased. Little difference between aggregation 

method and level remains once the sample size is greater than 200 (Fig. S3). 

 

As an alternative to the aggregation-based approaches, we also considered treating individual 

cells as distinct observations and mapping eQTL directly (after scran normalisation, with no 

aggregation). We included a random effect term in the LMM to account both for the expected 

correlation between cells from the same donor and similarity in gene expression between more 

genomically similar donors (Methods). An LMM is often used for “repeated measures” analyses 

- where multiple measurements are made from the same subject - in preference to classical 

approaches such as repeated measures ANOVA [31]. We tested this approach on the subset of 

HVGs on chromosome 2, and considered two distinct approaches: first, we considered all 

available cells (ranging from 5 to 379 cells per individuals, n=7,552 cells, 2,766 genes tested); 

second, we subsampled to a fixed number of cells (5 cells for each individual, n=445, 2,718 genes 

tested) per individual.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427401doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427401
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

In both cases, we observed a high number of eGenes (1,668 for the first approach, corresponding 

to ~60% genes tested and 840 using the second approach, i.e. 31% of the genes tested). 

However, the replication rates were very low, ranging from 10 to 15% when considering the two 

approaches and the two sets of bulk results (Methods), likely suggesting inflation and a high rate 

of false positives, confirmed by poor correlation of effect sizes between these results and those 

obtained using bulk RNA-seq (Fig. S4). To further confirm this result, we tested the first approach 

on one of the simulated datasets described above. This analysis resulted in a 75.6% false 

discovery rate, a power of just 18%, and a correlation between the absolute value of simulated 

and estimated effect sizes of 0.832 (Fig. S5), notably worse performance for all three metrics than 

with aggregation (see above). Given the high false positive rate and the increased computational 

burden caused by the larger sample sizes when treating each cell as a separate observation, we 

focus on the aggregation-based approaches for the remainder of this paper.  

10X datasets 

To check the generality of the results obtained from Smart-Seq2 data, we proceeded to assess 

the same aggregation/normalisation strategies on data generated with the 10X Chromium 

technology [32]. Recent large-scale single-cell studies have predominantly used 10X because of 

the lower cost and higher cell throughput of the droplet-based scRNA-seq technology, as 

compared to plate-based technologies such as Smart-Seq2 [33]. Though cell throughput is higher, 

most often the number of reads quantified is lower for 10X studies, and reads are from the ‘3 or 

‘5 end of transcripts (or both), but not from full-length transcripts as in Smart-Seq2. Specifically, 

we selected a midbrain floor plate progenitor (FPP) cell population from a recent differentiation 

study of iPSCs toward dopaminergic neurons [13] (n=174, Methods). Unfortunately, we did not 

have matching bulk RNA-seq data to assess replication, and thus could only assess differences 

in terms of cis-eQTL discovery power.  

 

In general, we observed very similar effects as found in the Smart-Seq2 dataset (Table 3). Again 

the donor-run methods (dr-mean, dr-sum and dr-median) outperformed donor methods (d-mean, 

d-sum and d-median), and as for Smart-Seq2 we observe that the single-cell normalisation 

method with mean aggregation outperformed the sum-based aggregation followed by bulk-like 

normalisation, supporting the previous observation (both from the simulated and the empirical 

Smart-Seq2 iPSC data) that single-cell-specific normalisation and treating different runs as 

separate entities is beneficial.  
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Moreover, for 10X data, single-cell normalisation with median aggregation performed especially 

poorly, likely due to the greater sparsity in 10X data compared to Smart-Seq2 data. Again, we 

observe that when considering all HVGs we see a larger increase of eGene discoveries from d-

mean to dr-mean (19% increase compared to the initial 16%; Table S4).  

 
Table 3. Number of eGenes for the different aggregation and normalisation strategies in 10X midbrain floor 
plate progenitor cells. In total 3,390 genes were considered in all of the strategies, and gene-level FDR was 
controlled at 5%. 
 

 eGenes 
% genes 
tested 

dr-mean 1545 45.58% 

dr-median 895 26.40% 

dr-sum 1064 31.39% 

d-mean 1310 38.64% 

d-median 443 13.07% 

d-sum 764 22.54% 
 

We again validated these results using simulated data based on expression statistics from the 

neuron differentiation 10X dataset to estimate key parameters used in the simulations (see 

Methods for details). The simulations confirmed that donor-run level aggregation also resulted in 

a lower empirical FDR on 10X data (paired t-test: p=0.002). They also confirmed that median 

aggregation performs very poorly on 10X data, however there was no significant difference 

between mean and sum aggregation on power (p=0.46, Fig. S6; see results Table S2, see 

detailed statistical analysis Table S5). Consistent with results from the Smart-Seq2 simulations, 

eQTL mapping on the 10X datasets with a smaller sample size resulted in a greater difference in 

performance, however here sum aggregation performed better on the smaller datasets (Fig. S7). 

Correcting for global expression covariates 

Another important step when mapping eQTL is the correction for batch effects and other known 

and hidden sources of unwanted variation in expression data [1, 34, 35], hereafter collectively 

referred to as covariates. In the previous analyses, we used the first 20 PCs as covariates, which 

is common practice in eQTL studies [34, 35].  
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Here, we tested the impact of alternative approaches and different numbers of factors to include 

as fixed-effect covariates in the LMMs used for sc-eQTL mapping. In particular, we compared 

multiple different methods to capture global expression covariates: probabilistic estimation of 

expression residuals (PEER [36]), principal component analysis (PCA), linearly decoded 

variational autoencoder (LDVAE or linear scVI [37]), and multi-omic factor analysis (MOFA [38]), 

for which we considered two different flavours: with and without sparsity constraints; Methods). 

For each approach we tested the effect of including 5-25 factors as covariates in the LMM, in 

steps of five. We again considered the iPSC data as a homogeneous cell type for which we have 

both bulk RNA-seq and single-cell RNA-seq on the same samples available. For these tests we 

focus on the dr-mean aggregation method, as it performed best in both the simulations and 

empirical tests; to limit the computational burden of comparing many methods and parameter 

settings, we limited the tests to chromosome 2 genes (n=1,421 genes).  

 

As previously described [36], we observed a big increase in the number of eGenes discovered 

when considering covariates as compared to not considering covariates: the minimum increase 

is 75% (Fig. 4). However, when comparing the method-specific optimal number of covariates (e.g. 

15 for PCA, 25 for PEER, Fig. 4), which is commonly done when optimising a eQTL mapping 

protocol (Methods), we observe broadly similar results across methods (Table S6, Fig. 4a). 

LDVAE, the only method included that works directly on the single-cell data, produces the 

smallest increase in eGene discovery. Furthermore, the replication of the effects in a-bulk, fixed 

at 20 PCs as previously used, is similar between the different methods (Fig. 4b). Our results also 

show that more computationally expensive methods such as LDVAE, PEER or MOFA do not 

perform measurably better than the historical default in bulk eQTL studies of correcting for 

unwanted variation using principal components.  
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Fig. 4. Comparison between covariate-adjustment approaches. (a) Number of eGenes obtained when 
using different approaches to account for covariates, as a function of the number of factors used as 
covariates (out of 1,421 chromosome 2 genes tested). (b) Number of replicated discoveries using a-bulk 
(all samples, n=526). Replication defined as FDR<10% and consistent direction of effect. The optimal 
number of covariates for each method is highlighted with an open circle.  
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Accounting for single-cell sampling variation 

After optimising the aggregation-normalisation method and the covariate correction, we moved 

on to test the effect of accounting for “sampling variation” (SV) in single-cell expression 

quantifications by including a (second) random effect in our linear mixed model that captures 

sampling effects (similar to the approach used in [13]; Methods). We hypothesised that the total 

number of reads used to quantify expression per sample and the number of QC-passing cells per 

sample could contribute to single-cell SV, so we tested the inclusion of random effects defined by 

these features in the LMM. First, we focused on the d-mean results and replaced the random 

effect accounting for kinship (baseline) with random effects accounting for either 1/#reads or 

1/#cells. Second, we considered dr-mean, which had higher power in eQTL mapping, and tested 

the use of a joint random effect accounting for both kinship and SV, again either 1/#reads or 

1/#cells (in this case we cannot remove the kinship effect term, which reflects the replicated 

structure of samples across batches, see Methods for details). 

 

For d-mean, we observe that replacing the kinship-based random effect with the random effects 

reflecting SV increases cis-eQTL mapping power by >9% (Table 4). Additionally, replication rates 

are similar across all tests, indicating that the additional effects are as likely to be true effects as 

the initially-discovered eQTL. When considering the dr-mean results, we observe an even 

stronger increase in eGene discovery power (>21%) when accounting for SV alongside the 

replicate structure. Again, we observe that the replication rates are comparable to the baseline 

results (kinship/replicate structure only). For both the d-mean and dr-mean results the 1/#cells 

random effect seems to work better than 1/#reads. 

 

Next, we assessed the impact of the inclusion of the SV measure on eQTL mapping in the 10X 

dataset. Given the lower read-depths per cell in 10X versus Smart-Seq2, we expected a stronger 

effect in this setting. However, for the d-mean results we observe a slightly smaller (~4%) increase 

in eGene discovery than was observed in the iPSC Smart-Seq2 results (Table S7). For the dr-

mean based methods, where we include both kinship and SV, we observe again a stronger 

increase in eGene discovery of around 20%. Like for Smart-Seq2, the SV effect based on 1/#cells 

allows for the identification of more eGenes than the 1/#reads-based random effect.  
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Table 4. Inclusion of random effect to increase discovery power of sc-eQTL mapping in Smart-Seq2 iPSC 
sc-RNA seq data. Shown are the number of eGenes that are discovered at an FDR of 5% and the replication 
in all bulk (a-bulk) defined as FDR <10% and same sign. Tested are the expressed genes on chromosome 
2 matched between the two considered aggregations (d-mean and dr-mean, n genes=1,434). 
 

 Random effect matrix Discovery a-bulk replication 

 kinship 1/#cells 1/#reads eGenes % tested # replicated % replicated 

d-mean ✓ - - 143 9.97% 107 74.83% 

d-mean - ✓ - 156 10.88% 116 74.36% 

d-mean - - ✓ 160 11.16% 120 75.00% 

dr-mean ✓ - - 179 12.48% 131 73.18% 

dr-mean ✓ ✓ - 230 16.04% 163 70.87% 

dr-mean ✓ - ✓ 218 15.20% 150 68.81% 

 

Guided multiple testing increases discovery power 

Given that the discovery power of eQTL is heavily dependent on the number of donors for which 

genetic and expression data is available, and large bulk eQTL studies are available, we set out 

to leverage bulk data to increase discovery power when mapping sc-cis-eQTL. To this end, we 

selected a recently proposed multiple testing correction method that conditions the false discovery 

rate (i.e. conditional FDR, or cFDR) on an external set of test statistics [39, 40] and tested the 

impact of its application to sc-eQTL mapping (Fig. 5a).  
 

To assess the impact of using cFDR we used the dr-mean iPSC results and the eQTL statistics 

of the m-bulk samples to condition our FDR estimates on and used a-bulk samples to test the 

replication rates (Fig. 5b, Table S8). The cFDR eQTL results are compared against three 

“standard” multiple testing correction methods in eQTL mapping (Bonferroni [41], Benjamin-

Hochberg [42] and Storey Q [43] - the latter being the standard method for our analyses [29, 44–

46]). We observed a 40% increase in eGene discovery by applying cFDR as compared to Storey 

Q, the second best performing method in terms of eGenes. When assessing the replication rates 

in a-bulk of the eQTL effects deemed significant by the different multiple testing procedures, we 

observe very similar replication rates for the methods seeking to control the false discovery rate.  
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The Bonferroni method seeks to control the (much stricter) family-wise error rate, and as such 

has a higher replication rate but at the cost of making many fewer discoveries. Importantly, all 

eQTL identified by Storey Q are also significant in cFDR. In this specific case we could apply 

cFDR when only changing the expression data but keeping other settings matched, i.e. same 

donors and therefore the same genotypes. Because it is rare to have matched bulk and sc-

RNAseq data for the same individuals, this is not a realistic setting for most applications of cFDR 

for sc-eQTL mapping. To generalise this approach, we applied cFDR using other reference eQTL 

statistics to guide our sc-eQTL mapping analysis. Specifically, we selected two external reference 

sets from GTEx: 1) the GTEx tissue that most closely resembles iPSCs (EBV transformed 

lymphocytes [29]), and 2) the meta-tissue eQTL results by GTEx (v7). For the meta-tissue results 

we assessed all different meta-analysis p-values (i.e. the fixed effect, random effect and random 

effect 2 as calculated using metasoft [47]). Lastly, we used a cell-type agnostic eQTL mapping on 

the two other differentiation time points presented in the Cuomo et al study (i.e. mesendoderm 

and definitive endoderm). This final setting should be useful in most common sc-eQTL mapping 

settings where either a cell-type specific or cell-type agnostic analysis can be performed within 

the same study.  

 

Similar to the results from the matched-sample cFDR, we observe that all of the cFDR methods 

(whichever test statistics are used for conditioning) outperform the Storey Q based multiple testing 

correction in terms of number of eGenes discovered (Fig. 5c, Table S9). Moreover, replication 

fractions are highly similar between the different FDR approaches (Storey Q and BH vs cFDR). 

The use of the p-values from the same study provided the largest increase in the number of 

eGenes, but the use of the metasoft p-values from the GTEx tissues is a close second (1,898 vs 

1,859 eGenes). Of importance here is that we subsetted down to only consider genes tested in 

all datasets, to be able to compare between cFDR conditionings. When assessing the impact per 

reference p-value set, we see that leveraging the joint cell types from the Cuomo et al. study 

yields a comparable number of discoveries as using the m-bulk data (2,821 vs 2,887 eGenes), 

again with comparable replication fractions (Table S10).  
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Fig. 5. Conditional FDR increases eGene discovery in iPSC Smart-Seq2 data while replication 
fraction stays consistent. (a) Graphical summary of cFDR method. (b) The eGene discovery power using 
different FDR methods at an FDR of 5% for the respective method (p < 0.05 Bonferroni). Blue bars indicate 
eGenes that were replicated in all bulk (a-bulk) defined as FDR <10% and the same direction of effect. 
Yellow bars indicate eGenes that were not replicated in bulk. (number of total genes tested=20,334). (c) 
The eGene discovery power using different external test statistics for cFDR. Tests were performed only on 
the subset of genes present in all four external datasets (GTEx metasoft RE2, FE, RE, and closest tissue) 
(13,653 genes tested). * denotes multiple testing correction methods that control the (much stricter) family-
wise error rate. 

Optimised sc-eQTL mapping 

To showcase the total increase in power possible when combining the findings outlined above, 

we directly compared the eGene discovery results from a default workflow using d-mean 

aggregation (baseline) to dr-mean with an additional random effect to capture sampling variation 

and an improved multiple testing strategy applied. Again, we focused here on the iPSC data to 

be able to assess replication in bulk and limited the testing to 1,434 HVGs on chromosome 2.  

 

Overall, we observe a 95% increase in eGenes detected when comparing the d-mean 

aggregation with Storey Q based multiple testing correction (142 eGenes) versus the optimised 

eQTL mapping approach, i.e. dr-mean with additional random effect and cFDR multiple testing 

(277 eGenes, Fig. 6, Table S11).  
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This drastic increase is explained by the smaller individual optimisations discussed above. The 

switch to dr-mean instead of d-mean increases mapping power by 26.1%, the use of the additional 

random effect reflecting SV (1/#cells) increases power by an additional 27.4%, and lastly the 

guided multiple testing correction using p-values from the matched bulk analysis increases power 

by 21.5%. In terms of how well these sc-eGenes replicated the bulk-eGenes (using FDR<10% 

and same effect direction as replication criteria), we observe decreases in the fraction of sc-

eGenes that replicated bulk-eGenes at each of the optimisation steps: ~3% replication decrease 

for d-mean to dr-mean and an additional ~3% replication decrease for the additional random effect 

on sample variation. However, the total number of replicated bulk-eQTL effects increased at every 

step, with 82 (+78.1%) additional eQTL replicated with the optimised mapping compared to 

baseline. When using a more stringent multiple testing cutoff (FDR<1%) in the optimal mapping 

procedure we observed a replication rate of 74%, which is similar to the replication rate for d-

mean eQTL effects with Storey Q multiple testing (i.e. baseline), while still identifying 52 (32%) 

additional eGenes (Table S12). 
 
 
Fig. 6. Optimising the eQTL mapping 
workflow increases eGene discovery. 
The eGene discovery power after 
optimising for aggregation level, 
including random effect reflecting 
sampling variation (SV, 1/#cells), and 
applying cFDR methods (conditioning on 
matched bulk p-values) at an FDR of 5% 
for the respective method (p < 0.05 
Bonferroni). Blue bars indicate eGenes 
that were replicated in all bulk (a-bulk) 
defined as FDR <10% and the same 
sign. Yellow bars indicate eGenes that 
were not replicated in bulk (chromosome 
2 genes tested=1,434). * denotes 
multiple testing correction methods that 
control the (much stricter) family-wise 
error rate. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427401doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427401
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Discussion 
Since being highlighted as ‘Method of the Year’ in 2013 [48], sequencing of the genetic material 

of single cells has become common practice to investigate cell-to-cell heterogeneity in biological 

systems [49]. Now an established method, scRNA-seq is being applied on larger and larger 

scales, for example to chart all the cell types in the human body (Human Cell Atlas, HCA [50]) 

and to study the differences between individuals from population-scale cohorts. This latter 

development has enabled us to study the effects of genetic variation on gene expression, at 

single-cell resolution. Recent studies have explored the optimisation of eQTL discovery power as 

a function of budgetary constraints, however, limited attention has been paid so far to optimising 

statistical workflows for eQTL mapping to improve power for the mapping of eQTL with the 

selected design.  

 

Here, we set out to assess the effects of different eQTL mapping workflows for single-cell studies. 

We used bulk and single-cell expression profiles derived from the same iPSC lines to assess both 

power and replication of genetic effects on gene expression variation. We also tested both Smart-

Seq2 and 10X data to determine how our recommendations would hold across technologies. To 

support our empirical data, we used splatPop to simulate data with known eQTL effects.  

 

We find that optimising the aggregation and normalisation approaches can increase eQTL 

mapping power substantially: in the Smart-Seq2 study we identify close to two times more eGenes 

for the best performing method vs a non-optimised baseline method. In the 10X study, we find 

that the dr-mean approach also gives most power to identify eGenes, but we could not assess 

the replication in bulk. However, the 10X simulations show that dr-level aggregation results in 

fewer false discoveries, and that both mean and sum aggregation perform well. We speculate 

that whilst the sum would perhaps be the most obvious approach to reproduce bulk-like 

measurements, the mean might perform better because of the cell-level normalisation used. 

Indeed, the normalisation at the cell-level may better balance the differences in read counts 

across cells prior to the aggregation at individual-level. Additionally, it is of note that methods in 

which we treat replicates as separate samples (i.e. donor-run) work best even though only 20 

(23%) of the Smart-Seq2 study samples and 25 (14%) for the 10X study samples were assayed 

in more than one run. We expect that these improvements are also down to improved 

normalisation as well as improved covariate correction.  
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Finally, we tested median aggregation, but given the sparsity of the single-cell data this method 

drastically decreases the number of genes that can be assessed for eQTL mapping. Therefore, 

the use of median aggregation is not a sensible method in most single-cell applications. 

 

Next, we assessed the effects of both covariate and sampling variation correction approaches. 

First, the effect of the different methods to identify covariates, i.e. data driven factors that capture 

unwanted variation in eQTL mapping, is ambiguous. Adding covariate factors of any method 

increases eGene discovery power substantially, but the results for the different tools when using 

the optimal number of factors for that tool are broadly comparable both in terms of discovery and 

number of replicated effects. Correcting for 15 PCs yielded the most eGenes at a high replication 

rate. Importantly, the bulk eQTL results we use to assess replication were mapped after correcting 

the bulk RNA-seq data using 20 PCs, which might bias the replication for the sc-eQTL mapping 

to be more similar to the bulk PCA based results. However, regardless of the replication rate in 

bulk, PCA-correction yielded the highest number of eGenes and so remains a sensible “default” 

choice for defining covariates capturing unwanted variation. Second, including sampling variation 

as a random effect in the models results in an increase in eGene discovery power on both Smart-

Seq2 and 10X datasets, especially when using the 1/#cells-based random effect. 

 

Finally, we explored the use of bulk eQTL mapping statistics to guide our multiple testing 

correction using the conditional false discovery rate (cFDR) in the implementation by Liley et al. 

We observe that the cFDR method gives a marked increase in the identified eGenes (between 

21% and 40% increase), both when matched bulk data is available and when meta-tissue eQTL 

summary statistics are used. However, using the larger iPSC dataset we found cFDR had limited 

impact in terms of replication rates of the eQTL. While cFDR allows us to guide the multiple 

testing, potential cell type-specific effects that are borderline significant might not be “boosted” in 

power by cFDR if those cell types are not present or lowly represented in the bulk references. We 

did, however, observe that all the effects found using standard FDR methods (Storey Q, Benjamini 

Hochberg) were also deemed significant using cFDR, so no potential effects were lost by using 

the guided FDR approach. We explored the use of cFDR for other single-cell studies, but more 

tests are needed for mixed cell types to find the optimal way to use cFDR in sc-eQTL studies. 

 

This study demonstrates that optimising the sc-eQTL mapping workflow can increase eGene 

discovery power substantially. However, our conclusions come with some caveats; 1) simply 

discovering more eGenes does not necessarily mean that an approach is better, as false positives 
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could arise due to data processing decisions; 2) bulk eQTL are a powerful, but not perfect, gold 

standard for assessing truth, as biases in bulk-eQTL mapping may be replicated in sc-eQTL 

mapping analyses; 3) while our simulation framework uses parameters estimated from empirical 

data to resemble real population-scale scRNA-seq data, all simulation frameworks have 

limitations. Also, the methods we explored here are based on current standards for bulk-eQTL 

mapping. Though we find that directly using single-cell expression information does not yield 

trustworthy sc-eQTL there is room for methodological improvements to better use the replicated 

structure of single-cell expression data and low counts in each cell.  

 

In this paper, we discussed the impact of various normalisation, aggregation and covariate 

correction procedures as well as multiple testing correction in the context of single-cell eQTL 

mapping power. Together our optimised sc-eQTL mapping workflow increases eGene discovery 

by almost a factor two in our empirical data. These findings will be of great value to the community 

as more population-scale scRNA-sequencing data becomes available and as groups like the 

single-cell eQTLgen consortium are establishing sc-QTL studies on a massive scale. 
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Methods 

iPSC RNA-seq data 

To optimise processing and workflows for eQTL mapping in single cells we focus on iPSC cells, 

as iPSCs have a homogeneous and stable expression profile [29] and because of the availability 

of both single-cell [12] and bulk expression [2, 29] data for iPSCs for the same donors through 

the HipSci consortium. Genotyping of the iPSC lines is described in the original study [2] 

expression quantification per technology is described below. 

Single-cell RNA-seq data processing 

The Cuomo et al [12] study describes in detail the differentiation of iPSCs towards definitive 

endoderm using a three day differentiation protocol. Briefly, the iPSC lines were multiplexed into 

24 experimental pools (4-6 lines in each pool) and single cells were sequenced using the Smart-

Seq2 protocol [33]). Cells were assigned to their donor of origin using Cardelino [7]. Here, we 

focus on the day0 cells (i.e. iPSC stage) that were successfully assigned to a donor and passed 

donor- and cell-level QC described below.  

 

First, we quantified gene expression levels in line with the bulk study. We mapped RNA-seq reads 

to the genome (hg19) using STAR mapping and used ENSEMBL v75 for annotation. Expression 

levels for each gene were counted using featureCount (subread v1.6.0 [51]). To remove outlier 

runs (i.e. pools), we 1) calculated the average correlation of each cell with all other cells (across 

all runs), then 2) for each run calculated the median of the resulting average cell-cell correlations, 

and finally 3) discarded runs with a median cell-cell correlation < 0.7, leaving 30 runs (out of 35, 

Fig. S8a). Then, to remove outlier donors, we recalculated the cell-cell correlations between cells 

from the remaining runs and discarded donor-run combinations with a median cell-cell correlation 

< 0.5, leaving 155 donor-run combinations (corresponding to 7,611 cells; Fig. S8b). Additionally, 

to remove further possible confounding effects, a small group of donors with monogenic diabetes 

(n=10) and four donors that were outliers in the genotype space (based on projection with the 

1000G project data) were excluded. After QC and selection the number of cells per donor varied 

from 5 to 383 iPSCs per donor (mean=84.8) and the number of reads per donor varied from 1 to 

104 million (mean=42 million). For reference, the average number of reads per donor in our bulk 

data is 44 million, but the range is much smaller (24-98 million reads per person, Fig. S1). 
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The two other developmental stages from Cuomo et al. [12], i.e. mesendoderm and definitive 

endoderm are used as a reference set for the cFDR analysis. For these two developmental stages 

and cell-QC, both as described in the original publication. However, gene expression 

quantification was performed in line with the single-cell iPSC data described above. 

Bulk RNA-seq data processing 

The HipSci project generated both chip-genotype and deep bulk RNA-sequencing profiles for 810 

iPSC lines corresponding to 527 unique donors. Details on expression quantification and QC of 

these data can be found in [29]. Of the 111 pre-QC donors for which we had single-cell RNA-seq 

data, matching bulk iPSC data was available for 108 (97%). After QC and selection on both the 

bulk data and the single-cell expression data, we were left with data from 87 donors. 

10X data from floor plate progenitor cells 

Recent large-scale single-cell expression studies have mostly been conducted using the 10X 

Chromium platform [32], given its larger throughput in terms of number of cells and lower costs 

per cell. The quantification of expression from 10X is different from Smart-Seq2, because 10X 

sequencing 1) only aims to capture sequence from the 3’, 5’, or both 3’ and 5’ ends of transcripts 

and 2) uses unique molecular identifiers to identify and remove effects of PCR duplication, and 

3) results in fewer reads per cell compared to Smart-Seq2.  

 

Given these differences and the recent shift towards 10X data, we wanted to assess the impact 

of eQTL workflows on 10X data specifically. We selected one cell-type (midbrain floor plate 

progenitors; FPP) and time-point (day 11 of iPSC differentiation towards dopaminergic neurons) 

from Jerber et al [13], using expression quantification and cell QC from the original paper. Briefly, 

sequencing data generated from Chromium 10X Genomics libraries were processed using the 

CellRanger software and aligned to the GRCh37/hg19 reference genome. Counts were quantified 

using the CellRanger “count” command, with the Ensembl 84 reference transcriptome (32,738 

genes) with default QC parameters. For each of 13 pooled experiments, donors (i.e. cell lines) 

were demultiplexed using demuxlet [9], using genotypes of common (MAF>1%) exonic variants 

available from the HipSci bank and a doublet prior of 0.05. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427401doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427401
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

Sufficient single-cell data (>=5 cells) were available for 174 individual cell lines from 174 donors. 

The number of cells per donor ranged from 7 to 7,782 (mean=831.4). The total number of reads 

per donor ranged from 0.02 to 114 million reads (mean=9.7). 

Simulation Methods 

Two types of population-scale scRNA-seq datasets (iPSC Smart-Seq2 and FPP 10X) were 

simulated using splatPop 

(http://www.bioconductor.org/packages/devel/bioc/vignettes/splatter/inst/doc/splatPop.html) from 

splatter [52]. To ensure realistic simulations, parameters were estimated from real data. Single-

cell parameters defining the distribution of library sizes (gamma), common BCV (inverse chi-

squared), and dropout rates (logistic) were estimated from the empirical single-cell count data 

from the donor with the most cells (iPSC Smart-Seq2 donor ID=joxm; FPP 10X donor ID=mita_1). 

Population parameters defining the distributions of gene mean expression (gamma) and variance 

in expression (gamma binned by mean expression) were estimated from the mean aggregated 

expression levels for all genes from either iPSC Smart-Seq2 or FPP 10X. Finally, eQTL 

parameters defining the distribution of the eQTL effect sizes (gamma) were estimated from the 

most significant eQTL hit for each gene from bulk iPSC data for eSNPs with MAF > 0.1. The eQTL 

effects were assigned randomly to 35% (n=439) of the genes being simulated with eSNPs having 

a MAF > 0.1 and being within 100kb of their eGenes. Data was simulated for genes from 

chromosome 2 (n=1,255) for 87 individuals in the British cohort for the Smart-Seq2 simulations 

and for 173 individuals from the European cohorts from 1000Genomes [53] . For the sample size 

analysis, n individuals were randomly selected from the European cohorts for each simulation 

(n=50, 87, 100, 173, 250, 400).  

 

To mimic the experimental design of the empirical datasets, cells were simulated in batches with 

5 (iPSC Smart-Seq2) or 24 (FPP 10X) individuals per batch, where 28% (iPSC Smart-Seq2) or 

14% (FPP 10X) of individuals were replicated in two batches, reflecting the pooling sizes and 

replication rates in the empirical data. Batch effect sizes were sampled from log-Normal 

distributions with location=0.001 and scale=0.12 (iPSC and FPP) and with the splatPop parameter 

similarity.scale=5 (iPSC Smart-Seq2) or similarity.scale=22 (FPP 10X) set to reflect the batch 

effects and relationship between samples observed in the real data (Fig. S2).  
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The different eQTL mapping methods tested on simulated data were replicated 10 times, with 

each replicate being an independent splatPop simulation. Due to genetic linkage, the top eSNP 

mapped for each eGene was not expected to be the simulated eSNP. To account for this, all 

eQTL hits with an empirical p-value below the empirical p-value corresponding to the multiple 

testing threshold determined using Storey Q on the top hits for each gene were considered 

significant. Each simulated eGene was considered a true positive (TP) if the simulated eSNP was 

among the significant eSNPs or it was considered a false negative (FN). Note that the FN includes 

eGenes with no significant eSNPs (type 1) and eGenes with significant eSNPs, but for which the 

correct eSNP was not significant (type 2). Each simulated gene that was not assigned an eQTL 

effect was considered a true negative (TN) if it had no significant eSNPs and a false positive (FP) 

if it had a significant hit. Performance metrics include power (TP / (TP + FN)), empirical FDR (FP 

/ (FP + TP)), and the Pearson’s correlation between simulated eQTL effect sizes and estimated 

effect sizes (beta.cor; including only genes simulated as eGenes). Statistical tests were performed 

in Rv4.0.3 and results are described in detail in Table S3, S4). 

Aggregation & normalisation methods 

Single-cell normalisation and log2 transformation of normalised counts-per-million were 

performed on raw single-cell counts using scran/scater [25] with size factors calculated using the 

pooled approach described in [26] and a pseudocount of one applied to the log2 transformation 

to avoid attempting to take the log of zero (i.e. log2(cpm+1)). The normalised counts were then 

aggregated using either the mean or the median (Fig. 1). We also considered an alternative 

single-cell normalisation technique, bayNorm [27], but observed minimal differences in 

normalised counts (as assessed by Pearson’s correlation of at the gene-level over the individual 

cells) and in eQTL results after dr-mean aggregation (as assessed by overlapping eQTL effect 

size and p-values). Sum aggregation was performed directly on the raw counts (Fig. 1), and 

followed by pseudobulk-like TMM normalisation [24] and log2-transformation, as implemented in 

edgeR [28]. In all cases, aggregation was performed at two levels of batch (Table 1). First, we 

aggregated all cells from each donor (i.e. d-mean, d-median, d-sum). In this setting, one sample 

corresponds to one donor (n = 87 in the iPSC Smart-Seq2 dataset, n = 174 in the FPP 10X data; 

samples with > 5 cells only). Next, we aggregated separately across donors and sequencing runs 

(dr-mean, dr-median, dr-sum). In this second setting, one sample is a unique donor-sequencing 

run combination (when considering samples with > 5 cells, n = 155 in the iPSC Smart-Seq2 data, 

n = 702 in the FPP 10X data). 
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Highly variable genes 

Highly variable genes (HVGs) were defined as the genes in the top two quartiles based on their 

squared coefficient of variation (CV^2 = variance / mean^2) calculated across all cells of each 

different cell-type. In this manner, we identified 21,592 HVGs for the iPSC Smart-Seq2 dataset, 

and 16,369 for the FPP 10X dataset. 

eQTL mapping strategy 

For cis-eQTL mapping, we followed Cuomo et al. [12], and adopted a strategy similar to 

approaches commonly applied in conventional bulk eQTL analyses. We considered common 

variants (MAF >10% and Hardy-Weinberg equilibrium P<0.001) within 100kb up- and down-

stream of the gene body. Association tests were performed using linear mixed models (LMMs), 

fit using LIMIX [30]. The values of all genes were quantile normalised (“gaussianised” in LIMIX) 

and the significance was tested using a likelihood ratio test (LRT).  

Covariates for sc-eQTL mapping 

To adjust for experimental batch effects across samples, we included covariates as fixed effects 

in our LMM models to correct for both known and hidden sources of unwanted variation. These 

covariates (e.g. batch effects) usually affect the expression of many genes, and therefore are 

detectable in the principal components of expression. Furthermore, global batch effects are 

orthogonal to the effects of a single cis regulatory variant on the expression of one gene, thus 

accounting for global batch effects in our LMMs will not remove the signal for eQTL. Unless 

specified otherwise, in our sc-eQTL mapping we included the first 20 principal components 

calculated on the relevant expression value aggregation/normalisation in the model as fixed effect 

covariates. However, in order to assess the impact of variations in the types and numbers of 

covariates included, we also considered alternative methods, namely PEER [36], MOFA (in two 

flavours: with and without sparsity  [38]) and LDVAE [37]. 

 

All covariates (except LDVAE, see below) were calculated using the relevant aggregated 

expression values at the level of donor or donor-sequencing run, for all genes tested (63,678 

genes). PCA was computed using the R function prcomp. PEER (https://github.com/PMBio/peer/) 

was run using the R implementation with the number of factors set to 30 and default parameters. 

MOFA v2 (https://biofam.github.io/MOFA2/) was run using the R implementation, for n=25 factors. 
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Both default parameters (i.e. MOFA; spikeslab_factors = F, spikeslab_weights = T, ard_factors = 

F, ard_weights = T) and parameters with the sparsity constraints removed (i.e. MOFA non-sparse; 

spikeslab_weights = F, ard_weights = F) were used. 
 

Finally, we included a recent approach using variational auto-encoders: linearly decoded 

variational autoencoder (LDVAE [37]). In contrast to the other methods, LDVAE works directly on 

the single-cell count data. We ran LDVAE following the tutorial (https://www.scvi-

tools.org/en/stable/user_guide/notebooks/linear_decoder.html), but changed it to estimate 25 

factors over 1,000 epochs with 400 warmup epochs. After training we extracted the LDVAE 

factors and aggregated the factors over the cells by taking the mean per donor or donor-run. 

Mixed effect models 

In order to account for possible population sub-structure in the sample considered as well as, 

importantly, for repeated observations for the same donor (i.e. across runs, in the “dr” aggregation 

methods) we include in the linear mixed model a random effect modelling such structure (using a 

kinship matrix, K): 

Y = covs + SNP + uK + ε, 

where Y is the expression of the gene considered (aggregated, normalised and transformed as 

described above), covs are the expression covariates (described above); SNP is the vector of 

allele values for the variant being tested; uK is a random variable such that uK~N(0, K), where K 

is a kinship matrix, specifically a SNP-based identity by descent (IBD) matrix estimated using 

PLINK [54],  and ε is the error term. 

Importantly, when considering “dr” aggregation methods (as well as the direct single cell eQTL 

mapping) this kinship matrix K is expanded to reflect the repeated samples (such that repeated 

measurements appear as “blocks” along the diagonal). 

Additionally, we tested the effect of the inclusion of a noise term in the LMM that accounts for the 

variable number of cells used to calculate aggregate expression measures, which has been 

shown to improve eQTL discovery power [13]. Here we also considered adding a term to account 

for each donor’s sequencing depth (i.e. number of reads per donor, Table 4; Table S6).  
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Using the LMM framework from LIMIX, we test three models for d-mean to account for different 

cofounders: 

Y = covs + SNP + uK + ε  (baseline, as above) 

Y = covs + SNP + uncells + ε 

Y = covs + SNP + unreads + ε 

Where Y, covs, SNP, uK and ε are defined as above; uncells is a random variable such that 

uncells~N(0, diag(1/ncells)), where diag(1/ncells) is a diagonal matrix with the inverse of the number 

of cells per donor as the diagonal terms and, analogously, unreads~N(0, diag(1/nreads)). 

For dr-mean, since we have replicate measurements for each donor (across sequencing runs), 

we always need to account for population structure (and replicated structure), by including the 

(expanded) kinship matrix as a random effect. As such, we test the following models: 

Y = covs + SNP + uK + ε  (baseline, as above) 

Y = covs + SNP + uK+ncells + ε 

Y = covs + SNP + uK+nreads + ε 

Since the LIMIX framework can only account for one random effect, in the latter two models, we 

introduced a weighting factor (w, between 0 and 1) to incorporate the relative weight of the two 

random effect term matrices, e.g. w*1/ncells + (1-w)*K. We optimised w using a grid search per 

gene (Brent method, [55]), where w starts at 0.5 and is varied up or down in steps of 0.1 if the 

model fit increases with a higher or lower w. 

Multiple testing correction 

Multiple testing correction for the eQTL results was performed in two steps, as is common-practice 

in eQTL studies [44, 45]. First, to adjust for multiple testing at the gene-level (i.e. across SNPs), 

we used an approximate permutation scheme, analogous to the approach proposed in [44]. 

Where, for each gene, we generate 1,000 permutations of the genotypes (100 permutations for 

simulated experiments) while keeping covariates, random effect terms, and expression values 

fixed. We then adjusted for gene-wise multiple testing using this empirical null distribution. 

Second, to control for multiple testing across genes, we applied the Storey Q value procedure 
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based on the most significant eQTL per gene, unless otherwise specified. Genes with significant 

eQTL were reported at an FDR<5%. This second step is performed after gene selection (i.e. after 

considering the relevant gene selection in the comparison setting). We deem significant all 

associations that reach the gene-level corrected p-value (step 1) corresponding to the selected 

gene-level FDR (step 2), i.e. we call as significant all associations to a gene that are below the 

identified association p-value (not just the top associated SNP per gene). 

 

We also tested alternatives to the Storey Q value for the second step. In particular, we test 1) the 

Bonferroni approach (p-value<0.05), which controls the much stricter family-wise error rate 

(FWER), 2) Benjamini-Hochberg (BH), another commonly used FDR approach;and 3) a recent 

implementation [39, 40] of the conditional FDR (cFDR), which leverages external data to guide 

the gene-level multiple testing correction. For the cFDR procedure we tested using raw 

association p-values from 1) the bulk iPSC associations, 2) GTEx v7 association p-values from 

the EBV transformed lymphocytes, 3) GTEx v7 association p-values from tissue meta-analyses 

results [56], and 4) association p-values from a joint eQTL mapping on the mesendoderm and 

endoderm data from the Cuomo et al study [12]. Given that the external datasets have imperfect 

overlap in terms of both SNPs and genes, we limit our focus to overlapping genes and variants 

for each respective test, unless otherwise specified. 

 

Conditional FDR is a method to condition or transform the p-value from one hypothesis test using 

an external set of test statistics. For a series of hypothesis tests (i = {1, .., n}), P = {Pi} and Q = 

{Qi} are two sets of random variables, representing the observed p-values from the internal (i.e. 

sc-eQTL; pi) and external (e.g. bulk-eQTL; qi) hypothesis tests, respectively. Traditionally the 

cFDR is approximated with the empirical joint cumulative distribution function (see Fig. 5a) and 

is then used to draw a contour through the two-dimensional space of all p-value pairs (p, q)={(p1, 

q1), ...(pn, qn)} that defines the region where H0 will be rejected. However, this approach does not 

explicitly control FDR. Here we apply an adjusted estimator of cFDR proposed and described in 

detail by Liley and Wallace. [40], which was shown to improve power and control the type-1 error 

rate. Briefly, for each p-value pair (pi, qi), the adjusted estimator adds randomly chosen points (pi’, 

qi’) to the original p-value pair space (p, q). Then the “transformed” p-value is calculated as the 

probability that the randomly chosen points had a more extreme cFDR than the point of interest 

(pi, qi). Ultimately, with this approach, we are able to define a better (i.e. a higher TP:FP) H0 

rejection region than what would be defined by strict thresholds for P and Q, and thus better 

integrate the external information into the statistical test.  
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Replication of bulk eQTL results 

Performance of sc-eQTL mapping was measured using two metrics: number of significant sc-

eQTL (FDR<5% unless stated otherwise, described above) and replication with bulk-eQTL. A sc-

eQTL (i.e. eSNP-eGene pair with FDR<5% in a single-cell study) was considered to replicate a 

bulk-eQTL if it passed two criteria: 1) the gene-SNP pair was significant in the bulk test at 

FDR<10% and 2) the direction of the effect was consistent between the sc-eQTL and the bulk-

eQTL.  

Note that a small percentage (~1%) of non-replicated sc-eQTL in bulk were due to the gene and/or 

the SNP of interest not being assessed in the bulk eQTL results. 
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Data and code availability 
The eQTL mapping pipeline is available via: https://github.com/single-cell-genetics/limix_qtl. 

splatPop is available in splatter v 1.14.1 on Bioconductor. The description of how to implement 

splatPop is available in the package vignette 

(http://www.bioconductor.org/packages/devel/bioc/vignettes/splatter/inst/doc/splatPop.html). 

 

The HipSci genotype information is made available per sub study and are available via: 

PRJEB11750, EGAS00001000866, EGAS00001002015, EGAS00001002016, 

EGAS00001002013, EGAS00001002014, EGAS00001002011, EGAS00001002012, 

EGAS00001002010, EGAS00001002009, EGAS00001002006, EGAS00001001272, 

EGAS00001002008, EGAS00001001730, EGAS00001001273, EGAS00001002007, 

EGAS00001002005, EGAS00001000867 

 

The single-cell iPSC, mesendoderm and endoderm RNA-seq reads are available via: 

ERP016000, EGAS00001002278. 

  

The bulk iPSC expression data is available per sub-study via: EGAS00001000529, 

EGAS00001000593, EGAS00001001137, EGAS00001001318, EGAS00001001727, 

EGAS00001001986, EGAS00001001987, EGAS00001001988, EGAS00001001989, 

EGAS00001001990, EGAS00001001991, EGAS00001001992, EGAS00001001993, 

EGAS00001001994, EGAS00001001995, EGAS00001001996, EGAS00001001997, 

ERP007111 

 

The FPP 10X data is currently under embargo and will be released upon publication. 
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