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Microorganisms produce an immense variety of natural products through

the expression of Biosynthetic Gene Clusters (BGCs): physically clustered

genes that encode the enzymes of a specialized metabolic pathway. These

natural  products  cover  a  wide  range  of  chemical  classes  (e.g.,

aminoglycosides,  lantibiotics,  nonribosomal  peptides,  oligosaccharides,

polyketides, terpenes) that are highly valuable for industrial  and medical

applications1.  Metagenomics,  as  a  culture-independent  approach,  has

greatly  enhanced  our  ability  to  survey  the  functional  potential  of

microorganisms  and  is  growing  in  popularity  for  the  mining  of  BGCs.

However,  to  effectively  exploit  metagenomic  data  to  this  end,  it  will  be

crucial  to  more  efficiently  identify  these  genomic  elements  in  highly

complex  and  ever-increasing  volumes  of  data2.  Here,  we  address  this

challenge  by  developing  the  ultrafast  Biosynthetic  Gene  cluster

MEtagenomic eXploration toolbox (BiG-MEx). BiG-MEx rapidly identifies a

broad range of BGC protein domains, assess their diversity and novelty,

and  predicts the  abundance  profile  of  natural  product  BGC  classes  in

metagenomic  data.  We  show  the  advantages  of  BiG-MEx  compared  to
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standard BGC-mining approaches, and use it to explore the BGC domain

and  class  composition  of  samples  in  the  TARA  Oceans3 and  Human

Microbiome  Project  datasets4.  In  these  analyses,  we  demonstrate  BiG-

MEx’s applicability to study the distribution, diversity, and ecological roles

of  BGCs  in  metagenomic  data,  and  guide  the  exploration  of  natural

products with clinical applications.

Metagenomics  offers  unique  opportunities  to  mine  natural  product  BGCs  in

diverse microbial assemblages from a wide range of environments5–7. However,

given the complexity of microbial communities found in nature, and the limitations

of current sequencing technologies, often only a very small fraction of the short-

read  sequence  data  can  be  assembled  in  contigs  long  enough  to  allow  the

identification  of  BGC  classes.  However,  the  annotation  of  individual  protein

domains  of  BGCs,  is  much  more  straightforward,  given  that  these  have

comparable  length  to  merged  paired-end  reads.  There  are  several  protein

domains  known  to  play  important  functions  in  the  BGC-encoded  enzymes.

Specific domains or combinations thereof are commonly found in certain types of

BGC classes. Accordingly, these are used for the automatic identification of BGC

classes in genome sequences8–10 and to study the distribution and diversity of

particular BGC classes in the environment6,7,11–13. Although there are various BGC

mining  tools  with  practical  applications14, only  the  Natural  Product  Domain

Seeker (NaPDoS)11 and the environmental Surveyor of Natural Product Diversity

(eSNaPD15)  are dedicated to  the study of  BGC domains. Both of  these tools

focus on nonribosomal peptides and polyketide synthases (NRPSs and PKSs,

respectively), and take assembled or amplicon data as input. Currently, there is

no technology available capable of efficiently exploiting raw metagenomic data to

study the composition and diversity of natural product BGC classes and domains

in the environment.

Capitalizing  on  the  fact  that  BGC  domains  can  be  readily  annotated  in

unassembled  metagenomic  data,  and  used  to  identify  the  different  natural
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product BGC classes, we developed BiG-MEx. This tool generates ultrafast BGC

domain annotations in short-read sequence data and applies a machine-learning

approach to predict the BGC class coverage-based abundances (for simplicity,

we  will  refer  to  these  as  BGC  class  abundance  profiles).  Additionally,  the

identified  domain  sequences  are  used  to  carry  out  a  domain-based  diversity

analysis.  This allows BiG-MEx both to deeply exploit metagenomic data, and to

adapt  to  their  ever-increasing  volume.  BiG-MEx consists  of  three  interacting

modules that are described below and illustrated in Fig. 1:

1. BGC domain identification module. We use the Ultrafast Protein domain

Classification  UProC16 tool  to  identify  BGC  protein  domains  in  short-read

sequence  data. For  this  purpose,  we  created  an  UProC  database,  which

includes 150 BGC domains covering 44 BGC classes.

2. BGC domain-based diversity analysis. This  module performs a domain-

targeted  assembly,  clusters  the  assembled  domain  sequences  to  create

Operational Domain Units (ODUs)17 and computes the ODU alpha diversity.

Further,  assembled  domain  sequences  are  placed  onto  reference

phylogenetic trees.  The module includes pre-computed phylogenies for 48

BGC  domains.  These  were  selected  based  on  domain  sequences  from

experimentally  characterized  biosynthetic  gene  clusters  with  enough

sequence information for phylogenetic analysis. 

3. BGC class abundance prediction module.  We created machine-learning

models that  predict  the abundance of  BGC classes based on the domain

annotation. The models are class-specific and consist of a random forest (RF)

classifier  to  predict  the presence/absence of  a BGC class,  and a multiple

linear  regression  (MLR)  to  predict  its  abundance.  These  models  can  be

customised  to  target  metagenomic  and  genomic  data  from  different

environments and taxa, respectively. 

To evaluate the performance of BiG-MEx, we first  assessed how the UProC-

based  domain  identification  used  in  BiG-MEx improves  the  data  processing

speed  compared to  HMMER18 (i.e.,  the  traditional  approach  for  domain
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annotation) for the annotation of the 150 BGC domains. This comparison showed

that UProC was on average 18 times faster than HMMER (Supplementary Fig.

1a).  We  then  evaluated  the  accuracy  of  BiG-MEx  Operational  Domain  Unit

(ODU) diversity estimation approach. We used BiG-MEx to compute the ODU

diversity of the NRPS adenylation (AMP-binding) and condensation domains, as

well as the PKS ketosynthase (PKS_KS) and acyltransferase (PKS_AT) domains

in  a  simulated  metagenomic  dataset  (Marine-TM dataset;  see  Materials  and

Methods  section  3).  Additionally,  we  computed  the  ODU  diversity  of  these

domains based on the domain sequences obtained from the genome sequences

used to simulate the Marine-TM metagenomes. The latter estimates (henceforth,

the reference estimates) were assumed to accurately reflect the ODU diversity,

as they were computed using the complete domain sequences. We compared

BiG-MEx  ODU  diversity  estimates  against  the  reference  ODU  diversity  and

observed that these were highly correlated: PKS_KS domains had a Pearson’s r

of  0.77,  while  for  the  other  domains  the  Pearson’s  r  was  greater  than  0.9

(Supplementary Fig. 1b). Lastly, we evaluated BiG-MEx’s BGC class abundance

prediction module. We point out that although we modelled the abundance of a

few BGC subclasses, we refer to all as BGC classes. For this analysis, we used

two different simulated metagenomic datasets, one for training and the other for

testing  the  BGC  class  abundance  models  (Marine-RM  and  Marine-TM,

respectively)  (see  Supplementary  Table  1).  We  predicted  the  BGC  class

abundances  in  the  Marine-TM  metagenomes,  using  BiG-MEx  BGC  class

abundance  prediction  module,  and  additionally,  computed  the  BGC  class

abundances based on the complete genome sequences used to simulate the

Marine-TM  metagenomes.  Similarly  as  indicated  previously,  the  latter

abundances  were  taken  as  a  reference  to  evaluate  the  accuracy  of  the

predictions.  We  observed  that  the  predicted  vs.  reference  abundance

comparison for 20 of the 23 BGC classes we modelled (i.e., the total number of

classes detected in the Marine-RM training dataset) had a Pearson’s r correlation

coefficient greater than 0.5 and a median unsigned error (MUE) lower than 0.25

(Supplementary Fig. 2). Figure 2a displays the scatter plots of this comparison for
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the NRPS, terpene, and type I and II PKS BGC classes. To benchmark BiG-MEx

BGC  class  abundance  prediction  module,  we  compared  its  abundance

predictions against the abundance estimates derived from running antiSMASH

on  assemblies  of  the  Marine-TM metagenomes  (hereafter  referred  to  as  the

“assembly approach”).  The plots  in  Figure 2b display the Pearson correlation

coefficients and the unsigned error  distributions with  respect  to  the reference

abundances  comparing  both  approaches  for  the  same  four  BGC  classes

mentioned above.  All  BGC class abundance models included in this  analysis

were considerably more accurate than the assembly approach (Supplementary

Fig. 3). 

To illustrate the application of BiG-MEx, we performed a Principal Coordinates

Analysis (PCoA) based on BiG-MEx-derived BGC class abundance profiles of

the 139 prokaryotic metagenomes of TARA Oceans. In Figure 3a, we ordinate

the first two axes of the PCoA. The first axis (PCo1; 73.5% of the total variance)

differentiated  the  mesopelagic  (MES)  from  the  surface  (SRF)  and  deep

chlorophyll maximum (DCM) water layers (Wilcoxon rank sum test; all p-values <

0.0001;  see  Supplementary  Table  2).  Further,  the  ordination  values  of  the

metagenomes along the PCo1 axis correlated with temperature (Pearson’s r = -

0.73; p-value < 0.0001). The differences in the BGC class composition between

water  layers  were  additionally  confirmed  with  a  Permutational  Multivariate

Analysis  of  Variance  (PERMANOVA)  (see  Supplementary  Table  3).  We also

performed a  PCoA to  explore  the  BGC domain  composition  and  obtained  a

similar ordination of the metagenomes (Supplementary Fig. 4). These results are

in  agreement  with  previous  work  showing  the  stratification  of  microbial

communities  along  depth  and  temperature  gradients19,20. In  particular,  a  very

similar  differentiation  of  the  MES  water  layer  along  the  first  axis  was  also

observed in the PCoA performed by Sunagawa et al.,19 based on the 16S mitag

(i.e., 16S ribosomal RNA gene tags21) composition of these same TARA Ocean

metagenomes. 
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Next,  we  used  BiG-MEx  domain-based  diversity  module  to  compare  the

Operational Domain Unit (ODU) diversity of the NRPS adenylation (AMP-binding)

and  condensation  domains  between  the  SRF,  DCM  and  MES  water  layers.

These  domains  provide  information  about  the  chemical  characteristics  of  the

peptides  synthesized  by  NRPS  enzymes.  AMP-binding  domains  recruit  the

amino acid monomers to be incorporated, while condensation domains catalyse

the peptide bond formation22,23. In this analysis, we aimed to assess the potential

chemical diversity of the NRPS products. NRPSs are one of the most studied

BGC classes and are responsible for the production of many compounds with

clinical applications. The results show that the ODU diversity of both domains

increased from the surface to the mesopelagic water layers and differentiated

significantly between water layers (pairwise Wilcoxon rank sum test; all p-values

< 0.005;  see Supplementary Table 2) (Fig. 3b). These results indicate that the

microbial  communities  inhabiting  deeper  water  layers  contain  a  significantly

higher diversity of NRPS products.  The ODU diversity gradients resemble the

Operational Taxonomic Unit (OTU) richness and functional diversity distributions

shown in Sunagawa et al. We found highly significant correlations between the

ODU diversity estimates and the taxonomic and functional richness and diversity

obtained by Sunagawa et al. (see Supplementary Table 4).

To  exemplify  a  more  fine-grained  analysis  with  BiG-MEx’s  domain-based

diversity module, we explored the ODU diversity of condensation domains in the

three  TARA Oceans  metagenomes obtained  from the  SRF,  DCM,  and  MES

water layers at the sampling station TARA_085 (Antarctic Ocean). As observed

previously,  the  metagenome  from  the  MES  water  layer  had  a  higher  ODU

diversity (Fig. 4a). It contains many low abundance ODUs scattered throughout

the  reference  phylogeny  (Fig.  4b).  The  phylogenetic  diversity24 (PD)  of  ODU

representative sequences of the MES metagenome, was 5.24 and 2.65 times

greater than the PD estimates of the SRF and DCM metagenomes, respectively.

Besides indicating a higher chemical diversity, this result indicates that there is

greater  potential  chemical  novelty  of  nonribosomal  peptides.  Additionally,  the
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phylogenetic placement analysis revealed that the most abundant condensation

ODU is placed close to the reference condensation domain sequences of NRPSs

that  produce  albicidin  and  cystobactamide  antibiotics  (both  topoisomerase

inhibitors)  (Fig.  4c).  As  albicidin  is  also a phytotoxin,  the dominance of  such

ODU, which originates from the DCM layer, could be explained by the presence

of  a  large  number  of  NRPSs  that  act  on  the  photosynthetic  organisms  that

concentrate  therein. The  DCM  layer  had  a  notably  higher  chlorophyll

concentration than the other two layers (0.01, 0.28, and 0 mg/m3 for the SRF,

DCM, and MES respectively). The NRPS producing albicidin belongs to the class

Gammaproteobacteria  and order  Xanthomonadales.  This is in agreement with

the ODU taxonomic affiliation, which was annotated as a Gammaproteobacteria

(lowest common ancestor).  This finding is also supported by the fact that the

BLASTP  search  against  the  reference  MIBiG  database, showed  that

condensation domains significantly similar to NRPS domains producing albicidin

(e-value < 1e-5), where only found in the DCM layer. We cannot exclude other

possible explanations of these results; however, this line of exploration might be

worth  considering  for  further  research.  Rising  ocean  temperatures,  as  a

consequence  of  global  warming,  are  predicted  to  increase  the  frequency  of

events  of  bacteria  affecting  the  algae  populations,  which  in  turn  can  impact

marine  ecosystems  on  a  global  scale25.  Regarding  potential  biotechnological

applications,  these results  are relevant  for  bioprospecting,  given that  albicidin

and cystobactamide are antibiotics of interest for clinical treatments26,27.

We note  that  neither  the  TARA Oceans Metagenomes Assembled Genomes

(MAGs)28, nor the DCM assembled metagenome from TARA_085 sampling site,

contained  albicidin  or  cystobactamide  NRPS-like  sequences.  The  difference

between  our  findings  in  comparison  to  standard  approaches  based  on

assembled  data  was  expected  to  occur,  given  the  limitations  of  the  latter  to

identify  BGC  classes  (as  shown  in  Fig.  2).  In  Supplementary  Figure  5,  we

illustrate this problem by comparing the sequence length between MIBiG BGCs,

and the TARA Oceans MAGs, and assembled metagenomic contigs.
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Considering the relevance of human microbiome-derived natural product BGCs

in medical research, we demonstrate the applicability of BiG-MEx to explore the

BGC composition in the Human Microbiome Project (HMP) dataset. Our analyses

traversed  metagenomes  from  the  buccal  mucosa,  tongue  dorsum,  and

supragingival plaque body sites as well as stool samples (491 metagenomes in

total). We used BiG-MEx to  compute the BGC domain and class abundance

profiles, and applied the same methodology as described for TARA Oceans, to

compute  the  domain  and  class-based  PCoAs.  In  agreement  with  previous

analyses based on the taxonomic and functional annotation4,29, we observed that

metagenomes grouped according to the body site they were sampled from in the

first  two  ordination  axes  (Supplementary  Fig.  6a  and  b).  We  conducted  a

PERMANOVA to test and assess the strength of the differences between body

sites  according  to  their  BGC  class  composition,  which  showed  significant

differences in all body site comparisons (Supplementary Table 5). Additionally,

we  used  BiG-MEx  to  compare  the  ODU  diversity  of  the  AMP-binding  and

condensation  domains  between  body  sites  and  observed  that  supragingival

plaque metagenomes contain significantly higher diversity than the other body

sites (pairwise Wilcoxon rank sum test; p-value < 0.0001) (Supplementary Figure

7 and Supplementary Table 6). This is in line with previous work showing that the

supragingival plaque is one of the most functionally and taxonomically diverse

body sites in the HMP dataset4.

Besides the mining analyses, BiG-MEx BGC class profiling can be used for the

screening and prioritization of (meta)genomic samples. BGC class abundance

profiles derived from shallow sequencing depth (meta)genomic data can be used

for the identification of strains or environments with high biosynthetic potential,

before investing in deep sequencing or long read sequencing technologies. As a

proof-of-concept  for  this  application,  in  Supplementary  Fig.  8  we  show  a

comparison of the BGC class abundance predictions computed in metagenomes

of 100 and 5 million reads.
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In  our  example applications,  we processed 630 metagenomes,  which sum to

more  than  85  billion  paired-end  reads.  The  analyses  showed  that  BiG-MEx

ultrafast  domain  and  class  profiling,  and  ODU  diversity  estimates  provide

biologically  meaningful  information,  which  can  be  used  to  mine  BGCs  in

metagenomic data and as a basis from which to assess the ecological roles of

their products in specific environments.

BiG-MEx extends BGC-based research and exploitation into large environmental

datasets. It can be used to study the biogeography, distribution, and diversity of

natural product BGCs either at the class, domain or ODU levels. Such analyses

have the potential to accelerate the discovery of new bioactive products.

Materials and Methods

1. Data acquisition, pre-processing and annotation 

We retrieved the 139 prokaryotic metagenomes of the TARA Oceans dataset

from the European Nucleotide Archive30 (ENA:PRJEB1787,  filter size: 0.22-1.6

and 0.22-3). To pre-process the metagenomic short-read data, we  clipped the

adapter sequences (obtained from Shinichi Sunagawa personal communication,

July  21,  2015)  using  the  BBDuk  tool  from  the  BBMap  35.00  suite

(https://sourceforge.net/projects/bbmap/) with a maximum Hamming distance of

one (hdist=1). We then merged the paired-end reads using VSEARCH 2.3.431,

quality trimmed all reads at Q20 and filtered out sequences shorter than 45bp

using BBDuk, and de-replicated the resulting quality-controlled sequences with

VSEARCH. We annotated the BGC domains by first predicting the Open Reading

Frames (ORFs) in the pre-processed data with FragGeneScan-plus32 and then

running BiG-MEx on the predicted ORF’s amino acid sequences.

We downloaded 491 human microbiome metagenomes from the Data Analysis

and  Coordination  Center  (DACC)  for  the  Human  Microbiome  Project  (HMP)

(https://www.hmpdacc.org/hmp/HMASM/).  Our  dataset  included  the

metagenomes of the supragingival plaque (118), tongue dorsum (128), buccal

mucosa (107), and the stool (138) body sites. These metagenomes have been

already  pre-processed  as  described  in  The  Human  Microbiome  Project
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Consortium 201233. The additional pre-processing tasks we performed consisted

of merging the metagenomic reads with VSEARCH, quality trimming all reads at

Q20 and filtering out sequences shorter than 45 bp with BBduk. To annotate the

BGC domains, we predicted the ORFs with FragGeneScan-plus and ran  BiG-

MEx BGC domain identification module on the ORF’s amino acid  sequences

(Supplementary Table 7).

2. Exploratory analysis performed on TARA Oceans and HMP datasets

The domain abundance profiles of the TARA Oceans and HMP metagenomes

were used to predict the BGC class abundance profiles with BiG-MEx BGC class

abundance prediction module. The models used to generate the predictions for

the TARA Oceans, and the oral and stool HMP metagenomes, were trained with

the Marine-RM, Human-Oral and Human-Stool simulated metagenomic datasets,

respectively.  For  each dataset,  we performed a Principal  Coordinate Analysis

(PCoA) as follows: 1) We applied a total sum scaling standardization to both the

domain and class abundance matrices; 2) We used the standardized matrices to

compute  the  domain  and  class  Bray-Curtis  dissimilarity  matrices;  3)  We

performed the PCoAs on the dissimilarity matrices with vegan R package utilizing

the function capscale34.

We applied a Permutational Multivariate Analysis of Variance (PERMANOVA)35

to quantify the strength and test the differences between water layers and body

sites according to their BGC class composition. For these analyses, we selected

a balanced subset of metagenomes from the TARA Oceans and HMP datasets

(63  and  216  metagenomes,  respectively;  see  below).  We  performed  a

PERMANOVA on the Bray-Curtis dissimilarity matrix,  computed for the TARA

Oceans  and  HMP  metagenome  subsets  as  described  above,  to  test  the

differentiation between all groups simultaneously. Subsequently, we tested each

pair  of  groups  independently,  applying  the  Bonferroni  correction  for  multiple

comparisons. To perform the PERMANOVA, we employed the adonis function of

the vegan R package, with the permutation parameter set to 999.
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To compare the domain ODU diversity  of the NRPS adenylation (AMP-binding)

and  condensation  domains  between  the  surface  (SRF),  deep  chlorophyll

maximum (CDM) and mesopelagic (MES) water layers, we used a subset of 63

TARA Oceans metagenomes, representing the three water layers in 21 sampling

stations. We computed the ODU Shannon diversity in these metagenomes, using

routines  implemented  in  the  BiG-MEx  domain-based  diversity  module.

Additionally, we used the same BiG-MEx module to examine the diversity of the

condensation domains in the metagenomes representing the three water layers

at sampling station TARA_085. To perform the ODU taxonomy annotation, we

used  MMseqs2  taxonomy  assignment  function36 based  on  UniRef10037

sequences (release-2018_08), with the e-value and sensitivity parameters set to

0.75  and  0.01,  respectively. To  compare  the  AMP-binding  and  condensation

ODU diversity between body sites, we applied a similar approach as described

above.  We  selected  a  subset  of  216  metagenomes,  54  from  each  of  the

supragingival plaque, tongue dorsum, buccal mucosa, and stool body sites. This

subset includes only the metagenomes obtained from individuals for whom the

four  body  sites  were  sampled.  We  applied  BiG-MEx  domain-based  diversity

module to compute the ODU Shannon diversity estimates. 

The  Wilcoxon  rank-sum  tests  (two-sided)  to  assess  the  significance  of  the

differentiations between metagenomes from different groups (i.e., water layers or

body sites),  were performed with the wilcox.test  function from the R package

stats38.

3. Data simulation, pre-processing and annotation

3.1 Construction of simulated metagenomic datasets

We created four simulated metagenomic datasets: Two of these approximate

the  taxonomic  composition  found  in  marine  environments  (Marine-RM and

Marine-TM), and the other two, the taxonomic composition found in the human

oral cavity and stool body sites (Human-Oral and Human-Stool, respectively).

Each dataset is composed of 150 metagenomes, all of which have a size of

two million paired-end reads.  To simulate a metagenomic dataset,  we first
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created  a  dataset  of  reference  genome  sequences  and  the  genome

abundance profiles to specify the metagenomes' taxonomic composition. That

is, we defined a hypothetical microbial community from which a metagenome

is simulated by specifying which reference genomes and the number of times

each genome occurs in the community.

To create the Marine-RM (Marine Reference Microbiome) genome dataset, we

downloaded all genomes belonging to the Ocean Microbial Reference Gene

Catalogue  (OM-RGC)19 having  an  assembly  status  of  “Complete  genome”

from RefSeq39 (on December 7th,  2017).  If  a given species did not  have a

complete genome sequence available, we randomly selected another species

of the same genus. In total, we obtained 378 genomes corresponding to 363

species. 

We applied  a similar  methodology to  create  the  Marine-TM (Marine  TARA

Microbiome) genome dataset.  To determine the taxonomic composition, we

used  the  genus  affiliation  of  TARA  Oceans  Operational  Taxonomic  Units

(OTUs)19. We only included 30 shared genera (randomly selected) between

TARA  OTU  and  the  Marine-TM  genome  dataset.  This  latter  filtering  was

necessary to reduce the taxonomic overlap, given that we used the Marine-TM

dataset  to  evaluate the performance of  the BGC class abundance models

trained  with  the  Marine-RM  dataset  (see  section  4.3).  For  the  remaining

genera for which there was at least one representative completely sequenced

genome,  we  downloaded  a  maximum  of  three  genomes  per  genus  from

RefSeq, irrespective of their  species affiliation.  This resulted in a database

composed of 344 genomes from 308 species. 

To  create  the  genome  datasets  for  the  Human-Oral  and  Human-Stool

metagenomic datasets, we used the genomes sequenced by the HMP derived

from samples of the oral cavity and stool body sites. Given that few of these

genomes were  completely  sequenced,  we  also  included  partially  complete

sequenced genomes. We downloaded all genomes with an assembly status of

“Complete genome” or “Chromosome” or  “Scaffold”  generated by the HMP

from the GenBank database40 (on March 15th, 2018). In the cases where a
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genome  (sequenced  by  the  HMP)  had  an  assembly  status  lower  than

“Scaffold”, we downloaded another genome with the same species affiliation

and  an  assembly  status  of  “Complete  genome”  or  “Chromosome”.  The

Human-Oral and Human-Stool reference genome datasets contain 209, and

479 genomes representing 140 and 338 species, respectively.

To create the community abundance profile of  a metagenomic dataset,  we

randomly selected between 20 and 80 genomes from its genome reference

dataset and defined the number of times each genome occurs by sampling

from a  lognormal  distribution  with  mean  1  and  standard  deviation  of  0.5.

Lastly, we simulated the metagenomes with MetaSim v0.9.541. MetaSim was

set to generate paired-end reads with a length of 101bp, and a substitution

rate increasing constantly along each read from 1×10-4 to 9.9×10-2. With this

data, we aimed to simulate the short-read sequences generated by an Illumina

HiSeq 2000 platform.

Dataset  statistics  are  shown  in  Supplementary  Table  1.  The  assembly

accessions,  organism names,  taxids  and  NCBI  FTP  paths  of  the  genome

sequences  used  to  create  the  genome  databases  are  found  in  the

Supplementary  File  1.  The  workflow  used  to  create  the  simulated

metagenomic datasets can be found at  https://github.com/pereiramemo/BiG-

MEx/wiki/Data-simulation

3.2 Annotation of the simulated metagenomes 

To  estimate  the  reference  BGC  class  abundances  in  a  simulated

metagenome,  we  annotated  the  BGC  classes  in  its  reference  genome

sequences with antiSMASH 3.0, mapped the paired-end reads to the identified

BGC sequences with  BWA-MEM 0.7.1242,  and filtered out  read alignments

with a quality score lower than 10. Next,  we removed read duplicates with

Picard tools v1.133 (http://broadinstitute.github.io/picard),  and computed the

mean coverage with BEDtools v2.2343. The coverage estimates were assumed

to accurately reflect the BGC class coverage-based abundances, as they were

computed  using  complete  BGC  sequences,  obtained  from  the  genome
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sequences used to simulate the metagenomes. Additionally, we merged the

paired-end  reads  of  the  simulated  metagenomes  with  VSEARCH  2.3.4,

predicted  the  ORFs  with  FragGeneScan-plus,  and  used  BiG-MEx  domain

identification module  to annotate the BGC domains in the ORF’s amino acid

sequences.  The  workflow  to  annotate  the  synthetic  metagenomes  can  be

found at https://github.com/pereiramemo/BiG-MEx/wiki/Data-simulation#7-bgc-

domain-annotation

4. Performance evaluation

4.1 BGC domain identification module

We compared the running time (wall-clock) of UProC (i.e., uproc-prot) against

a  typical  search  using  hmmsearch  from  the  HMMER3  package18,  for  the

identification of the 150 BGC domains included in BiG-MEx, in nine prokaryotic

metagenomes of the TARA Oceans dataset (Supplementary Table 8). To run

hmmsearch, we used the domain HMM profiles of antiSMASH. We annotated

the nine metagenomes with both these tools in four independent rounds, each

round  using  a  different  thread  number  (i.e.,  4,  8,  16  and  32  threads).  All

parameters of uproc-prot and hmmsearch were set to default. The annotations

were  carried  out  on  a  workstation  with  Intel(R)  Xeon(R)  CPU E7-4820  v4

2.00GHz processors.

4.2 BGC domain-based diversity analysis module

We evaluated  BiG-MEx Operation  Domain  Unit  (ODU)  diversity  estimation

approach using NRPS adenylation (AMP-binding) and condensation, and PKS

ketosynthase  and  acyltransferase  domains  (PKS_KS  and  PKS_AT,

respectively).  In  this  analysis,  we  used  the  BGC  domain-based  diversity

analysis module to compute the ODU diversity in the Marine-TM dataset, and

compared  these  estimates  with  the  ODU  diversity  computed  using  the

complete domain sequences. To obtain the latter ODU diversity, we applied

the  workflow  implemented  in  BiG-MEx,  with  the  exception  that  instead  of

assembling  the  domain  sequences,  we extracted  these from the  complete
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genome  sequences  used  to  simulate  the  Marine-TM  metagenomes.  We

annotated  the  four  domains  in  the  complete  genome  sequences  with

hmmsearch using the antiSMASH HMM profiles. 

4.3 BGC class abundance predictions 

We used the BGC class models trained with  the Marine-RM metagenomic

dataset to predict the BGC class abundances in the Marine-TM metagenomic

dataset. We applied the methodology described in section 3.2 to compute the

BGC  class  abundances  in  the  Marine-TM  metagenomes  based  on  the

complete genome sequences (i.e., reference abundance). To predict the BGC

class abundances using machine-learning models, we annotated the Marine-

TM metagenomes with the BiG-MEx domain identification module and used

the  domain  abundance  profiles  as  an  input  for  the  BiG-MEx  BGC  class

abundance  prediction  module.  The  evaluation  consisted  of  computing  the

Pearson correlation and median unsigned squared error (MUE) between the

predicted and reference BGC class abundances. The MUE was computed as

|Â − A|/ A, where  Â and  A are  the  predicted  and  reference  abundance,

respectively. To benchmark the machine-learning models, we compared the

BGC class abundance predictions against the abundance estimates based on

the  assembly  of  50  metagenomes  of  the  Marine-TM  dataset  (assembly

approach).  The  assembly  approach  consisted  of  assembling  the

metagenomes with MEGAHIT (default parameters), running BiG-MEx domain

identification  module  to  select  the  contigs  with  potential  BGC  sequences,

annotating the selected contigs with antiSMASH 3.0, and estimating the BGC

class abundance following the same approach as described in  section 3.2

(Supplementary Table 9). We computed the unsigned error, and the Pearson

correlation  coefficient  of  BGC class  abundance  estimates  obtained  by  the

assembly approach and predicted by BiG-MEx, with respect to the reference

BGC class abundances. The analysis performed to evaluate the accuracy of

the  models  can  be  reproduced  here:  https://rawgit.com/pereiramemo/BiG-

MEx/master/machine_leaRning/bgcpred_workflow.html
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4.4 Evaluation  of  the  BGC  class  abundance  predictions  in  shallow

metagenomes 

We  selected  30  merged  pre-processed  TARA  Oceans  metagenomes  and

randomly subsampled these to generate two sets of metagenomes, one with

100 million and the other with 5 million reads, using the seqtk v1.0 tool (https://

github.com/lh3/seqtk). We then annotated the BGC domains and predicted the

BGC class abundances in this data using BiG-MEx (as described in sections 1

and 2), and compared the BGC class abundance predictions between the two

sets of metagenomes.

5. BiG-MEx implementation

5.1 BGC domain identification module

BiG-MEx BGC domain identification module uses the UProC 1.2.016 software

to  classify  short-read  sequences  using  BGC  domain  references.  To  train

UProC  for  this  purpose,  we  manually  curated  all  amino  acid  sequences

matching  150  antiSMASH hidden  Markov  model  profiles  (HMMs)10.  In  this

task, we removed sequences shorter than 25 amino acids and checked for the

presence  of  overlaps  between  sequences  of  different  HMM  profiles.  In

addition, we categorized multi-domain proteins into multiple families. For the

training process, we included a set of negative control profiles to assess the

ratio  of  false positive hits.  Namely,  we used the t2fas,  fabH, bt1fas,  ft1fas

profiles  as  negative  controls  for  the  PKS_KS,  t2ks,  t2ks2,  t2clf,

Chal_sti_synt_N, Chal_sti_synt_C, hglD and hglE profiles. Once we curated

the amino acid sequence data, we applied the SEG(mentation) low complexity

filter from the NCBI Blast+ 2.2 Suite44 and created the UProC database. This

UProC  database  can  be  downloaded  from

https://github.com/pereiramemo/BiG-MEx.  Based  on  the  identified  reads

containing  a  BGC domain  sequence,  the  module  computes a count-based

abundance profile of BGC domains. 
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5.2 BGC domain-based diversity analysis module

This module performs two different analyses: Operational Domain Unit (ODU)

diversity estimation and phylogenetic placement of domain sequences. The

pipeline to estimate the ODU diversity, analyses each domain independently,

and  consists  of  the  following  steps:  1)  Short-read  sequences,  where  the

domain  being  studied  was  identified,  are  recruited  to  perform  a  targeted

assembly metaSPAdes 3.1145 with default parameters; 2) The Open Reading

Frames (ORFs)  in  the  resulting  contigs  are  predicted  with  FragGeneScan-

Plus;  3)  Domain  sequences  are  identified  within  the  ORF  amino  acid

sequences with hmmsearch from HMMER v3 and extracted; 4) Domain amino

acid sequences are clustered into ODUs using MMseqs246 with the cascaded

clustering  option  and  the  sensitivity  parameter  set  to  7.5;  5)  Annotated

unassembled reads are  mapped to  the  domain  nucleotide  sequences with

BWA-MEM 0.7.12, and the mean depth coverage is calculated using BEDtools

v2.23; 6) Based on this information, the coverage-based abundance of the

ODUs is computed and used to estimate an ODU alpha Shannon diversity. To

allow a  comparison of  the  ODU diversity  estimates  between samples  with

different sequencing depth, we include an option to estimate the diversity for

rarefied subsamples. 

To perform the phylogenetic placement of domain sequences, we applied an

approach  similar  to  NaPDoS11.  However,  we  extended  the  phylogenetic

placement  analysis  to  48  domains  and  included  more  comprehensive

reference  trees,  which  are  critical  for  the  analysis  of  large  metagenomic

samples. In detail, the phylogenetic placement consists of aligning the target

domain  sequences  to  their  corresponding  reference  multiple  sequence

alignment  (MSA)  with  MAFFT47 (using  --add  option).  Subsequently,  the

extended MSA together with its reference tree are used as the input to run

pplacer48 (with parameters: --keep-at-most 10 and --discard-nonoverlapped; all

other parameters set to default). pplacer performs the phylogenetic placement

using the maximum-likelihood criteria and outputs the extended tree in Newick

and  jplace  formats49,  and a  table  with  statistics  and information  about  the
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placement of each sequence (i.e.,  likelihood, posterior probability, expected

distance  between  placement  locations  (EDPL),  pendant  length,  and  edge

number). To visualise the phylogenetic placement, a tree figure is generated

using the ggtree R package50, where the coverage of the placed sequences is

mapped on their tree tips and used to scale a bubble representation. Besides

the phylogenetic placement, we included in this module an option to perform a

BLASTP search of the assembled domain sequences against the reference

domain sequences.

To  construct  the  reference  phylogenies,  we  first  downloaded  all  the  BGC

amino acid sequences from the MIBiG database51. We identified the domain

sequences  with  hmmsearch  using  the  BGC  domain  HMM  profiles  from

antiSMASH. Subsequently, we extracted and clustered these sequences with

MMseqs2 to  create  a  non-redundant  dataset  of  amino acid  sequences for

each domain. If the number of reference sequences identified in the MIBiG

database was greater than 500, we used a clustering threshold of 0.7 identity

at  the  amino  acid  level;  otherwise,  the  threshold  was set  to  0.9;  all  other

parameters of MMseqs2 were set as specified previously. All  domains with

less  than 20 representative  sequences were  discarded.  This  resulted  in  a

subset  of  48  domains  that  were  considered  for  the  phylogenetic

reconstructions.  For  each  set  of  domain  representative  sequences,  we

generated  an  MSA  with  MAFFT  using  the  E-INS-I  algorithm,  removed

sequence  outliers  with  OD-seq52 and  constructed  a  phylogenetic  tree  with

RAxML53.  To  select  the  protein  evolutionary  model  for  the  phylogenetic

reconstruction, we used the automatic model selection implemented in RAxML

with the maximum likelihood criterion. We used the GAMMA model of rate

heterogeneity  and  searched  the  tree  space  using  the  rapid  hill-climbing

algorithm54,  starting  from  a  maximum  parsimony  tree.  For  the  sake  of

reproducibility, we specified a random seed number (i.e., -p 12345). Finally,

we used RAxML to root the trees and compute the SH-like support scores55. In

Supplementary File 2, we provide for each domain phylogeny the number of

sequences  and  amino  acid  substitution  model  used,  the  mean,  standard
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deviation, maximum and minimum cophenetic distances between sequences,

Faith’s phylogenetic diversity24 and the name of its corresponding BGC class.

5.3 BGC class abundance prediction module

BiG-MEx uses machine-learning models to predict the abundance of the BGC

classes,  based  on  the  counts  of  annotated  domains  in  unassembled

metagenomes.  Each  model  is  class-specific  and  was  trained  using  the

abundance of the BGC class and its corresponding protein domains, as the

response  and  predictor  variables,  respectively.  We  used  the  classification

rules defined in antiSMASH for the annotation of BGC classes, to determine

the protein domains used as predictor variables in each model. To model the

abundance of a given BGC class, we implemented a two-step zero-inflated

process. First, the presence or absence of the target BGC class is predicted

using  a  random  forest  (RF)  binary  classifier56.  Second,  a  multiple  linear

regression (MLR) is applied to predict the class abundance, but only if  the

class was previously predicted as present. In the cases where the number of

zero values was lower than 10 or non-existent, we directly applied an MLR.

We trained the models using simulated metagenomic data (i.e., Marine-RM,

Human-Oral  and  Human-Stool  datasets).  The  models  predict  a  coverage-

based abundance since this was the response variable used in the training

process.  The  RF  binary  classification  models  were  created  with  the

randomForest function of the randomForest R package57, with the parameters

ntree set to 1000 (number of trees grown), nodesize set to 10 (minimum size

of terminal nodes), and mtry set to 1 (number of variables randomly sampled

as candidates at each split). For the MLR, we used the lm function of the stats

R package (https://www.R-project.org/) with default parameters.

Code availability

BiG-MEx  is  freely  distributed  using  Docker  container  technology

(www.docker.com),  under  the  GNU  General  Public  License  v3.0.  It  can  be

downloaded  from  https://github.com/pereiramemo/BiG-MEx,  where  we  also
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provide thorough documentation. Currently, we provide BGC class abundance

models targeting the marine environment, four different human body sites, and

the genus Streptomyces. To help users create their own BGC class abundance

models  and compute  the  predictions,  we developed the  R package bgcpred:

https://github.com/pereiramemo/bgcpred. bgcpred is integrated in BiG-MEx, and

is used to generate the BGC class abundance predictions. 

Data availability

In  Supplementary  file  1,  we  provide  the  GenBank  and  RefSeq  assembly

accessions  for  the  genomes  used  to  generate  the  simulated  metagenomic

datasets.  We provide the BGC class and domain abundance tables, obtained

from  the  simulated  data,  at  https://github.com/pereiramemo/BiG-MEx/.
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Figures

Fig. 1 | BiG-MEx analysis workflow. 1) BGC domain identification module. To annotate the BGC domains with UProC,

we created an UProC database including 150 domains, which originate from 44 different BGC classes. This database was

generated based on the amino acid sequences of antiSMASH hidden Markov model  (HMM) profiles10.  Using UProC

output, this module generates a count-based abundance profile of BGC domains; 2) BGC domain-based diversity analysis

module.  Using  the  previously  identified  domains,  this  module  performs  a  targeted  assembly  with  metaSPAdes 45 to

reconstruct the domain sequences. Assembled domain sequences are clustered into Operational Domain Units, and the

number of ODUs and the coverage of the domain sequences within each ODU (used to approximate the abundance of

the ODU) are used to compute the ODU alpha diversity. The environmental reconstructed domain sequences are placed

onto reference phylogenetic trees with pplacer48 (maximum likelihood criteria). In this module, we include pre-computed

phylogenies  for  48  domains,  which  are  based  on  sequence  data  contained  in  the  Minimum  Information  about  a

Biosynthetic Gene cluster (MIBiG)51 database, allowing us to identify the relationships of query sequences with domains

from pathways of known function; 3) BGC class abundance prediction module. The domain abundance profiles are used

to  predict  the  BGC  class  coverage-based  abundance  profiles  using  class-specific  machine-learning  models.  These

models consist of a two-step process: First, the presence/absence of the BGC class is predicted using a random forest

(RF)  classifier;  Secondly,  the  abundance  is  predicted  with  a  multiple  linear  regression  (MLR)  only  if  the  class  was

previously predicted as present.
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Fig.  2 |  Evaluating  and  benchmarking  the  BGC  abundance  prediction  models.  (a) Scatter  plots  comparing  the

reference and predicted abundances of the NRPS, terpene, T1PKS and T2PKS BGC classes.  MUE: Median Unsigned

Error. The  black,  solid  line  represents  the  one-to-one  relationship  between  the  reference  and  predicted  BGC  class

abundances. The BGC class abundance models were trained with the  Marine-RM metagenomes and used to predict the

abundances  in  the  Marine-TM metagenomes.  (b)  Plots  of  the  Pearson  correlation  coefficients  (upper  panel)  and  the

unsigned error distributions (lower panel)  of the BGC class abundances predicted by the models and estimated by the

assembly approach, with respect to the reference abundances. In this comparison, we used 50 Marine-TM metagenomes.

For the sake of clarity, 12 outlying unsigned error values (3% of the total comparisons) were excluded from the plot. The

assembly  approach  consisted  of  the  following  tasks:  1)  Assembling  the  metagenomes  of  the  Marine-TM dataset;  2)

Selecting the contigs with potential BGC sequences using BiG-MEx domain identification module; 3) Annotating the contigs

with antiSMASH; 4) Mapping the short-read sequences to the identified BGC sequences;  5) Estimating the BGC class

abundances.

786

788

789

790

791

792

793

794

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.20.427441doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427441
http://creativecommons.org/licenses/by-nd/4.0/


28

Fig. 3 |  BiG-MEx BGC class composition and domain-based diversity analysis in the TARA Oceans dataset. (a)

Principal Coordinates Analysis (PCoA) performed on a Bray-Curtis dissimilarity matrix of BGC class relative abundance

profiles of the 139 prokaryotic metagenomes of TARA Oceans. BGC class abundance profiles were generated with BiG-

MEx BGC class abundance module, using machine-learning models trained with the simulated Marine-RM metagenomic

dataset. The abbreviations SRF, DCM, MES, and MIX correspond to surface, deep chlorophyll maximum, mesopelagic,

and mixed epipelagic water layers, respectively. The boxplot in the bottom section of the panel shows the PCo1 value

distributions for the metagenomes from the SRF, DCM and MES water layers. The PCo1 axis differentiated the MES

water  layer  from  the  other  two  layers  (Wilcoxon  rank  sum test;  all  p-values  <  0.0001).  (b) Bar  plots  showing  the

distribution of the ODU Shannon alpha diversity indices for the AMP-binding and condensation domains (NRPSs). The

ODU diversity was computed for a match subset of 63 TARA Oceans metagenomes representing SRF, DCM, and MES

water layers in 21 sampling stations.  The AMP-binding and Condensation ODU diversity estimates were significantly

different between the three water layers (pairwise Wilcoxon rank sum test; all p-values < 0.0001).
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Fig.  4 |  BiG-MEx diversity analysis  of  condensation domains in three metagenomes from TARA Oceans sampling

station  TARA_085  (a) Rarefaction  curves  of  the  Shannon  alpha  diversity  indices  generated  by  BiG-MEx  domain-based

diversity analysis module, comparing the diversity of condensation ODUs in the metagenomes of the SRF, DCM, and MES

water  layers.  Condensation  domain  sequences  were clustered into ODUs using a 75% amino acid identity  threshold.  The

diversity was computed using the number and abundance of distinct condensation ODUs.  (b) Phylogenetic placement of the

condensation ODU representative sequences,  as performed by the BiG-MEx domain-based diversity analysis  module.  The

SRF, DCM and MES had a phylogenetic diversity (Faith’s PD)24 of 58.15,  114.98 and  304.88, respectively. The size and colour

of the bubbles on the leaves represent the ODU abundance and sample origin, respectively. (c) Detail of the clade contained in

the orange, hollow square in (c), including the most abundant ODU (obtained in the TARA_085_DCM_0_22-3 sample; indicated

with an orange arrow). 
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