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Abstract: 
Conventional computational modeling of sleep and arousal are primarily brain-centric in 
restricting attention to data from the nervous system. While such a view is warranted, the 
importance of considering the coupling of peripheral systems in the causes and effects of 
sleep are being increasingly recognized. An analysis is presented that has the capability to 
incorporate neural recordings of different modalities as well as data from the metabolic and 
immune systems. We formulate a matrix-based approach for inference of the arousal state 
based on the activity level of cell types that will comprise the matrix components. While the 
presented computations are intended to predict sleep/arousal, it is anticipated that a scrutiny 
of the structure of the matrices will provide insight into the dynamics of the constituent 
systems. A model is also proposed to consider the interaction of the signals recorded across 
the neural, metabolic, and immune systems in leading to the arousal state.  
 
 

1. Introduction 
 
Sleep disturbances are a core symptom of most neuropsychiatric disorders; however, the 
neuronal underpinnings of such association are unknown. Despite the profoundly negative 
effects of such disorders on public health, progress in understanding the pathophysiology 
and the discovery of new therapeutic targets have been slow. A modeling of the brain’s 
complex, multidimensional responses and how multiple neural circuits regulate behavioral 
state transitions will benefit our understanding of brain function and disorders. However, 
defining and correlating brain state transitions with specific behavioral changes is 
challenging. For example, the transition between sleep and arousal is associated with brain-
wide changes in intrinsic cellular, metabolic, and neuronal activity characteristics, which are 
linked with specific physiological and behavioral outputs. Attempts to understand the 
implications of the correlations are typically limited by experimental capabilities and the 
complex nature of the brain, thus, analytical techniques can set a hypothesis-driven 
framework.  
 
Sleep is evolutionarily conserved across the animal kingdom and is regulated by circadian 
and homeostatic interactions [1]. The dominant paradigm for assessing sleep in mammals is 
measurement of cerebral cortex electrical activity using an electroencephalogram (EEG). 
EEG Signals combined with electromyogram (EMG) are often used to distinguish wake, 
rapid eye movement (REM), and non-REM (NREM) sleep states. Although EEG is a well-
established marker of sleep in mammals [2][3], the specific role of the voltage fluctuations is 
not well understood as the activity generated by a sub-population of neurons cannot be 
differentiated from the context of entire brain region. Recent work on the demonstration of 
local sleep phenomena [4] and complex dynamics driven by homeostatic mechanisms [5] 
highlight the limitations of using EEG as the only measure to score vigilance. Monitoring 
brain states during sleep and wakefulness in mammals is also challenging because the 
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mammalian brain is hidden within the opaque cranium and imaging activity at single cell 
resolution is restricted to small superficial regions. These limitations can be partially 
overcome by fiber photometry, a technique that allows recording calcium signals of cell-type 
specific populations in deep brain structures in behaving animals [1]. This method collects 
fluorescence from bulk activity generated by ensembles of neurons transduced with a 
genetically encoded calcium indicator. Although the central orchestrator, the brain is not the 
only entity determining or affecting arousal. Energy metabolism is naturally involved in 
arousal with the conservation and allocation of energy postulated as one of the main 
functions of sleep [6][7][8]. The metabolic and immune systems are both inducers and 
responders to the arousal state and the properties of sleep [9][10]. Increasingly, both 
systems are being considered along with neuronal recordings to monitor, understand, and 
predict arousal and the pathologies associated with sleep.   
 
Brain recordings attained via EEG are frequently reduced to a spectrogram that provides 
time-frequency information that can be represented in matrix form. While EEG is effective in 
its portrayal of global cortical activity, the arousal system is quite heterogeneous. Thus, EEG 
recordings provide a partial and somewhat incomplete picture since the local network activity 
of sub-cortical regions cannot be fully captured. Throughout the circadian cycle the various 
brain regions and neural populations can exhibit activity or characteristics reflective of 
sleep/arousal while the animal’s (aggregate) brain state is sleep/wake. Recent developments 
in genetically encoded sensors have enabled recording calcium activity deeper and more 
precisely in a brain, thus allowing for the identification of brain states in various neural 
circuits while an animal passes through sleep/wake cycles [11]. A relatively recent 
advancement in neuroscience has been the aggregation of such concomitant, local activity 
measurements to gain predictive capability of brain state in subsequent epochs [12]. 
Analogous to EEG data, calcium recordings can be represented in matrix form when 
considering multichannel activity recorded from different populations across a recording 
interval.  
 
Intrinsically linked to arousal, immune system and metabolic data can also be represented in 
matrix form in order to extract structure on their contribution to a brain state. In particular, 
metabolic data is expected to yield fewer time points than the neuronal recordings 
mentioned, however, aptamers and mass spectrometry can be used to provide large 
numbers of measurements as both technologies continue to advance [13][14]. As 
unprecedented amounts of same-animal neural, metabolic and immune data come forth, it is 
necessary to not only have algorithms that make inferences from the data, but to also have 
mechanisms to represent the data in a manner through which insightful questions can be 
asked. We aim to establish an analytical framework that links brain state transitions with 
heterogeneous data collected at different timescales from disparate systems. A point of this 
work is to motivate matrix-based methods that can provide a unified comparison between 
measures obtained at single cell resolution but with no electrophysiological correlate, and 
measures obtained from bulk activity in conjunction with EEG/EMG. A time-hierarchy-
modulation (THM) matrix is introduced in light of powerful experimental tools that enable us 
to record neural, metabolic, and immune signals and correlate how their activity leads to 
behavioral states such as consciousness. It will be intriguing to explore the predictive 
capability of such techniques in determining phenotype or behavior based on cellular activity 
from the various systems in an organism.  
 

 
2. Necessity of a Time-hierarchy-modulation (THM) Matrix  
 
Conclusions may be drawn by examining spatio-temporal dynamics associated with cellular 
activity when considering data in matrix form in concert with real-time behavioral monitoring. 
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Powerful experimental tools are allowing for additional temporal and spatial resolution by 
delineating populations of neurons that are believed to be involved in complex behaviors 
such as sleep and consciousness. The tools promote a presentation of increasingly more 
tangible and ambitious models for quantifying the response of metabolic and immune signals 
in addition to neural responses and how the activity levels communicate to result in a brain 
state. Acknowledging the complexities of consciousness, one limitation incorporated in this 
presentation is restricting the space of brain states to two values. As we apply the framework 
within the sleep regulatory system the two values will be equated to sleep and wake/arousal. 
It is well-known that neither sleep or consciousness can be effectively partitioned into a few 
modes from a neural, metabolic, or immune perspective. This is done for ease of 
presentation to introduce the desired notions and does not cause a loss in generality. For 
instance, an example of how the analysis may be extended would entail the space of activity 
that leads to sleep being bifurcated for REM and NREM. The incorporation of different 
gradations of the two most salient brain states is an important extension that will complicate 
the model, but this is understandable when considering data attained from freely-moving 
animals.  
 
The understanding of alterations in neural activity between various portions of the brain is 
usually quantified by pairwise correlations. With progress in measurement techniques (e.g. 
multifiber photometry) and the ability to attain higher-dimensional data from multitudes of 
locations in animals, increasingly more sophisticated techniques for quantification are being 
sought [15]. Dimensionality reduction techniques such as principal component analysis 
(PCA) and its variants have found ubiquitous use on neuroscience datasets attained via 
continuous recordings from large numbers of neurons. Such data is presumed to have 
relatively low dimensionality either via post-hoc analysis or based on prior findings. However, 
when considering neural data that has been collected via methods that operate on different 
timescales in unison with metabolic and immune data, it is not immediately obvious whether 
the behavioral state can be identified via lower dimensional subspaces. The notion of a THM 
matrix is presented as an intra- and inter-system means of representing and interpreting 
collected data. A goal of the analysis is to conjoin data from distinct systems and at different 
recording times to attain a unified view of monitoring and predicting a brain state. The time, 
hierarchy, and modulation aspects of a THM matrix shall now be discussed to substantiate 
the idea. Consider multi-dimensional recordings made from an animal at each time instant – 
we use the symbol X to denote the THM matrix and assume a dimensionality of 𝑇 𝑀. The 
number of rows T constitute the temporal samples collected while the number of columns M 
denotes the output of the recording units. After successive time instances X may have a 
realization given by 
 
 

𝐗

𝐀 𝐁 𝐂
𝐃 𝐄 𝐂
𝟎 𝐄 𝐅
𝐀 𝐆 𝟎

 (1) 

 
with the constituents A, B, C, D, E, F, G, and 0 denoting sub-matrices of smaller 
dimensionality. The 0 is used to denote a matrix or vector consisting of all zeros. The above 
realization of X indicates the consideration of three recording units across four successive 
time intervals. For example, in the case of the THM matrix containing neural data, the three 
column submatrices of X may correspond to activity from the tuberomammillary nucleus 
(TMN), locus coeruleus (LC), and lateral hypothalamus (LH) during a recording. It should be 
noted that the aforementioned component matrices that reflect the activity of various circuits 
may have vastly different dimensions. For instance, it is possible that A: 20 10 and B: 
20 200. It is necessary to derive conclusions from a THM matrix either after or during the 
data collection phase. This will be done via a function f(.) that serves as a means of 
identifying differences in X matrices obtained from animals that are genetically or 
pharmacologically perturbed versus matrices constructed from healthy controls. The function 
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f(.) can be concocted to provide the categorization X → 𝑓 X → brain state, and may be a 
classifier that has its parameters optimized via THM matrices that form a training set prior to 
f(.) making predictions from THM matrices that comprise a test set.  
 
The presence of hierarchy in a THM matrix starts by considering its decomposition into 
constituent submatrices that can be used to assess the relative importance of groups of 
cells, genes, or other entities that are being recorded from in the induction of a behavioral 
state. Consider the system 
 
 𝐗 𝐀 𝐁    𝐂 𝐃  (2) 

 
with 𝑓 X 1, if the activity in the component matrix A has been categorically manipulated 
to attain A=0, then the system reduces to the following THM matrix  
 
 𝐗 𝟎 𝐁    𝐂 𝐃 . (3) 

 
If 𝑓 X 0 and it can be further observed that 𝑓 𝐗 1 with 𝐗 𝐀  𝟎  𝟎  𝟎 , then A will be 
said to have hierarchy over B, C, and D in the sense of f(.) inducing brain state “1”. It is also 
possible to use the THM matrix to probe the redundancy of the circuitry in promoting a brain 
state. For instance, consider (2) and the problem of investigating whether there exists a 3-
tuple of matrices 𝐌 ,𝐌 ,𝐌  from the set A, B,𝐂, D  that lead to 𝑓 A, B,𝐂, D  being 
adequately approximated by 𝑓 𝑴 ,𝑴 ,𝑴 , e.g. if 𝑓 A, B,𝐂, D ≅ 𝑓 A, B, C  in which case the 
activity of the fourth recording unit may be deemed as redundant within the context of the 
brain state studied. From an experimental perspective, the activity of the fourth recording 
unit may have been manipulated via pharmacology or lesions. In fact, the incorporation of 
modulation in the THM matrix follows from considering how exogenous manipulations can 
affect the matrix structure and whether the resultant matrix leads to an alteration (i.e. 
modulation) in brain state. The silencing of the activity of A in (3) has been discussed via 
A=0. While this is an extreme occurrence, the modulation is a change in the activity of X and 
the fact that it may affect the output of f(.). The considerations of hierarchy and modulation 
become more involved in the realistic scenario of the THM matrix being time-varying. For 
instance, for the THM matrix shown in (1) the third recording unit takes three different values 
during the recording – it may be that a submatrix exhibiting hierarchy at an earlier epoch in 
the recording does not express the same dominance over the other submatrices at a later 
epoch. Examples of this are pervasive in accounting for circadian effects where neuronal 
and metabolic signals alter their degree of importance in the induction of a brain state at 
different time points in the cycle.       
 
From a practical perspective, the matrix X must be constructed via an algorithm with inherent 
rules and restrictions. Even in the scenario of the behavioral or brain state presumed to take 
on a scalar value, it is unreasonable to concoct solving the optimization problem  
 
 𝑿∗ arg max

X
P X | brain state    (4) 

 
without the problem assumed to have structure such as its components being binary, 
sparse, or Gaussian. Furthermore, we would not anticipate the solution of an optimization 
problem such as (4) to be unique, and it would be difficult to vet among the solutions. We 
shall say more about (4) when discussing the notion of stability where an analytical 
reference point such as X* is desired. Thus, X may be specified based on a heuristic that is 
amenable to the practicalities associated with the data collection and brain state monitoring 
system. A more practical, data-driven protocol for forming the THM matrix should 
encompass the following steps.  
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Step 1) Specify M, the number of recording units under consideration. The measurements in 
the units will comprise the columns of the THM.  
 
Step 2) Determine the contribution of each of the M components in a row of the THM matrix 
to inducing the brain state that is being scrutinized. This should involve the normalization of 
the components with respect to a reference value such as the maximum activity level 
possible.  
 
Step 3) Specify the temporal resolution, or synonymously the timescale at which successive 
samples of data are recorded. The number of rows in the THM will be determined based on 
the number of temporal samples/measurements taken.  
 
Figure 1 depicts an outline of the steps in constructing a THM matrix. Irrespective of the 
timescale considered in forming X, it is unrealistic to expect a memoryless or Markovian 
structure among the successive rows of X. Rather, it is more feasible to explore the number 
of prior rows, i.e. X(i - 1,.), X(i - 2,.), …, X(i - L,.) that affect the formation of row X(i,.). The 
investigation of such question probes the degree of memory, L, within the system. This 
notion can be more formalized via the relation 
 

 𝐗 𝑖, . 𝐺 𝐗 𝑖 1, . ,𝐗 𝑖 2, . ,⋯ ,𝐗 𝑖 𝐿, .   (5) 
 
and perhaps approximated in the simplified scenario where G(.) is assumed to be linear via 
 

 𝐗 𝑖, . 𝜖 𝐗 𝑖 1, . 𝜖 𝐗 𝑖 2, . ⋯  𝜖 𝐗 𝑖 𝐿, . . (6) 
 
The weights 𝜖 , 𝜖 , ⋯ ,  𝜖  may be learned and updated via a regression or artificial neural 
network technique as it would not be necessary to include any regularization constraint. We 
discuss tracking and prediction of brain state via a THM matrix. Following successive 
recordings, S consecutive rows of a THM matrix are defined as a “block” that is deemed 
temporally long enough to reflect the integration of the measurements. A relatively simple 
instance of the THM matrix being used to predict a brain state entails the evaluation of the 
following conditions at times i = 0, 1, …, T-1. For the ith block consider a threshold event #1 
(TE-1) defined by  
 

 
∑ ∑ 𝐗 𝑖𝑆 𝑠, 𝑗

𝑀𝑆
 𝑘  (7) 

 
and the threshold event #2 (TE-2) defined as  
 

 
∑ ∑ 𝐗 𝑖𝑆 𝑠, 𝑗

𝑀𝑆
 𝑘  . (8) 

 
It is valuable to equate the events TE-1 and TE-2 to be prospective brain states. Since the 
two events are dependent on the thresholds k1 and k2, techniques such as point estimation 
[16] should be used to determine these two values that correspond to transitions in brain 
state (e.g., sleep to arousal). In fact, the structure of a THM matrix will enable the matrix to 
be partitioned with components being studied and relationships investigated among the 
probed recording units. A choice for the function f(.) has been addressed in (7) and (8) via 
 

 𝑓 𝐗
1
𝑀𝑆

 

 

X 𝑖𝑆 𝑠, 𝑗

 

      for  𝑖 0, 1, … ,𝑇 1 (9) 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427445


6 
 

in conjunction with T blocks and the thresholds k1 and k2. The above choice of f(.) is certainly 
not a unique specification since one may select other collective operations on the elements 
of X to correlate with brain state. Akin to a block, we will use a “clique” to denote columns of 
a THM matrix that are similar enough in activity, anatomy, or other specified properties to be 
considered in unison. The selection of a clique is to some degree arbitrary, but it should 
follow from an anatomical facet or experimental constraint. We believe that the consideration 
of cliques will be valuable in portraying interactions that take place among the neural, 
metabolic, and immune systems. It will also allow existing graph-theoretic and newer edge-
centric [17] views of network analysis to be applied on datasets in ways that have not been 
conceived in the past.  
 
 

3. THM Matrices for the Sleep-regulatory System 
 
Since the presented analysis is geared towards the sleep-regulatory system we shall 
consider the components of a THM matrix to reflect the likelihood of that component 
inducing arousal. More specifically, the elements are taken to be probabilities via the 
assignment 𝐗 𝑖, 𝑗 ∈ 1, 1  with the sign associated to each component designating whether 
the magnitude reflects the degree to which the unit promotes (+) or impedes (-) arousal. We 
describe the formation of separate THM matrices for EEG, calcium imaging, metabolic, and 
immune data collected from mice within the behavioral context of sleep and arousal. The 
output of each of the four THM matrices may be determined by four different f(.) functions 
with the output of a function denoting a “state” for the THM matrix. Figure 1 depicts the 
relationships that we have discussed among the components of a THM matrix. There are 
similarities in the construction of the THM matrices, thus increased discussion will be given 
to the first matrix which will reflect EEG activity. 
 
A spectrogram contains the quantitative information necessary to form a THM matrix for 
EEG recordings. Define a THM matrix for EEG data as THMEEG with dimensionality 𝑇 𝐹 
where F denotes the number of frequency bins with available power levels, and T is the 
temporal window of recording. We shall consider the matrix 
 
 

𝐗

𝑃 , 𝑃 , ⋯ 𝑃 ,

𝑃 , 𝑃 , ⋯ 𝑃 ,
⋮ ⋮ ⋱ ⋮
𝑃 , 𝑃 , ⋯ 𝑃 ,

  (10) 

 
with the elements being probabilities assigned to the power level of the frequency bin and 
the component-wise +/- sign dictating whether the power level at that time-frequency 
promotes/impedes arousal. For instance, Pi, j = 0.7 may correspond to a recording from a 
frequency bin in the gamma band (30-80 Hz) with the positive value representing a high 
power level having a likelihood of inducing arousal. In order to have the components of 
THMEEG be probabilities the matrix values would be normalized by the maximum power level 
attained during a recording. The effects of the sleep/wake cycle on the probabilities are 
captured in the rows of THMEEG as we expect Pi, j to increase the longer during a recording 
that an animal has remained awake. Following the population of THMEEG, a sensible 
construction would encompass the various frequency bands such as theta, beta, and 
gamma that comprise adjacent columns each being a clique. Works such as [4] have 
discussed the non-Markovian nature among what would constitute the rows of THMEEG. With 
the relative availability of EEG data across various animal models, it may not be difficult to 
compute estimates for the weights in (6) via standard regression techniques.  
 
From an algorithmic perspective, developments in calcium imaging methods for recording 
from neural populations present exciting avenues. Works such as [18] [19] [20] have 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427445


7 
 

discussed algorithms that draw upon the conflation of matrix analysis, statistics, and 
machine learning (ML) in order to identify neuronal properties such as the neurons’ precise 
coordinates. Matrix-based techniques may also be exploited to quantify the spatiotemporal 
traits of GCaMP and fiber photometry data that have been correlated to brain states. The 
dynamic contribution of calcium activity in different neural circuits or cell types to a brain 
state can be captured via the 𝑇 𝑀 matrix THMCa where M denotes the number of neural 
populations which may span several brain regions, and T is a temporal window of 
observation. The elements of THMCa represent probabilities associated with calcium levels at 
various neural populations and their sign indicates whether their activity promotes or 
impedes arousal. Following the construction of THMca, a logical consideration would 
encompass each neural circuit being a clique.  
  
Works such as [6] have provided models that are suggestive of the interplay of metabolic 
processes that are either upregulated or downregulated during sleep with the purpose of 
optimizing energy conservation. In fact, this is argued to be ubiquitous among species and 
across evolution. It is important to have measures that allow one to draw inferences between 
metabolic data and brain-state since the systems are interlinked. For instance, with respect 
to arousal, decreased levels of brain lactate have been implicated in numerous studies 
[21][22]. A THM matrix for the metabolic cell data is defined as THMM with dimensionality 
𝑇 𝑀 where T refers to the number of measurements (i.e. the time variable), and M denotes 
the number of recording units whether it be voxels or metabolic concentration levels. In fact, 
it is exciting that high-throughput PET/CT imaging architectures such as [23] are providing 
advancement to the acquirement of in vivo metabolic data by providing brain images over an 
hour recording interval. Additionally, works such as [24] have considered microdialysis and 
EEG recordings collected simultaneously from the medial prefrontal cortex (mPFC) and 
primary motor cortex (M1) in mice. A minimum of 240 microdialysis samples were collected 
from the two regions of mice in three cohorts. The microdialysis portion of such data can be 
represented, analyzed, and compared via 41 x 480 THMM matrices since 41 time-points 
were collected from each animal in 15-minute increments. Whether monitored via voxels or 
metabolic concentration levels, we shall consider a clique in THMM as a metabolite that has 
its activity level tracked. Lastly, it is possible to consider THMM being formed from BOLD 
recordings with the ROIs corresponding to the columns of the matrix. Although the signal is 
collected from the brain, the metabolic measure of BOLD lends it appropriate for THMM.  
 
A THM matrix for immune cell data is defined as THMIC with dimensionality 𝑇 𝐼 where T 
denotes the number of recordings and I denotes the number of different immune markers 
with relative expression levels available. The immune and arousal systems have been 
discussed as having bidirectional interactions. For instance, we recently showed that 
optogenetic stimulation of corticotropin-releasing factor (CRF) neurons in the hypothalamus 
activated by stressful stimuli leads to a coordinated response in the periphery that includes 
both innate and adaptive immune compartments [25]. We attribute this as providing 
evidence for a clique in THMEEG associated with recordings from the hypothalamus having 
interactions with entries of THMIC associated with CyTOF recordings from MHCII+ dendritic 
cells of the innate immune system and B lymphocytes of the adaptive immune system. 
There is also a growing body of literature studying cytokine and interferon signaling on sleep 
modulation [26]. For instance, TNF and IL-1 have been discussed as keeping track of 
arousal history and acting as threshold-based contributors to the induction of sleep [27]. 
Furthermore, the role of sleep modulators such as hypocretin are being increasingly 
considered in the reciprocal interactions that exist among sleep, metabolism, and immune 
function. It has also been suggested that leptin inhibits the production of hypocretin, and that 
hypocretin antagonism improves sleep quality in association with improved glucose 
metabolism [28]. Such results are in agreement with the hypothesis that the dysfunction of 
hypocretin producing neurons alters glucose concentrations via the sympathetic nervous 
system [29]. In considering data provided from immune markers as the method for 
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population THMIC, current CyTOF techniques allow for I=40 dimensions [30]. Following the 
construction of a THMIC it would be sensible to equate each marker to a clique.  
 
A high-level view of the formation of THM matrices and the determination of a brain state 
from each THM matrix is provided in Figure 2. The conditions in (7) and (8) may be 
evaluated in real-time during a recording session, as the specifications were made under the 
premonition that sustained bursts or silences in activity by the recording units that comprise 
THMca and THMEEG are predictive of arousal. In the case of THMI it may be that S=1 due to 
the larger time interval in-between measurements. In fact, it is necessary to differentiate 
among a behavioral outcome being threshold-based per time-instant (i.e. when S=1) or 
being determined after an interval (i.e. for S > 1). The two analyses are not at odds and can 
be concurrently pursued via the same THM matrix. It should be apparent that the THM 
matrices discussed above evolve on different timescales. EEG and calcium imaging data 
typically provide millisecond resolution whereas metabolic and immune recordings may be 
made on intervals that are interspersed by days. The THM matrix analysis is designed to 
address this issue since each matrix is formed on its own timescale with conclusions derived 
from THM matrices not being directly dependent on one-another. The interaction among the 
cliques of the four THM matrices will need to account for the timescales among the matrices. 
For instance, with respect to the non-Markovian relation suggested by (5), it is expected that 
L would be smaller when considering the rows in THMIC as opposed to rows in either THMCa 
or THMEEG that have been collected under similar experimental conditions. This is because 
the temporal dependence among successive EEG or Ca-imaging recordings are expected to 
be greater than those among consecutive recordings from immune cells since the latter 
would be further separated in time. As previously mentioned, the reflection of a THM matrix 
on brain state is accounted for via a state or outcome derived from the entire matrix. A 
unification of the outcomes attained from the THM matrices to make a decision on the brain 
state will be discussed in the ensuring sections.        
 
 

4. States and Stability Analysis in the Sleep-arousal System 
 
The elements comprising a THM matrix have been discussed as being probabilities. A clique 
or a group of components that interact with other cliques in the same matrix or with cliques in 
other THM matrices are meant to reflect the presence of pathways or subnetworks. The 
interaction of states and dynamic connections within a complex system that may be prone to 
dysfunction leads us to consider fundamental analytical notions. Stability is a central theme 
in dynamic system theory and encompasses long time horizons and principles within a 
constructed system where gains can be adjusted, exogenous signals are applied, and 
feedback from various points may be reintroduced into the system. The stability of the 
system is then evaluated via the properties of a matrix characterizing or constituting the 
system. Although empirically-motivated, and containing information directly from the probed 
systems, the THM matrices that we have discussed do not possess structure in the matrix-
theoretic sense (e.g. symmetric or Toeplitz). We reformulate stability when considering a 
network designed by nature where engineering is not readily achievable, and consider the 
system as being stable or unstable with respect to a reference. The THM matrix analysis will 
consider a continued deviation of collected matrices from the reference as being an 
instability. Such a notion is not asymptotic in the system-theoretic sense of stability analysis, 
but neither are the timescales considered in the nervous, metabolic, or immune systems 
during recordings. 
 
Consider a THM matrix X and a corresponding reference THM matrix R that has been 
attained while the animal was in the same brain state under “healthy” conditions. A sustained 
deviation between the two matrices can be quantified, and the system denoted as unstable if 
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the difference is sufficiently large. One suitable analysis would involve comparing a norm 
between pairs of matrices to thresholds via  
 
 ‖𝐓𝐇𝐌 𝐑 ‖𝒂 α       

‖𝐓𝐇𝐌 𝐑 ‖𝒃 α     
‖𝐓𝐇𝐌 𝐑 ‖𝒄 α  
‖𝐓𝐇𝐌 𝐑 ‖𝒅 α    

(11) 

 
with αa, αb, αc, and αd denoting the selected thresholds. A natural choice for the four norms in 
(11) would be the Frobenius norm. Nevertheless, one may choose to consider the 1-norm for 
the EEG data (i.e. b=1) because of its physical implication. Namely, the maximum absolute 
column sum of the deviation between THMEEG and REEG would reflect that the expected 
power at a particular frequency has deviated from its reference threshold. The consideration 
of b=1 in this case instead of the Frobenius norm would follow from warranting the deviation 
of power at any one frequency band as being more important than the collective deviation in 
power across all recording frequencies in the EEG signal. Conversely, in the case of 
metabolic data it may be wise to consider the ∞-norm (i.e. c=∞) because the maximum 
absolute row sum of 𝐓𝐇𝐌 𝐑  corresponds to a sudden change in metabolism at a 
particular time. The abrupt change can be due to immediate insulin production or 
consumption. The thresholds in (11) must obviously be adjusted in correspondence to the 
matrix norms that are considered. The fact that the thresholds will be determined via data 
leads us to believe that consensus may be reached on values after sufficient data collection 
across animals that are deemed similar enough with respect to genetic and phenotypic 
characteristics. In determining appropriate thresholds αa, αb, αc, αd one possible heuristic 
would involve starting with somewhat high values such that none of the inequalities in (11) 
are satisfied. Through the consideration of successive four-tuples of measured THM 
matrices THMEEG, THMCa, THMM, THMI that have stemmed solely from aberrant or unhealthy 
animal recordings, the conditions in (11) should be satisfied at a high frequency (e.g. 95%). 
Accordingly, a threshold value in (11) may be iteratively lowered if its corresponding 
inequality is satisfied for a number of successive instances. The sequences of THM matrices 
from unhealthy recordings that are considered in the aforementioned procedure may be 
viewed as training data used for the tuning of the thresholds. Due to the inherent coupling 
among the four systems, several of the thresholds might be exceeded because of aberrant 
activity in one system. For instance, insulin resistance, diabetes, and obesity have been 
reviewed as being linked to and exacerbated by sleep disturbances or sustained arousal 
[31]. This is an example of a deviation in THMM that will be affected by deviations in THMca 
and THMEEG. Thus, we consider an instability as being the more conservative occurrence of 
a simultaneous exceeding of all four thresholds.  
 
The attainment of a reference R for each THM matrix has not been discussed yet. 
Determining such a reference matrix is not trivial and necessities us to revisit (4) with the aim 
of attaining a maximum a posteriori probability (MAP) estimate of the THM matrix for the 
considered brain state under non-aberrant conditions – i.e. equating R = X* to be what is 
deemed acceptable for a healthy control. Assuming sufficient data has been collected from 
an animal during the brain state in question, one may conceive a discrete sample space to 
solve a more tractable version of (4) such as 
 
 𝑿∗ 𝑿i  ∶  M 𝑿i ,  𝑿GT | brain state  M 𝑿j ,  𝑿GT | brain state   ∀ j ϵ 𝒜/i .  (12) 

 
In the above 𝑿GT denotes a ground truth THM matrix that would be pre-specified and M(.,.) 
denotes a distance measure. In essence, (12) equates to evaluating pairs of possibilities, 
with respect to a measure M(.,.), in order to identify a THM matrix that is closest to 𝑿GT. The 
solution X* will as be used as the reference THM matrix R. The set 𝒜 in (12) contains the 
indices of THM matrices that are considered as candidates for being a reference R and may 
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be expanded upon to contain more elements as more data becomes available. While the 
selection of a distance metric is not conceived to be difficult, the specification of a ground 
truth is a definite challenge that may be pursued through meta-analysis studies or via what is 
already known. In fact, 𝑿GT represents a generalized expectation for R in light of the animal 
breed, age group, weight, and other metrics that are not cohort specific. For instance, 𝑿GT 
may be standardized for large cohorts of genetically identical animals whereas R would be 
specified on a per cohort or even per animal basis. Figure 3 provides an example of the 
computations involved in selecting a reference from the ground truth and the measured THM 
matrices. In the case of THMCa with the use of a fiber photometry array that simultaneously 
records from brain regions consisting of DA, NE, Hcrt, and GABA producing neurons, we 
may attain the following THMca matrix after five time points  
 
 

THMca DA  NE  Hcrt  GABA

⎣
⎢
⎢
⎢
⎡
0.15 0.1 0.2 0.05
0.2 0.1 0.25 0.05

0.25 0.15 0.3 0.1
0.25 0.2 0.3 0.15
0.3 0.25 0.35 0.2 ⎦

⎥
⎥
⎥
⎤

 . (13) 

 
The above follows from the initial conjectures that the DA, NE, and Hcrt producing neurons 
are wake-promoting while the GABA producing population is sleep-promoting. The 
normalization by a maximum fluorescence signal level has also taken place in order to 
constrain the components to a magnitude that corresponds to a probability. In the scenario 
that the recordings are made at five time points per experiment, the successive 
measurements leading to 5 4 THMca matrices can be either used as prospective reference 
THMca matrices in the set 𝒜 or be averaged together to attain one prospective reference. 
The sequence of computing or using a previously-attained 𝑿GT, and solving (12) to attain a 
reference R from a set of candidate THM matrices can be conducted, stored over the history 
of an animal, and be guided by a database where such information has been consolidated 
for animals with similar genetic and phenotypic traits. The evaluation of the stability analysis 
in (11) can be performed after estimated reference THM matrices and the thresholds are 
available.  
 
As mentioned, the evaluation of the stability requires an 𝑿GT as a starting point. Fortunately, 
a ground truth for each of the four THM matrices can be hypothesized and then adjusted in 
iterative fashion following the application of unsupervised ML techniques that will look for 
similarity and trends in the data. There will also be a supervised ML component that will be 
implied in forming the ground truth – namely, the use of existing knowledge about the 
systems such as the posited roles of neural circuits, metabolites, and immune cells in 
inducing sleep or arousal. As the analysis is applied to increasing amounts of data and 
results are amassed from different labs, we expect that some degree of consensus will be 
reached on THM component values. It is beyond the scope of this paper to suggest more 
specific pipelines for forming each of the four THM matrices and provide data, but this is an 
avenue of current consideration.  
 

 
5. Inter-THM Matrix Analysis via Network-Based Views 
 
The consideration of EEG, multi-channel photometry, metabolic, and immune data derived 
from the same animal has not been conventionally undertaken due to challenges in its 
acquisition. It is known that the matrices correlate with arousal state as experiments continue 
to probe the interactions among the constituents in each realm. For instance, we have seen 
the increase in GCaMP photometry signals from Hcrt and DA producing neurons correlate 
with transitions from NREM sleep to wake [32][25]. While recording activity within various 
neural circuits is a central theme to neuroscience, it is being increasingly recognized that 
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other systems should be incorporated in the discussion as they constantly adapt to 
environmental cues and to each other. As measurements of subcellular activity at different 
spatial and temporal scales are being made possible in the same organism, the analysis and 
models must consider that the byproducts of such activity is propagated along trajectories 
defined by both local and long-range connections. There is perhaps a necessity for models 
that account for the interactions between dynamics of different systems. Such modeling 
capability is crucial when attempting to understand a behavior as involved as arousal. A 
network view of the arousal system is a possible means to represent the degree of 
interaction among the cliques formed within a THM matrix and also among the cliques 
formed in the other three THM matrices. We shall consider the interaction of the matrices via 
a graph with nodes denoting cliques that have been identified in the neural, metabolic, and 
immune THM matrices, and the edges denoting the presence of adequate correlation among 
the respective nodes. Figure 4 depicts our presented view of inter- and intra-clique 
interactions among the components of the four THM matrices. The figure is meant to stress 
a network-based view of the coupling with the formation of cliques leading to subnetworks 
(or pathways) that exist within the system. Since correlations among neural populations can 
differ significantly with behavioral state, we expect network topologies to change for different 
brain states [33]. In fact, the edge coloring in Figure 4 is meant to distinguish among 
connections that exist during the two considered brain states. We have represented the 
system by an undirected graph to maintain generality – naturally, some interactions among 
cliques may be purely unidirectional. There are other caveats to the analysis as the absence 
of edges among cliques can not necessarily be equated to no strong interaction between 
cliques, but rather may be unknown or undiscovered. Nevertheless, we shall not assume or 
impose structure that might later be discarded as the methodology is applied to various 
datasets. Interestingly, in such a system the betweenness centrality of the cliques may be of 
more importance than other graph-theoretic measures as it would indicate a clique’s 
involvement in the most efficient – i.e. shortest length – paths. Of course, a measure of 
length would need to be formulated for the network based on multiple parameters that reflect 
the inter-workings of the neural, immune, and metabolic systems. The fitting of network 
structures to interacting cliques among the THM matrices will require data and perhaps 
iterations of model selection to arrive at possibilities. Such analysis is an exciting avenue 
that would warrant ensuing works.  
 
The brain has high metabolic needs, and for an arousal state, it would be insightful to 
consider THMca cliques as communicating with cliques in THMM in order to form 
combinations that act in concert with, compensate for, or negatively correlate with one-
another. As an instance of understanding how a brain state resonates to metabolic function, 
we have shown that a population of GABAergic leptin-responsive neurons provide inhibitory 
synaptic input onto Hcrt neurons in the hypothalamus [34]. Such a relationship would provide 
communication modeled via connected cliques in THMM and THMEEG as well as the same 
THMM cliques communicating with cliques in THMca. Compensatory responses between 
metabolic and neuronal networks have been discussed in works such as [35] where EEG 
recordings as well as metabolic measurements were taken in mice that experienced 
separate perturbations to their sleep pattern and diet. In fact, sleep disruption has been 
discussed as being both a driver and a by-product of disruptions to glucose metabolism 
[36][37]. Interaction of cliques in THMIC and the other THM matrices also appear to be 
prevalent. An important mechanism of immune regulation by the brain includes the activation 
of noradrenergic neurons and norepinephrine release in the lymph nodes and spleen [38]. 
Furthermore, stimulation of the LH has been shown to result in an immunoenhancing 
response [39]. Interactions among the activity of Hcrt producing neurons in the LH and 
metabolites as well as immune cells were also studied more recently in [40]. The important 
question of whether the coordination of increased activity by DA-producing neurons along 
with greater expression of genes of interest in the immune system influence sleep coherence 
can be investigated by examining the interaction of the respective cliques in the THMca and 
THMIC matrices.  
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An instance of the inter-network analysis is shown in Figure 5 as we consider findings from 
DA-producing neurons in the VTA. Metabolic data for this figure was collected in [41] while 
fiber photometry and EEG recordings were attained in [42]. The two connections from DA 
producing neurons of the VTA via THMca to THMEEG cliques denote the inhibition of the 
power in the theta and delta frequency bands by the activation of the DA-producing neurons 
in the VTA during arousal. Since it is not currently known whether theta or delta EEG activity 
modulate the immune markers TLR4, CD25, CD80, and CD86; the corresponding 
connections between the THMEEG and THMIC cliques have not been included. It can be 
noted from the edge coloring in Figure 5 that we have only shown interactions that promote 
arousal. The discovery of clique dependencies and interactions that promote sleep are not 
as well understood and thus have not been shown. In utilizing collected data and the 
discussed framework, the choice of cliques may vary among different datasets, the 
interpretation of the data, and parameters used to fit the framework to the data. However, we 
expect the connections among cliques to be relatively consistent. The evaluation of altered 
connectively and communication as a result of the time-variant nature of the system is 
beyond the scope of the present work but an important extension.  
 
 

6. Conclusions and Future Considerations 
 
The interaction of consciousness with the metabolic and immune systems throughout the 
sleep/wake cycle has been conceived for decades. However, the regulatory influence that 
each of these systems appear to place on one-another is only starting to be understood. The 
investigations have been aided by the development of instruments and experimental 
paradigms that enable heterogenous, multi-faceted data to be collected from the same 
organism over multiple time-points. This has constituted a relatively recent advancement in 
neuroscience since the tools that were used to provide a status of the nervous, metabolic, 
and immune system had been largely developed disjointly. From a data analysis 
perspective, protocols must be presented to convey and represent the data in a manner that 
is deductive. This has conventionally led to dimensionality reduction methods that rely upon 
sparsity existing in the volumes of data extracted from the different systems. Despite the 
successes of such techniques, there is a need to probe the data for structure that may be 
present in the underlying networks. This is especially true with the consideration of 
heterogenous datasets, i.e. neural, metabolic, and immune, stemming from complex 
networks where the inter-dependencies have not been completely discovered. Even 
exclusively in the realm of neural data collection, EEG and GCaMP present a challenge in 
constituting techniques that yield measurements at different timescales with each requiring a 
separate analysis for interpretation.  
 
Matrix-based methods provide an efficient means for neuroscientists to compare the 
spatiotemporal neural activity to brain state. While it is important to consider experiments 
that provide data for the THM matrices, it is perhaps more crucial to identify the utility of 
prospective experiments within the scope of what has been mentioned. Advancement to 
already sophisticated technology is necessary to attain the data discussed herein. 
Nevertheless, progress is continuously being made on this front [43][44][45][1], and the 
incorporation of additional channels and optical fiber bundles to record from diverse 
populations of neurons will allow for further scrutiny and a more complete picture. For 
example, in the case of THMca, it would be elucidating to study the simultaneous interaction 
of DA, Hcrt, NA, GABA, and 5HT producing neurons from the same animal with the cellular 
activity from the metabolic and immune systems as the animal transitions between wake, 
REM, and NREM sleep. Even within the subclass of GABA producing neurons, it would be 
valuable to attain simultaneous, separate-channel recordings from populations in the basal 
forebrain and the ventral medulla.  
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With respect to interpreting data from the arousal system, a THM matrix will conjoin calcium 
imaging and EEG data collected from brain regions as well as metabolic and immune data to 
predict a brain state. The instantiation brings forth questions that must be addressed if 
experimental data is to be effectively incorporated into the framework. For instance, 
experiments that provide a consensus on the signs of the components in the THM matrices 
are necessary. Unfortunately, the majority of present experimental methods do not 
definitively distinguish among the portions of THM matrices that contain sleep- versus wake-
promoting agents. Further targeted studies validating activity profiles that comprise each 
matrix will assist in ascertaining the sign and magnitude of the components. For THMca, the 
DA and Hcrt releasing neurons that we have presented data for in the past are believed to 
be wake-promoting [42][32][25], and the recorded data from these respective populations 
would be accompanied with a positive sign in the THM matrix. In contrast, the activity from 
populations of GABAergic preoptic neurons that are associated with the onset of sleep would 
be assigned a negative sign.  
 
The development of models that use optogenetic, pharmacological, or lesion analysis to 
delineate the sleep- or arousal-promoting properties of various populations of neurons was 
motivated in works such as [46] and remains an active area of research. In addition to 
calcium recordings of neuronal activity, a new wave of biosensors that allow millisecond 
scale determination of neurotransmitter dopamine [47] and transmitter/metabolite adenosine 
[48] are emerging and may improve the spatial and temporal resolution of the THM matrices. 
The possibility of such anatomically precise recording technologies for high-throughput data 
will permit various combinations of knock-out, pharmacological, or stimulation/inhibition 
scenarios to probe at the sleep/arousal function of each component in the system. It is 
important to have computational machinery in place to convey findings from the data as the 
experimental capability advances to provide increasingly sophisticated recordings. We 
anticipate the analysis to have multiple applications. While the identification of sleep 
disorders from the THM matrices based on the discussed notion of stability is a salient 
application, perhaps an equally interesting avenue is the discovery of brain states based on 
immune and metabolic responses. The interaction among cliques is a particularly important 
avenue to consider since it is being discovered that consciousness is a dynamic, multi-
faceted phenomenon that encompasses several gradations. The ideas discussed in the 
present work have provided means to unite data from multiple systems. With respect to THM 
matrices, amassing and evaluation of data to find ground truths, evaluate the stability 
consideration and map interactions among cliques is formidable, but so is understanding 
consciousness.  
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Figure 1: An overview of the time-hierarchy-modulation (THM) matrix notions within 
the context of studying how brain, metabolic, and immune system activity is 
modulated by consciousness. Left: The general steps involved in forming a THM 
matrix. Right: The units comprising a THM matrix. Each matrix component is a 
probability value that has been attained via a normalization. The sign of the 
component denotes whether the activity of that component promotes (+) or impedes 
(-) arousal. A clique represents successive columns of a THM matrix that are similar 
enough in activity, anatomy, or other specified properties to be considered as a 
collective entity. The function f(.) denotes a mapping from a THM matrix and a 
qualitative value (i.e., wake or sleep). Such a function may be a classification rule 
that has been formulated from prior realizations of the THM matrix.  
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Figure 2: A consideration of recordings from the central nervous, metabolic, and 
immune system leading to the formation of respective THM matrices. The rows for 
each of the four matrices correspond to successive measurements while each 
column represents a recording unit.  
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Figure 3: A view of how a reference THM matrix R can be iteratively specified for an 
animal or a cohort. Each Xi is a THM matrix that can be selected as the reference to 
which ensuing THM matrices of the same animal or cohort are to be compared in 
determining the stability of the system. As Xi : i = 1, 2, …, |𝒜| are collected for an 
animal under healthy conditions and in the brain state that is being scrutinized, 
evaluation of the discrete optimization problem in (12) will yield the THM matrix of 
that animal that is closest to a ground truth 𝑿GT. A box colored green denotes the 
prospective THM matrix that has been selected as the reference following the 
comparison of the available data to a ground truth. This selection will serve as the 
reference R. In the example above, as twelve additional recordings of a THM matrix 
(i.e. X5, …, X16) become available, the prior reference – depicted in yellow – may be 
replaced by a new reference R=X7 that is even closer to the ground truth 𝑿GT.  
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Figure 4: A network view of the interaction of states that are output from the THM 
matrices. The vertices denote the possible cliques that have been identified or 
specified from data collected for each THM matrix. The edge colors denote whether 
the clique interaction occurs during wake, sleep, or both states. The above depicts a 
time-invariant scenario where the cliques in the THM matrices are constant. This is a 
snapshot view whereas the more realistic time-variant consideration would 
encompass the network topology dynamically changing.  
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Figure 5: An example of inter-THM matrix analysis showing interaction among 
cliques. Although this is a snapshot view, it illustrates dependency among neural 
activity measured at different spectral bands via EEG, neural circuit-level calcium 
release via fiber photometry, markers associated with immune cell activity, and 
metabolic data. The clique interactions that involve EEG and fiber photometry data 
collected from DA producing neurons of the VTA were noted in [42] while the 
immune components were identified in [41]. The interactions shown among the 
metabolites, immune cells, and neural activity from the Hcrt producing neurons of the 
LH were determined in [40] while the interactions of the neural activity from fiber 
photometry with the metabolites were derived via in vivo microdialysis [24].  
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