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Abstract  

The effect of aging in the human retina has been well documented, as have the signs of age-related retinal 

disease. Comparative studies in animals allow us to further investigate how the retina ages in different 

species. The African bush elephant (Loxodonta africana) has a retina comparable to other mammalian 

species, but with some reported distinctive differences in retinal ganglion cell (RGC) distribution and type. 

This is a first survey of the retina of Loxodonta africana from individuals aged 2 months to 32 years old. 

Gross examination, H&E staining and cell counts were used to compare calves (0-5 years), juveniles (6-10 

years), sub-adults (11-20 years) and adults (>20 years). Dorsal-ventral eye diameter was shown to be 

significantly greater with age, whilst no significant changes in photoreceptor number were found. Changes 

in retinal thickness differed from past findings in elephants and humans, with thickness decreasing, then 

increasing in adults. Various morphological differences were evident in the samples including the presence 

of nuclei in the outer plexiform layer (OPL), degeneration of the inner plexiform layer (IPL), interruptions in 

nuclei columns of the outer nuclear layer (ONL), and larger unidentified cells within the inner nuclear layer 

(INL). These are initial observations provide some baseline information for a species where this range of 

samples has not been described previously. 

Introduction  

The vertebrate neuroretina is composed of five layers: three layers of nerve cell bodies and two layers of 

synapses. Photoreceptor cell bodies compose the outer nuclear layer (ONL) and bipolar, horizontal, and 

amacrine cell bodies are situated in the inner nuclear layer (INL). Ganglion cell bodies and some amacrine 

cells make up the ganglion cell layer (GCL). The inner plexiform layer (IPL) and outer plexiform layer (OPL) 

are the synaptic clefts delineating the nuclear layers (Bonnel et al., 2003).  

Aging can be defined as a gradual deterioration causing loss of physiological function which in turn 

increases the likelihood of disease (L?pez-Ot?n et al., 2013). Somatic mutations accumulate with age, 

resulting in altered proteins that reduce effective cellular function (Szilard, 1959; Gonzalez-Freire et al., 

2015; Milholland et al., 2017). Cellular senescence is a mechanism that responds to ageing effects by 

arresting the cell cycle. Accumulation of senescent cells in aged tissues can be considered to contribute to 
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dysfunction (Campisi, 2013). Cell senescence causes activation of TOR (target of rapamycin), leading to 

hyperfunction of cellular processes, then reduced protective mechanisms. (Blagosklonny, 2006, 2012).  

The human retina changes with age, with decreased neuronal and retinal pigment epithelial (RPE) cells, 

increased lipofuscin within RPE cells, and increased thickness and drusen accumulation of the Bruch’s 

membrane (Newsome et al., 1987; Ramrattan et al., 1994). Cells within the GCL, and rod photoreceptor 

cells, decreased the most in the aged retina (Gao and Hollyfield, 1992).  In the older retina, the width of the 

layers appeared unchanged, but cone and RPE cells demonstrated reduced density (Wang et al., 2020). A 

maintained retinal thickness through increased retinal area, despite thinning of layers, was seen in aged 

mice (Samuel et al., 2011). A failure of the photoreceptor to synapse with the bipolar and horizontal cells 

has been demonstrated in ageing human and mouse retina (Eliasieh et al., 2007; Samuel et al., 2011). 

Numbers and densities of rod and cone photoreceptors do not change in aged mice as they do in humans, 

but electroretinography findings are reduced, with reduced synapses the potential cause (Samuel et al., 

2011; Sugita et al., 2020). Compensation has been described in aged mice and humans, where rod bipolar 

cells extend their dendrites into the ONL to synapse with rod photoreceptors (Liets et al., 2006; Eliasieh et 

al., 2007). Studies in birds and reptiles have shown lipofuscin accumulation in the RPE similar to humans, 

and deterioration of this layer, and photoreceptor layers of the retina, with similar changes reported in 

horses (Ehrenhofer et al., 2002; El-Sayyad et al., 2014).  

Elephant retinal layers follow the general vertebrate pattern, but there is no fovea, and rod photoreceptors 

predominate (Kuhrt et al., 2017). Elephants, like many mammals, show a visual streak on the retina: a 

horizontal band of increased photoreceptor density. (Mullins and Skeie, 2010). However, the increased 

density of ganglion cells in the upper temporal retina is only seen in elephants and has been suggested to 

provide binocular vision when using the trunk (Stone and Halasz, 1989). The nasal area centralis is a third 

region of increased ganglion density which allows greater visualisation of the posterior visual field 

(Pettigrew et al., 2010). The elephant retina is paurangiotic (avascular), similar to that of the horse, while 

their soma size variability compares with rabbits and rats (Eorge L Indsay and Ohnson, 1901; Stone and 

Halasz, 1989; Ehrenhofer et al., 2002). Elephants display giant soma of retinal ganglion cells (RGC) which 

are comparable to those of the dolphin and could be a means of compensating for the lower number of 

RGC when compared to other mesopic mammals (Dawson et al., 1982; Kuhrt et al., 2017). Their rod 

bipolar cells appear to be bistratified, whereas in other mammals they are monostratified.  Elephants are 
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active both day and night, which may explain why their rod bipolar cells are bistratified, similar to Microbats, 

as this can help with nocturnal contrast perception in low light (Pettigrew et al., 2010; Müller et al., 2013).  

Few studies have been conducted on the elephant retina, and even fewer have had access to such a range 

of ages as those assessed for this study. African bush elephants live for a maximum of 70-75 years, whilst 

average lifespan for humans is 72 years (Lee et al., 2012; Life expectancy at birth, 2015).  Looking at age-

related changes in elephant retina could therefore be interesting to compare with retinal aging in humans. 

Materials and Methods  

Collection of elephant retinal tissue 

Collection of elephant retinal tissue was approved by the local ethics committee of the School of Veterinary 

Medicine and Science at the University of Nottingham. The samples were obtained from management 

organised culled operations at Save Valley Conservancy (SVC), Zimbabwe between 2009 and 2011. The 

elephants were not culled specifically for this study and permission was acquired from all pertinent 

authorities. The Zimbabwe Parks and Wildlife Management Authority (PWMA) gave permits to SVC to cull 

the elephants and the SVC gave permission for the samples to be used by the School of Veterinary 

Medicine and Science. The eyes were collected from each of the 24 elephants (see Table 1). One eye from 

each pair was immersed in liquid nitrogen, shipped to the United Kingdom and stored at -80°C. The other 

eyes were preserved and immediately shipped to the UK in 10% neutral buffered formalin. These eyes 

were then immersed in 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS), which was then 

later reduced to 0.4% PFA. 

 

Sample ID Sex Age (years) 

svc11-24 F 0.17 

svc11-11 M 0.75 

svc11-10 M 1 

svc11-21 F 1 

svc11-23 F 2.5 

svc11-09 F 2.7 

svc11-08 F 3 

svc11-22 M 3 

svc11-20 M 3.5 

svc11-07 M 6 

svc11-15 M 6 

svc11-19 F 6.7 

svc11-04 F 8 

Table 1: Elephant identification number, 

sex and age. Ages range between 2 

months and 32 years. Males and females 

(n=9 and n=15 respectively) were not age-

matched, and therefore differences in 

retinal structure between sexes were not 

investigated. 
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svc11-05 M 8 

svc11-18 M 8 

svc11-06 F 10 

svc11-13 F 13 

svc11-14 M 16 

svc11-16 F 19 

svc11-01 F 25 

svc11-02 F 27 

svc11-03 F 28 

svc11-17 F 30 

svc11-12 F 32 

 

Dissection 

The eyes were trimmed to remove surrounding fat and optic nerve tissue. The front of the eye was 

dissected at the coronal plane of the globe. The vitreous humour, aqueous humour and lens were then 

removed. The eye was dissected from dorsal to ventral, through the optic nerve, resulting in a section 

containing both tapetal and non-tapetal fundus. A second section was made from dorsal to ventral, creating 

a cross section of the eye. The sections were then placed in cassettes containing 70% ethanol until ready 

for processing. 

Processing and embedding 

Sections were embedded in paraffin wax as described in Werner et al., (2000). The tissue was dehydrated 

in 70%, 95% and 100% ethanol, followed by the use of histoclear to wash the tissue. The cassettes were 

then placed in paraffin with the optic nerve edge facing downwards and left at 4°C to solidify. 

Tissue sections 

For H&E staining, cross-sections of the retina were sectioned at 8μm using a fully automated rotary 

microtome Leica RM2255 (Leica Microsystems, UK) and placed onto Superfrost™microscope slides 

(Thermo Scientific, UK).  

H&E stain 

Five cross-sections of each eye were stained as described in Fischer et al., (2008) with the following 

changes. The slides were deparaffinised in Histo-Clear II (National Diagnostics, UK) twice for 5 minutes, 

then rehydrated in 100%, 95% and 70% ethanol for 2 minutes each. Slides were washed in running water 

for two minutes. Haematoxylin (Sigma-Aldrich, UK) was added to the slides for 5 mins. Between the 

addition of haematoxylin and eosin, 1% acidified IMS and 50% ammoniated water were used with running 
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water between steps. Eosin (pH 5.0) (Sigma-Aldrich, UK) was used for 5 minutes with running water, 

followed by dehydration using intervals of 70%, 95% and 100% ethanol. Slides were washed in Histo-Clear 

II twice for 5 minutes each, then submerged in Xylene (Fischer Scientific, UK) for 5 minutes. 

Calculations  

Axial eye diameter was measured from the anterior pole of the eye to the posterior pole (mm). Dorsal-

ventral diameter was measured from the central eye (mm). Photoreceptor counts were determined as 

shown in figure 1, and an average for each retina calculated. Retinal layer thicknesses were measured in 

micrometres by light microscopy at 20µm. The tapetum of each sample was divided into one of 4 

categories depending on colour: All blue (1), predominately blue with some white (2), predominately white 

with some blue (3), and all white (4).  

 

 

Results  

Data were grouped by age according to ranges defined in Stoeger et al., (2014). 

Dorsal-ventral eye and axial diameter increases significantly from calf to adult 

Measurement Calf Juvenile  Sub-adult  Adult  

Axial diameter (mm) 32.29± 3.45 34.60 ± 8.99 35.33 ± 1.53 36.60 ± 2.61 
Dorsal-ventral 
diameter (mm) 

36.14± 3.85 38.40 ± 1.52 42.33 ± 5.51 43.00 ± 4.47 

Table 2: The mean axial and dorsal-ventral diameters for calves (0-5), juveniles (6-10), sub-adults (11-20) 

and adults (>20). Elephant eye samples svc11-04, -07, -08 and -10 were excluded as they had already 

been processed. Using a one-way ANOVA, we found that there is a significant difference in dorsal ventral 

diameter between groups (p=0.031). Using an unpaired t test, we found a significant difference in the axial 

diameter when calves were compared to adults (p=0.04).  

Figure 1: White boxes show columns counted with 5 

photoreceptor nuclei in ONL.  

H&E stain of svc11-06. Section 8µm thick. 400x magnification. 
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Photoreceptor counts are not significantly different between the age groups  
Calf   Juvenile  Sub-adult  Adult  

Photoreceptor count  4.35 5.05  4.6  4.4 

Table 3: Photoreceptor count from the ONL in each of the 5 H&E slides for calves (0-5), juveniles (6-10), 

sub-adults (11-20) and adults (>20.  All eyes containing retina were included, though counts could not be 

taken from slides that were overstained. From a one-way ANOVA test, we suggest that there is no 

significant difference in the number of photoreceptor nuclei between the L. africana retinas studied (p= 

0.25). 

 

The thickness of the nuclear layers are significantly different between juveniles and adults  
Calf  Juvenile  Sub-adult  Adult  

Photoreceptor dendrite thickness 
(um) 

8.50 6.86 6.77 8.63 

Outer nuclear layer (um) 18.06 13.78 13.20 20.13 

Outer plexiform layer (um) 4.70 4.06 3.67 5.35 

Inner nuclear layer (um) 8.64 6.84 6.96 9.50 

Table 4: The mean thickness of the photoreceptor dendrite layer, ONL, OPL, and INL for calves (0-5), 

juveniles (6-10), sub-adults (11-20) and adults (>20). Counts were taken from all eyes containing retina, 

(Table 6). With an unpaired t-test, we found a significant difference between the ONL thickness of adults 

and juveniles (p=0.011), and between adults and sub-adults (p=0.018). With an unpaired t test, we found 

significant difference for the thickness of the INL between the adults and juveniles (p=0.0015), and also 

between adults and sub-adults (p=0.0133).  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2: Graphs showing means and range of the ONL (A) and INL (B) of the retina. Groups were calves 

(0-5), juveniles (6-10), sub-adults (11-20) and adults (>20). Significance bars are shown. 

A B 
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The tapetum colour showed no apparent age-related pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

1 2 

3 Figure 3: The posterior of the eye.  

Panel 1: Blue. Svc11-22, svc11-19, svc11-06, 

svc11-14, svc11-01, svc11-03 (left to right). 

 2: Predominately blue. Svc11-15, svc11-04, 

svc11-02, svc11-12 (left to right). 

 3: Predominately white. Svc11-11, svc11-

23, svc11-20, svc11-13, svc11-19, svc11-10 

(left to right). 

Age in years shown in top left of image.  

There was no image for svc11-07 and -18. 

Svc11-24 not included due to poor 

visualisation of the tapetum.  

3 6.7 10 

16 25 28 

6 8 

27 32 

0.75 2.5 3.5 

13 19 1 
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Nuclei were found in the outer plexiform layer of several elephant retina. 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 4: H&E stained elephant retina.  

(A) Specimens containing nuclei within the OPL. Svc11-24, svc11-10, svc11-23, svc11-09, svc11-22, svc11-20, svc11-19, 

svc11-13, svc11-14, svc11-03 (left to right). 

(B) Specimens without nuclei in OPL. Svc11-11, svc11-07, svc11-15, svc11-04, svc11-06, svc11-16, svc11-02, svc11-12 (left 

to right). 

Age in years shown in top left of image. X100 magnification. Section 8µm thick.  

0.17 1 2.5 2.7 3 

3.5 6.7 13 16 28 

0.75 6 6 8 10 

19 27 32 
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Deterioration of the inner plexiform layer was observed in a few specimens. 

 

Columns of nuclei were missing in the ONL of several specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Giant ganglia and another large cell were observed in the retinas of a portion of samples. 

 

A 

B 

Figure 5: H&E micrographs of elephant retina.  

(A) Specimens with deterioration of the IPL. Svc11-10, svc11-09, svc11-12 (left to right).  

(B) No deterioration was seen in other specimens IPL. Svc11-11, svc11-04, svc11-02 (left to 

right).  

Age in years shown in top left of image. X63 magnification. Paraffin section cut at 8µm.  

1 2.7 32 

0.75 8 27 

Figure 6: H&E stained sections.  

(A) Sections where gaps were observed in the ONL. Svc11-24, svc11-10, svc11-07, svc11-04, svc11-03, 

svc11-12 (left to right).  

(B) For comparison, samples where nuclei and uniform in ONL. Svc11-11, svc11-23, svc11-09, svc11-22, 

svc11-20, svc11-15, svc11-19, svc11-06, svc11-13, svc11-14, svc11-16, svc11-02 (left to right). 

Age in years shown in top left of image. X100 magnification. Section is 8µm thick.  

A 

B 

0.17 1 6 8 28 32 

0.75 2.7 3 3.5 6 6.7 10 13 16 19 27 2.5 
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Discussion  

This study arose from a unique opportunity to obtain and examine a number of non-captive elephant eyes 

across an age range spanning several decades. The elephants were from a single group which assured a 

homogeneous environmental background. We aimed to see whether there were clear age-related changes 

in the elephant retinas that were collected. 

We show that the dorsal-ventral diameter of adult African elephant eyes was significantly larger than that of 

the younger groups. Between calves and adults, the diameter increased by a factor of 1.19.  The axial 

diameter between calf and adult also significantly increased, by a factor of 1.13. These findings are 

suggestive of growth through aging (Kuhrt et al., 2017), and correlates with previous work which determined 

that eye mass increases with body mass  (Howland et al., 2004). All age groups had a dorsal-ventral diameter 

greater than the eye’s axial diameter (Table 2). Both African and Asian infant elephant eyes have been 

demonstrated to be more spherical than the adult, as seen here (Murphy et al., 1992; Bapodra et al., 2010; 

A 

B 

Figure 7: H&E stained micrographs of elephant retina.  

(A) Slides showing unidentified cells. X40 magnification. Svc11-13, svc11-14, svc11-02 

(left to right).  

(B) Slides showing giant ganglia cells. X63 magnification. Svc11-10, svc11-22, svc11-19, 

svc11-06, svc11-16, svc11-02, svc11-03, svc11-12 (left to right). 

Age in years shown in top left of image. Paraffin section cut at 8µm. 

13 16 27 

1 3 6.7 10 

19 27 28 32 
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Pettigrew et al., 2010). When the diameters are compared to those of Asian elephants, the African 

elephants’ eyes have been reported to be larger (Bapodra et al., 2010). We found larger values for both 

axial and dorsal-ventral eye diameter in African elephants when compared to their Asian counterparts 

(Table 2).  

On gross examination of the eye, most tapeta observed were wholly or mostly blue (Figure 3). This concurs 

with findings from an infant African elephant, and is a trait shared with the cow, juvenile cat, dog, sheep and 

goat (Stone and Halasz, 1989; Ollivier et al., 2004). However, it has been shown that this is silver to white 

in the adult elephant (Pettigrew et al., 2010). There has been a suggestion that the colour of the tapetum 

changed with age in Asian elephants (Murphy et al., 1992), but the few elephants that did display a more 

white tapetum in our sample set were of various ages, with no clearly discernible pattern. In fact, in our 

study, the oldest elephant’s eye had a blue tapetum, and the one-year-old had a predominately white one. 

This difference has previously been attributed to the strength and location of the light source used when 

assessing the colour of the tapeta (Pettigrew et al., 2010).  

In the histological assessment, to enable comparison across the age groups, the area lateral to the optic 

disc was examined to ensure similarity in the layer composition. In cases where limited quantities of retina 

were captured in the slide, we used what was available. Unfortunately several of the retinas became 

detached during the process of collection and transfer to our laboratory, however, this is unsurprising, given 

what was involved in collecting these samples in the field in Zimbabwe. Indeed, the logistical challenges 

which had to be addressed to gather these samples at all is reflected in the paucity of currently published 

work on this subject. 

The average photoreceptor count showed the ONL had between 4-5 nuclei per single layer cross section of 

retina (table 3). By contrast, in other studies in the African elephant, a functional column of retina has been 

shown to contain 11 photoreceptors in total, over double our count (Kuhrt et al., 2017). This may be down 

to difference in sample thickness, level of preservation, counts taken from different parts of the retina or a 

wider definition of a functional column. There was no significant difference in the number of nuclei between 

the younger and older elephants. This contrasts with a past study which reported that the photoreceptor 

density was higher in newborns than adults (Kuhrt et al., 2017). That same study found elephant retinas to 

be relatively mature at birth, having all layers and most cell types found in adults, which may be why our 

counts remained similar across the ages examined. In humans the fastest level of photoreceptor loss 
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occurs around midlife, between the 2nd and 4th decade (Gao and Hollyfield, 1992; Curcio et al., 1993). The 

lack of degeneration in the elephant by this point may indicate that elephant eyes have mechanisms to 

maintain health, or deteriorate at a slower rate compared to humans. Alternatively, it could be that 

elephants with poor vision do not survive well in the wild, and therefore were not available for sampling. 

Total counts could have been calculated if specimens were all equally well preserved, in order to calculate 

photoreceptor density more accurately, and this is certainly an area for future study.  

 

The thickness of the photoreceptor dendrites and OPL were not significantly different between the age 

groups of these elephants. However, the difference in the ONL and INL thickness was significant. The ONL 

and INL thickness from our results (Table 4) differed from past counts, with both calves and adults having 

an ONL approximately a third thinner, and an INL roughly half as thick as compared to results reported 

from past research (Kuhrt et al., 2017). The numbers of photoreceptor nuclei we counted were also 

different from the Kuhrt et. al., study, which may be due to variations in the region of the retina sampled. To 

confirm that the variation in retinal layers and photoreceptors is a genuine finding, in future studies samples 

should be taken from the same area of the retina. In previous work, INL thickness was reported to decrease 

from newborn to adult in both African and Asian elephants. However while, ONL thickness decreased from 

newborn to adult in Asian elephants, in the African elephants ONL thickness was greater in adults, though 

the reason for this difference is unknown (Kuhrt et al., 2017). Our results differed from those previously 

reported, with the thickness of the ONL and INL decreasing from juvenile to sub-adult, but then increasing 

again within the adult age group. Density of cells and layer thickness of the retina in adults may  decrease 

due to eyeball growth causing stretching and horizontal expansion of the retina, which occurs in many 

mammals (Kuhrt et al., 2012). This would explain the reduced thickness with age initially, although if this  

were the case, then we would expect that the adult thicknesses should be smaller still, which was not 

supported by our findings. Common causes of retinal thickening in humans are macular oedema and retinal 

fibrosis (Nussenblatt et al., 1987; Friedlander, 2007). Elephants lack a macula, instead having a visual 

streak (Stone and Halasz, 1989), and it is currently unknown if similar pathology can result in retinal 

thickening via the same mechanisms seen in humans. This would be a possible reason for thickening of the 

retina, but in our observations only the nuclear layers were thicker. The nuclei of human fibroblast cells 

have been shown to swell with senescence, which is caused by MAP kinase (Kobayashi et al., 2008), and 

MAPK inhibitors have been shown to be a potential therapeutic for AMD (Kyosseva, 2016).  The adult 

elephants may have higher numbers of senescent cells that have swollen, leading to thickening of the ONL 
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and INL.  This was not seen in our study, but the oldest elephant sampled in this study was 32 years of 

age, which is less than middle-aged for an African elephant (Lee et al., 2012), so perhaps older elephants 

would have more apparent age-related changes.  

Many samples displayed cell bodies with nuclei in the OPL (figure 4), which is usually comprised of 

synapses alone. These might be the giant ganglion cells that are known to be present in elephant retina 

(Kuhrt et al., 2017). However we observe the cell bodies to be sited deeper into the layers, and their size 

did not match that of the other ganglion cells in the sample (figure 7). Photoreceptors can retract into the 

OPL in dyslamination in disease, and this causes depopulation of the ONL (Li et al., 2018). If disease were 

present, this may then also account for the missing nuclei within the ONL, also observed in the 28-year-old 

eye (figure 6). These large gaps were also seen in the oldest eye in this study, but no nuclei were observed 

in that ONL. Although the interruptions in the ONL may be due to age-related degeneration in the older 

eyes, it was observed in younger eyes as well. In the 2-month-old eye, it  may have been the result of 

photoreceptor apoptosis as the retina developed, which has been shown to occur up to 72 days postnatally 

in the rat (Vecino et al., 2004). For the other age groups, it is known that dendrites of the photoreceptors 

spread into the ONL, suggesting that physical ingression between nuclei columns could cause them to 

separate from each other, as dendrites require space (Eliasieh et al., 2007). Deterioration of the IPL was 

observed (figure 5), which may be due to degeneration, or to physical damage which occurred when the 

samples were handled and prepared. However, trans-synaptic degeneration has been shown to occur 

between cell bodies in the ONL and INL in mice and humans with aging (Eliasieh et al., 2007; Samuel et 

al., 2011), so similar changes may occur between the GCL and INL. Patients with neovascular diseases 

such as AMD also have thinner IPL (Lee et al., 2020). The variable ages of the three samples showing IPL 

loss suggests it is unlikely to be an age-related change we see here.  

 

The oldest eye had less well defined nuclei and ganglia than the younger animals (figures 4, 5 and 7). 

Similar changes occur in human senescent cells, which have disrupted cell and nuclear structure, and 

changes in chromatin affecting the nuclear pigment (Oberdoerffer and Sinclair, 2007; Shin et al., 2010). 

This also supports the possibility that the thickening ONL observed was related to swelling of senescent 

nuclei (Kobayashi et al., 2008).  Elephants have been reported to have giant RGCs within their retina, 

which are present in in younger animals as well, demonstrated in figure 7 and Kuhrt et al. (2017). It was 

thought the cells within the INL (figure 7A) were also giant ganglia cells, as they can often be found in that 
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layer (Kuhrt et al., 2017), but they were larger and less densely stained to those seen in Pettigrew et al., 

(2010).  

The African elephant samples used in this study had the largest range of ages assessed to date in a study 

of eyes in this species. Our study supports previous findings on tapetal colour, eye diameter changes with 

age, and the presence of giant ganglia within the elephant retina. Some deviations from previous literature 

were also observed, relating to a change in retinal layers with age and the presence of abnormal cells in 

the INL, which could indicate possible age-related degeneration of the eye. This study has provided a 

survey of retinal structure in the African elephant across a large range of ages; in the future, a more 

detailed investigation of the cellular organisation of the elephant retina would be of interest to describe their 

species specific RGC clusters and photoreceptor mosaics. There is clearly much that remains to be learned 

about the eyes of African elephants.  
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Supplemental figures  

 

Supplemental table 1. 

Photoreceptor count from the ONL in each of the 5 H&E slides.  The overall average was 4.6. All eyes 

containing retina are shown, though counts were not taken from all slides due to overstaining. From an 

unpaired t-test, we suggest that there is no significant difference in the number of photoreceptor nuclei 

within a vertical column between juvenile and adult L. africana retinas (p= 0.17) 

 

ID 
Age 

(years) 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 5a 5b 5c Average 

svc11-24 0.17 5 5 4 4 5 4 5 5 4 5 5 5 4 4 5 4.6 
svc11-11 0.75    5 5 5 4 5 5 4 3 4 4 4 4 4.3 

svc11-10 1 5 5 5 4 5 5 5 5 5 5 5 6 5 4 5 4.9 

svc11-23 2.5 5 6 5 3 4 4 2 3 3 3 2 3 4 4 3 3.6 

svc11-09 2.7 5 4 3 4 4 5 5 4 4 3 4 4 4 4 5 4.1 

svc11-22 3 6 5 5 5 6 5 3 5 4    3 4 4 4.6 

svc11-20 3.5 4 4 5 4 5 5 4 4 4 4 4 4    4.3 

svc11-07 6 6 5 5 6 5 6 6 5 5 5 6 6 6 5 6 5.5 

svc11-15 6                 

svc11-19 6.7 4 5 5 4 5 6 5 6 6 7 7 6 5 5 6 5.5 

svc11-04 8 4 4 4 4 4 5 4 4 4 4 4 5 5 6 6 4.5 

svc11-06 10 5 5 5 5 5 5 4 5 5 4 4 5 4 4 5 4.7 

svc11-13 13 6 6 7 5 6 5 5 6 6 4 6 5 6 6 5 5.6 

svc11-14 16 4 5 4 4 4 4 4 5 4 5 5 5 5 4 4 4.4 

svc11-16 19    3 3 4 4 5 4       3.8 

svc11-01 25 4 5 4             4.3 

svc11-02 27 4 5 5 5 5 4 5 4 5 5 5 5 5 5 4 4.7 

svc11-03 28 5 4 4 4 4 4 4 4 4 5 4 5 4 5 4 4.3 

svc11-12 32 5 5 4 5 5 5 4 4 4 5 3 4 4 4 4 4.3 

                 
4.6 

 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427452doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427452
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 11 10 23 

09 22 20 15 

19 04 06 13 

14 16 01 02 

03 12 Supplemental figure 1: Photographs of the 

posterior eye from youngest to oldest (left 

to right). svc11- ID numbers shown. There 

are no image svc11-07 and -18 
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Supplemental figure 2: Light micrographs of the elephant eye retinas at x20, x40, x63, and 

x100 magnifications. Svc11- ID numbers shown. Retinas were not found on svc11-05, -12, -

17, -18, -21. H&E stain. Paraffin section cut at 8µm.  
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