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Segmenting noisy multiplex spatial tissue images constitutes a
challenging task, since the characteristics of both the noise and
the biology being imaged differs significantly across tissues and
modalities; this is compounded by the high monetary and time
costs associated with manual annotations. It is therefore im-
perative to build algorithms that can accurately segment the
noisy images based on a small number of annotations. Recently
techniques to derive such an algorithm from a few scribbled
annotations have been proposed, mostly relying on the refine-
ment and estimation of pseudo-labels. Other techniques lever-
age the success of self-supervised denoising as a parallel task
to potentially improve the segmentation objective when few an-
notations are available. In this paper, we propose a method
that augments the segmentation objective via self-supervised
multi-channel quantized imputation, meaning that each class
of the segmentation objective can be characterized by a mix-
ture of distributions. This approach leverages the observation
that perfect pixel-wise reconstruction or denoising of the im-
age is not needed for accurate segmentation, and introduces
a self-supervised classification objective that better aligns with
the overall segmentation goal. We demonstrate the superior
performance of our approach for a variety of cancer datasets
acquired with different highly-multiplexed imaging modalities
in real clinical settings. Code for our method along with a
benchmarking dataset is available at https://github.com/
natalialmg/ImPartial.
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Introduction
Multiplex tissue imaging currently allows the user to detect
several cellular and sub-cellular biologic signals within an
intact tissue section. This technique allows for interrogation
of spatial relationships, co-expression and derivative interac-
tions. Currently, most techniques detect protein expression
with antibody-based detection mechanisms, however, there
are techniques that also allow RNA and DNA detection. Re-
cent advances in these techniques have enabled the collec-
tion of large amounts of valuable data; this has outpaced
manual labeling and highlights the need for automatic, semi-
supervised procedures to extract relevant information from
these modalities. One task of interest is removal of back-
ground noise, which improves the joint visualization of the
tissue across modalities. Another important task is the au-
tomatic segmentation of biological structures. Both of these
tasks are challenging given the variability of noise, illumi-
nation, and biological structures that comes from different

tissue types and acquisition modalities.

There are three predominant multiplex imaging signal detec-
tion modalities: (1) chromogenic, (2) fluorescence, and (3)
mass spectrometry imaging. Chromogenic staining doesn’t
allow visualization of isolated individual channels and hence
is not used for staining more than 2-3 markers clinically (up
to 8 markers can be stained) as individual signal delineation
and overlap can be problematic with light microscopy. Flu-
orescence and mass spectrometry techniques allow for stain-
ing and visualization of individual channels and hence are
the most prevalent multiplex imaging modalities, each hav-
ing the potential to image over 40 biomarkers per tissue sec-
tion. Denoising and instance segmentation of the individual
channels/markers as well as composites within variant noise
fields is a major barrier to automated algorithmic protein ex-
pression reporting in the clinical workspace. Current deep
learning algorithms and commercial multiplex image analy-
sis platforms often require preprocessing of images to par-
tially denoise individual channels (via crude linearly filtering
or k-nearest-neighbor (kNN) approaches (1)) as input for cell
instance segmentation; when this partial denoising via linear
filtering or kNN fails for the acquired images (e.g. Figure 1
top row), relevant data is removed from any further analysis
(1, 2) even though it could have been easily salvaged using
for example our presented approach.

Deep learning promises a solution for some of these prob-
lems, and has reached state-of-the-art-performance in seg-
mentation of biomedical images (3–5), and, in particular, seg-
mentation of nuclei and gland structures (6–10). However,
these techniques require large amounts of ground-truth la-
bels, a task that is labor intensive and needs significant time
and monetary investment. Moreover, human annotations may
suffer from inter-observer variability depending on the bio-
logical structure being segmented and the background noise.
To cope with the aforementioned lack of annotations, differ-
ent data augmentation methods have been proposed (11–15).
The limitations of these methods lie in the assumption that
the chosen augmentation family can adequately cover the
full range of variation of the tissue to be segmented. Re-
cent weakly supervised techniques, where only nuclei point
annotations are provided, have been proposed to avoid re-
liance on data augmentation (16–18). These methodologies
require fully annotated nuclei patches to generate coarse la-
bels used to regularize a segmentation objective. Intermedi-
ate approaches such as (19) propose training a network that
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Fig. 1. Here we show three examples, first and second row cor-
responds to MIBI image of breast tissue (dsDNA nuclei chan-
nel), third rows is a Vectra DAPI nuclei channel. The first column
shows the input images and the annotated scribbles (background
in red and foreground in green). The green contours in the im-
ages in the second column highlight the detected foregrounds,
we modeled the cluster components as fixed-variance Gaussian
distributions with parametric mean, a total ofM = 3 clusters were
used, with 2 of those modeling the background distribution, and
1 modeling foreground. Right images show the cluster assign-
ments ρm(x̄b) over the whole image, orange and red correspond
to each background mode, and green indicates foreground.

can assist in the segmentation process, simplifying the task of
fully annotating new images. However, the latter method re-
quires manual inputs (e.g. centroids) for all the cell instances
in the image.
The use of scribbles is a viable alternative to full anno-
tations due to its simplicity. A combination of scribbled-
supervised learning and object dependent regularization has
shown success in semantic segmentation of natural images
(20–22). Scribble2Label (23) was recently proposed in the
context of cell segmentation, outperforming methods such
as (20, 24, 25). This method trains a network to provide a
segmented image by iteratively estimating the unlabeled ex-
amples (pseudo-labels), but does not explicitly account for
noise in the input images. Recently proposed deep learning
self-supervised denoising techniques (26) have been shown
to improve object segmentation when performed as a prepro-
cessing step (27). Moreover, the recently proposed DenoiSeg
(28) trains a U-Net to simultaneously output the segmented
regions and a self-supervised denoised image (26). This ap-
proach does not require a large number of labeled images,
and has shown promising performance on noisy microscopy
data.
In this work, we present a method to identify instances of bi-

ological structures, e.g., cell nuclei. We propose a weakly-
supervised scheme that uses a small number of scribbles,
which are drawings indicating objects of interest and sur-
rounding background or boundaries (see Figure 1), for train-
ing. Similar to DenoiSeg(28), we leverage the blind-spot net-
work training scheme (26) to define a self-supervised auxil-
iary task. In our case, we define an image quantization objec-
tive that models the background and foreground as coming
from a limited number of uni-modal distributions. This is a
reasonable prior since in many microscopy imaging scenarios
different objects appear at distinct intensity levels.
We evaluate our method on nuclei segmentation on a variety
of single channel noisy mass spectrometry multiplexed ion
beam images (MIBI) for breast, bladder and lung tissues. We
also test our performance on cleaner acquisitions from Vectra
fluoresence imaging modality. Finally, we test our method on
two-channel input images (cytoplasmic and nuclear markers)
to perform joint per-channel segmentation using a single neu-
ral network. We show how varying the number of scribbles
affects the performance on partially annotated images as well
as unseen ones. We compare against the recently proposed
methods (23, 28) and a baseline model that implements the
blind-spot network training scheme and only takes into ac-
count the segmentation loss on the available scribbles.

Related Work
Using partial annotations instead of fully annotated images
has been explored in the context of natural images (13, 20–
22, 24, 25). Many of the weakly supervised techniques for
nuclei and gland segmentation (16–19) require patches where
partial labels are available for all the instances in order to
boost the segmentation loss with coarse labels. Since in
our approach we rely on having scribbles of a subset of the
available instances in the image (e.g., nuclei), our work most
closely relates to the recently proposed Scribble2Label (23).
Scribble2Label assumes that partial scribbles for both fore-
ground (instances) and background are provided. It generates
and leverages pseudo-labels by iteratively refining the seg-
mentation with high confidence estimations. In essence, this
method first trains a network with only the available scribbles
and then builds pseudo-label for the missing annotations by
iteratively considering an exponential moving average over
the pixels whose estimations were above a certain confidence
threshold. Scribble2Label has shown better performance on
cell segmentation than other weakly-supervised segmenta-
tion methods such as (20, 24, 25). They also show that there
is no need for fully annotated data or a large amount of scrib-
bles to have a good performance on different segmentation
tasks, something that we also validate in this work. Scrib-
ble2Label does not particularly account for noisy observa-
tions other than on their confidence parameter threshold.
When dealing with segmentation for noisy images, apply-
ing a denoising step has been shown to be potentially ben-
eficial (27). In this context, the DenoiSeg (28) framework
proposes a way to simultaneously train a U-net that outputs
self-supervised denoised images using the Noise2Void (26)
objective plus background, foreground and border segmen-
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tation. This approach showed that having a network with a
parallel denoising objective can improve the segmentation
performance and reduce the number of annotated images.
Moreover, it is shown that this was better than a two-stage
approach alternative (27) (self supervised denoising and then
segmentation). The technique trains against fully annotated
image patches but can be made to work with scribbles as
well. This method is closely related to ours since we also
leverage the blind spot network from (26) to deal with noisy
images. We instead choose to have a quantization (mixed re-
gression and classification) loss as our side objective. Our ap-
proach is related to (29) where the Mumford-Shah functional
is adapted to be used as a regularization in semi-supervised
semantic segmentation with deep neural networks. Their ap-
proach, however, does not work well for noisy images.

Method
In this section, we describe our method to segment multi-
channel noisy images when only a few scribbles are pro-
vided. Since the size and scale of the input images may
vary across acquisitions, we use a U-net architecture to train a
space-preserving image segmentation and classification net-
work. For this, we assume that each segmentation class can
be reasonably modeled as a sparse mixture of distributions.
This sparsity assumption introduces quantization into our de-
noised image; the resulting reconstruction loss is used to im-
prove the segmentation objective.
Assume we have access to a dataset containing n pairs
of noisy images and scribbles {xn,yn}Nn=1. Here x ∈
RW×H×C is a noisy input image and y ∈ {0,1}W×H×K is
the corresponding ground truth scribble per-pixel, indicating
which of the K classes is present at the location. For nota-
tional compactness, we use the sub-index i to refer to the spa-
tial location of a pixel instead of 2-coordinate location (i, j);
we also overload the scribble notation yi where yi sometimes
satisfies ||yi||1 = 1 (one-hot class encoding where scribbles
are present), but otherwise satisfies ||yi||1 = 0 to indicate no
scribble is present. We first define the training losses for a
single channel (C = 1) in what follows; the extension to mul-
tiple channels is described subsequently.

Mixture Loss. Following the blind-spot network proposed
in Noise2Void (26), for each image patch xb in our training
batch b ∈ B, we generate a partial copy x̄b, where a random
set of pixels Ib is substituted by random values in the vicinity
(Ib = {i : x̄bi ← xbj(i), j(i) 6= i}). We then define the recon-
struction loss of the batch for mixture model with m ∈M
components as follows:

Lmix(B,Θ) =
∑
b∈B

∑
i∈Ib

`mix(xbi ; x̄b,Θ),

`mix(xbi ; x̄b,Θ) =
∑
m

ρmθ,i(x̄b) lnp(xbi |τmθ′,i(x̄
b))),

ρmθ,i(x̄b)≥ 0,
∑
m

ρmθ,i(x̄b) = 1,∀i,

(1)

where ρmθ (.) is a parametric (in θ) function that outputs the
cluster membership per pixel, τmθ′ (.) computes the sufficient

Fig. 2. Overview of the processing pipeline. Each image patch is separated into
an imputation patch and a blind spot patch. The blind spot patch is fed through
the U-Net to recover the component mixture ρmθ (·) and the component statistics
τm
θ′ (·), the latter statistics are averaged across the entire patch to enforce compo-

nent consistency, both the component statistics and component mixture are used
to compute the mixture loss for the patch. Simultaneously, a scribble containing a
small number of ground truth segmentations for the patch is used to compute the
scribble loss. Both losses propagate gradients back to the U-Net architecture on
the backward pass.

static of the distribution of the m-th component. The dimen-
sions of ρmθ (.) and τmθ′ (.) are therefore W ×H ×M , and
W ×H × (M ×S) respectively, where S is the number of
sufficient statistics for the cluster distribution (e.g., S = 1
for a Gaussian distribution with fixed variance). Note that
each pixel is modeled as coming from one of the cluster dis-
tributions, with cluster assignment probability ρmθ (.), as op-
posed to modelling the pixel as a mixture of distributions, like
would be the case for a Gaussian mixture model.
The components statistics τmθ′ (.) are a function of the ob-
served patch x̄b, and therefore present a dynamic behavior
that may be learned from data using a neural network. This
allows the adjustment to non-homogeneous images (e.g.,
nonuniform intensity as in the example shown in Figure 1). In
implementation details, we describe the additional assump-
tions we make to preserve consistency of this component
mixture across patches. Both ρmθ (.) and τmθ′ (.) are imple-
mented as output channels of our U-Net network, we use the
notation Θ to refer to the entire network parameters, which
are partly shared across θ and θ′.

Scribble Loss. Given an image patch xb and its corre-
sponding one-hot encoded scribbled image yb, we denote the
set of annotated pixels of class k ∈K as Sb,k = {i : ybi,k = 1}.
We assume that each class k ∈ K is associated with mk

unique components of the mixture presented in Equation 1,
and propose the following segmentation loss for each k ∈K.

Lkseg(B,Θ) =
∑
b∈B

`kseg(yb, x̄b;Θ)/
∑
b∈B
|Sb,k|,

`kseg(ybi ; x̄b,Θ) =
∑
i∈Sb,k

[ybi,k−
∑
m∈mk

ρmθ,i(x̄b)]2.
(2)

Note that this loss is equivalent to a class-balanced Brier
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score loss on the pixels where class labels are available ybi,k,
and their associated membership class

∑
m∈mk

ρmθ,i(x̄b)
(computed as a sum over cluster labels); class balancing is
achieved by dividing the per-class score over the number of
annotated scribbles (

∑
b∈B |Sb,k|). The combination of this

objective with the mixture loss enforces regularity on the
cluster assignments and therefore on the component statis-
tics τmθ′ (.). The dual perspective is that we encourage our re-
covered class labels to be consistent with the reconstruction
objective defined for the mixture loss.

Joint loss. We combine the quantization mixture loss and
the scribble segmentation loss that makes use of the available
scribbles into a single training loss. Given a batch of images
of size B, we define the following joint objective:

min
Θ

∑
k∈K

λkLkseg + (1−
∑
k∈K

λk)Lmix. (3)

Note that here λk represents the weight given to each
segmentation class loss. We choose λk > 0 such that∑
k∈K λk ≤ 1. Since the reconstruction loss Lmix is a regu-

larization task, we choose a small budget (1−
∑
k∈K λk) ∈

[0.01,0.1]. For all experiments, we set the value of λk to be
the same across all classes k ∈Ks.

Implementation details. Here we describe the implementa-
tion of the proposed scheme, shown in Figure 2. Given an im-
age patch, we apply the Noise2Void masking method to gen-
erate the blind spot patch that is observed by our network ar-
chitecture, implemented as a U-Net. The output channels of
the network comprised of M channels under a softmax non-
linearity, which generate the mixture mask ρm(·), and an ad-
ditional M channels outputting the sufficient statistics of the
mixture components τm(·). We chose fixed-variance Gaus-
sian distributions to model each component (the joint estima-
tion of mean and variance of the components did not mean-
ingfully improve the segmentation objective). With these out-
puts, ρm(·) and τm(·), we compute the joint loss and propa-
gate the gradients back to the network parameters.
We build our model on top of the frameworks proposed in
(26, 28, 30), unless otherwise specified. We use a U-Net with
depth 2, 64 initial feature maps, and convolution kernel size
of 3. We use a batch size of size 64, trained for 100 epochs,
where each epoch consisted of 50 batch descent iterations.
We use Adam as our optimizer method with learning rate 4×
10−4, stopping criteria was based on validation performance
on joint loss. In all examples, the network converges before
the 50-th epoch.
All examples shown in the paper contain two scribble classes
(foreground/instances and background/boundaries). In all
cases, we modeled foreground and background with two
components each. The extra foreground component proved
to be unnecessary in many cases, but did not affect perfor-
mance when compared to a single-component foreground.
Since our prior assumption is that foreground structures tend
to present overall higher intensity levels than background, we
explicitly codified this prior by adding the background com-
ponent mean (mean of the background sufficient statistics) to

the foreground sufficient statistic.

Extension to multiple channels. We extend the framework
to multiple channels (input image x ∈RW×H×C ) in the nat-
ural way by computing the mixture (quantization) statistics
jointly across all channels C. Across all experiments, each
component M in the mixture is modeled as a fixed-variance
Gaussian with mean τm ∈ RC . The component mask ρmθ (·)
is therefore shared across channels. Since we assume the
scribbled mask is related to objects that appear as foreground
components on at least one channel, we can still compute the
scribble mask by summing over the foreground components
of the multi-channel mixture mask. The joint loss therefore
remains unchanged.
In this section we provide a description of the scribble an-
notating scheme, and of the datasets used for evaluation. We
worked with datasets acquired from the fluorescence imaging
platform Vectra Polaris, and the mass spectrometry imaging
platform MIBI. We then present the performance of compet-
ing methods for each described dataset.

Input GT Base DSeg S2L ImPartial

Fig. 3. Here we show MIBI Bladder (rows 1&2), Breast (rows 3&4), Lung (rows
5&6) and MIBI-Manual (rows 7&8) segmentation examples for each method. First
column shows the input image and the available scribbles. Note the variability of
nuclei structures across the different samples

Annotating scribbles. In this work, we segmented cell nu-
clei and cytoplasm instances. We assume that the expert an-
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Input GT Base DSeg S2L ImPartial

Fig. 4. Comparison of the instance segmentation mask recovered
by every considered method on a two-channel MIBI and Vectra
image. First three rows correspond to the cytoplasm channel
(PanCK), the nuclei channel (dsDNA), and composite image (cy-
toplasm and nuclei channels) for the MIBI modality. Last three
rows correspond to the cytoplasm channel (PanCK), the nu-
clei channel (dapi), and composite image (cytoplasm and nuclei
channels) for the Vectra modality. The scribbles for the desired
semantic segmentation are also shown, models were trained with
100 cytoplasm and 100 nuclei instance scribbles. Second col-
umn contains ground truth segmentation for each of the seman-
tic masks (all nuclei and cytoplasm, nuclei surrounded by cyto-
plasm, and all nuclei respectively). Following columns show the
contour of the instances recovered by the baseline model (net-
work without mixture loss), DSeg, S2L and ImPartial.

notator would not provide full pixel-wise segmentation of the
objects of interest, but would instead draw scribbles to indi-
cate the presence of foreground (instances) or background.
For standard segmentation, we assume the foreground scrib-
ble contains an object of interest (e.g., a line across a nu-
cleus of interest), and that additional scribbles for surround-
ing background are provided. For cell and cytoplasm seg-
mentation, we assumed the pathologist would also draw a
contour inside the cytoplasm.
Since we have access to fully annotated masks, we simulated
the pathologist interaction as follows. We randomly select a
field of view in the image (in our case a box of size 32×32,
with no particular selection criteria) and provide scribbles for
the instances and background available in the region. This
simulates how an actual human annotator would interact with
the software, since it is a less demanding workflow than ran-
domly selecting an instance on the entire image for each new
scribble. Foreground scribbles of nuclei instances were gen-

erated from their skeletonized masks. Background scribbles
are the skeletonized mask of the background in the bound-
ing box. For cytoplasm segmentation, an additional contour
of the eroded instance mask was provided (this is because in
most of the 2-channel composite examples, the skeletonized
scribble of the nuclei and cytoplasm significantly overlapped
with the one corresponding to just the nuclei). In our experi-
ments, we vary the number of scribbles provided by repeating
the above process until the scribble budget is depleted.

Datasets. We tested our method on datasets acquired from
fluorescence imaging platform, Vectra Polaris1 and mass
spectrometry imaging platform, MIBI (Mulitplexed Ion
Beam Imaging)2. Background signal in fluorescent imag-
ing (Vectra) is derived from residual tissue autoflourescence
and common staining noise in the background results from
nonspecific antibody deposition secondary to necrosis, tissue
folds and fixation variations. MIBI has its own unique chal-
lenges for denoising due to low intensity values and sparse
and pixelated signal for low abundant antigens (1).
The MIBI dataset was acquired from bladder, breast and lung
cancer patients and the cell nuclei in the double-stranded
DNA (dsDNA) channel were semi-automatically segmented
and manually-corrected by a trained technician. These
datasets consist of single channel patches of size 512x512.
The breast cancer dataset contained 160 patches from 25 ac-
quisitions, the bladder cancer dataset 110 patches from 30
acquisitions, and the lung cancer dataset 120 patches from 30
acquisitions.
The remaining datasets were manually annotated by a trained
technician. The image patches have a reduced 400x400 size,
and consisted of a single dapi (nuclei) channel Vectra dataset
containing 36 annotated image patches, 8 single dsDNA (nu-
clei) channel MIBI image patches, 10 2-channel (dapi +
PanCK) Vectra patches, and 4 2-channel (dsDNA + PanCK)
MIBI image patches.

Results
We compared the performance of our method in both se-
mantic and instance segmentation against three models. A
baseline model (Base) that implements the blind-spot net-
work training scheme and only trains on the segmentation
loss on the available scribbles. We also compared against
DenoiSeg (DSeg) (28), and Scribble2Label (S2L) (23). Since
DSeg builds on the Noise2Void framework, we trained their
model with the same U-Net architecture and blind-spot net-
work specifications as ours. S2L was trained under different
configurations of network architecture, and hyper-parameters
(details provided in supplementary material), the best result
is reported. All methods were trained until convergence with
a stopping criteria on validation loss, using a batch size of 64
unless otherwise specified. We report semantic segmentation
performance with F1 score and AUC metrics, and instance
segmentation with mean intersection over union (mIoU) and

1https://www.akoyabio.com/phenoptics/
mantra-vectra-instruments/vectra-polaris/

2https://www.ionpath.com/mibi-technology/
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Table 1. Comparison of semantic and instance segmentation performance of the evaluated methods on MIBI 1-Channel (dsDNA) datasets. We indicate the number of
annotated instance scribbles (ns) versus the total number of available instances (ni). We also report the performance on test data not previously seen by the model.

Semantic and Instance segmentation MIBI Breast
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

250/25.5k 0.766 0.796 0.755 0.799 0.952 0.949 0.962 0.973 0.74 0.685 0.715 0.748 0.627 0.577 0.599 0.637
0/15.6k (test) 0.596 0.686 0.555 0.717 0.967 0.96 0.972 0.986 0.734 0.691 0.74 0.74 0.61 0.571 0.609 0.618

500/25.5k 0.796 0.801 0.76 0.822 0.967 0.971 0.953 0.974 0.754 0.704 0.745 0.762 0.648 0.604 0.634 0.657
0/15.6k (test) 0.68 0.701 0.672 0.795 0.982 0.988 0.964 0.987 0.746 0.735 0.738 0.753 0.64 0.643 0.631 0.646

1k/25.5k 0.795 0.813 0.789 0.83 0.965 0.967 0.973 0.979 0.758 0.732 0.753 0.775 0.649 0.623 0.644 0.657
0/15.6k (test) 0.731 0.754 0.665 0.786 0.975 0.987 0.984 0.982 0.737 0.782 0.752 0.796 0.622 0.673 0.626 0.684

Semantic and Instance segmentation MIBI Bladder
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

250/7.6k 0.779 0.82 0.712 0.774 0.978 0.981 0.946 0.975 0.785 0.775 0.759 0.793 0.682 0.673 0.649 0.688
0/18.7k (test) 0.789 0.801 0.715 0.784 0.974 0.977 0.939 0.971 0.751 0.745 0.744 0.765 0.644 0.64 0.632 0.656

500/7.6k 0.732 0.824 0.729 0.787 0.954 0.968 0.959 0.973 0.811 0.767 0.806 0.815 0.718 0.673 0.707 0.736
0/18.7k (test) 0.749 0.825 0.735 0.781 0.95 0.965 0.953 0.966 0.786 0.758 0.787 0.799 0.688 0.659 0.682 0.705

1k/7.6k 0.833 0.83 0.769 0.839 0.987 0.984 0.975 0.988 0.816 0.804 0.8 0.82 0.721 0.708 0.701 0.74
0/18.7k (test) 0.821 0.817 0.782 0.826 0.986 0.981 0.971 0.988 0.795 0.783 0.781 0.802 0.704 0.682 0.676 0.712

Semantic and Instance segmentation MIBI Lung
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

250/8.4k 0.738 0.766 0.75 0.781 0.964 0.963 0.969 0.978 0.723 0.711 0.736 0.753 0.612 0.613 0.626 0.654
0/13.1k (test) 0.69 0.715 0.693 0.734 0.936 0.925 0.94 0.953 0.666 0.656 0.697 0.697 0.561 0.564 0.592 0.605

500/8.4k 0.763 0.78 0.751 0.774 0.965 0.948 0.956 0.962 0.704 0.704 0.731 0.722 0.606 0.608 0.627 0.622
0/13.1k (test) 0.714 0.725 0.677 0.726 0.941 0.916 0.926 0.936 0.65 0.641 0.66 0.669 0.554 0.551 0.571 0.574

1k/8.4k 0.769 0.782 0.739 0.769 0.977 0.967 0.958 0.974 0.742 0.748 0.736 0.763 0.64 0.649 0.63 0.657
0/13.1k (test) 0.724 0.732 0.686 0.722 0.949 0.927 0.925 0.945 0.701 0.693 0.702 0.72 0.611 0.598 0.6 0.62

Semantic and Instance segmentation MIBI-Manual
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

50/893 0.876 0.702 0.841 0.864 0.974 0.832 0.957 0.968 0.631 0.628 0.698 0.725 0.514 0.503 0.58 0.609
0/812 (test) 0.866 0.696 0.835 0.853 0.98 0.816 0.966 0.974 0.642 0.652 0.709 0.732 0.53 0.512 0.591 0.618

100/893 0.818 0.723 0.817 0.844 0.938 0.821 0.935 0.933 0.698 0.656 0.695 0.695 0.583 0.538 0.574 0.583
0/812 (test) 0.813 0.721 0.809 0.838 0.947 0.81 0.94 0.941 0.71 0.668 0.705 0.712 0.601 0.554 0.584 0.604

200/893 0.835 0.743 0.843 0.829 0.961 0.833 0.953 0.957 0.715 0.719 0.721 0.719 0.6 0.602 0.611 0.603
0/812 (test) 0.826 0.836 0.836 0.822 0.966 0.958 0.958 0.962 0.729 0.729 0.728 0.731 0.617 0.62 0.615 0.617

mean Dice-coefficient (mDice). In all cases, we report per-
formance for varying number of instance scribbles (ns), we
focused on the low-annotation regime.

Preprocessing We split each dataset into a set of train-
ing and test images; all images are percentile normalized in
the range [0.1,99.8]%. For a given training image set and
instance scribble budget ns, we generate random scribbles
from the available ground truth masks. We then sample the
training images and corresponding scribbles into patches of
size 128× 128 using the tools provided in (30). Validation
patches are sampled from the same training set, but we en-
sure they do not overlap more than a fixed percentage with
the training patches. The training patches were augmented
following the 8-fold data augmentation used in (28), which
consisted on 90 degree rotations and flipping of all images.
All methods were trained over the same training and vali-

dation dataset patches, without any additional augmentation.
Since DSeg requires boundary labels, their method was given
additional information on whether a background scribble was
part of an instance boundary.
As a point of reference for wall-clock algorithm time, on the
MIBI-Manual dataset, a batch of 64 images can be processed
in 0.21 seconds on the S2L implementation, 1.18 seconds on
DSeg, and 1.11 on ImPartial. We note that the time gains
made on S2L are partly due to their implementation using 8
parallel workers, while both DSeg and ImPartial are currently
built on top of CARE on tensor flow.

MIBI Modality. We evaluate the performance of the proposed
method on single dsDNA channel images for breast, bladder
and lung cancer patients datasets with semi-automatic ground
truth labels. For each dataset, we randomly generate a budget
of instance scribbles (ns) for image patches corresponding to
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Table 2. Comparison of semantic and instance segmentation performance of the evaluated methods on the MIBI 2 Channels (PanCK and dsDNA) dataset. We indicate the
number of annotated instance scribbles (ns) versus the total number of available instances (ni). We also report the performance on test data not previously seen by the model.

Semantic and Instance segmentation MIBI PanCK
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

25/234 0.838 0.81 0.807 0.838 0.882 0.879 0.915 0.935 0.604 0.499 0.554 0.61 0.475 0.38 0.422 0.476
0/111 (test) 0.611 0.548 0.49 0.62 0.84 0.861 0.853 0.913 0.51 0.428 0.45 0.574 0.384 0.324 0.318 0.443

50/234 0.866 0.848 0.812 0.863 0.928 0.912 0.915 0.925 0.669 0.559 0.61 0.67 0.546 0.436 0.481 0.543
0/111 (test) 0.746 0.617 0.472 0.744 0.905 0.89 0.831 0.907 0.446 0.425 0.535 0.519 0.324 0.315 0.398 0.396

100/234 0.879 0.864 0.829 0.876 0.928 0.943 0.928 0.949 0.714 0.648 0.642 0.719 0.592 0.517 0.513 0.599
0/111 (test) 0.669 0.647 0.513 0.686 0.88 0.915 0.845 0.917 0.528 0.46 0.525 0.599 0.404 0.351 0.393 0.467

Semantic and Instance segmentation MIBI dsDNA
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

25/215 0.767 0.842 0.766 0.817 0.937 0.96 0.932 0.934 0.71 0.656 0.636 0.749 0.59 0.551 0.513 0.637
0/270 (test) 0.784 0.839 0.781 0.824 0.958 0.96 0.936 0.933 0.683 0.625 0.592 0.723 0.571 0.516 0.487 0.615

50/215 0.789 0.869 0.792 0.8 0.958 0.974 0.941 0.935 0.756 0.699 0.733 0.765 0.638 0.587 0.618 0.651
0/270 (test) 0.748 0.836 0.745 0.75 0.942 0.964 0.921 0.92 0.696 0.664 0.687 0.707 0.579 0.557 0.567 0.584

100/215 0.841 0.858 0.716 0.837 0.946 0.958 0.947 0.966 0.777 0.731 0.693 0.77 0.657 0.619 0.562 0.669
0/270 (test) 0.819 0.842 0.663 0.811 0.957 0.944 0.936 0.958 0.752 0.716 0.646 0.759 0.645 0.596 0.521 0.648

Semantic and Instance segmentation MIBI joint PanCK + dsDNA
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

25/239 0.848 0.845 0.855 0.846 0.897 0.941 0.939 0.943 0.659 0.584 0.586 0.663 0.539 0.461 0.463 0.54
0/262 (test) 0.825 0.842 0.727 0.813 0.917 0.974 0.958 0.962 0.651 0.586 0.586 0.668 0.536 0.477 0.44 0.548

50/239 0.841 0.866 0.848 0.853 0.926 0.931 0.939 0.918 0.677 0.574 0.64 0.697 0.562 0.452 0.515 0.576
0/262 (test) 0.77 0.831 0.675 0.774 0.914 0.955 0.91 0.907 0.525 0.494 0.526 0.571 0.422 0.372 0.439 0.446

100/239 0.874 0.85 0.859 0.87 0.928 0.928 0.945 0.949 0.719 0.648 0.647 0.724 0.597 0.533 0.522 0.609
0/262 (test) 0.821 0.842 0.675 0.819 0.921 0.944 0.936 0.954 0.635 0.676 0.647 0.658 0.513 0.586 0.54 0.536

Table 3. Comparison of semantic and instance segmentation performance of the evaluated methods on the Vectra 1-channel nuclei segmentation dataset. We indicate the
number of annotated instance scribbles (ns) versus the total number of available instances (ni). We also report the performance on test data not previously seen by the model.

Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

50/4.7k 0.75 0.74 0.692 0.748 0.877 0.878 0.834 0.893 0.621 0.52 0.604 0.63 0.491 0.389 0.471 0.494
0/11.4k (test) 0.728 0.723 0.681 0.73 0.854 0.86 0.821 0.88 0.619 0.521 0.595 0.628 0.49 0.387 0.461 0.493

100/4.7k 0.748 0.755 0.743 0.774 0.877 0.859 0.882 0.901 0.666 0.571 0.628 0.665 0.536 0.439 0.499 0.534
0/11.4k (test) 0.718 0.737 0.725 0.745 0.855 0.833 0.864 0.885 0.637 0.552 0.6 0.639 0.502 0.419 0.468 0.503

250/4.7k 0.77 0.771 0.778 0.778 0.915 0.864 0.897 0.915 0.659 0.611 0.639 0.662 0.527 0.479 0.51 0.534
0/11.4k (test) 0.745 0.744 0.752 0.755 0.906 0.835 0.879 0.905 0.633 0.584 0.619 0.64 0.499 0.449 0.486 0.508

10 of the available acquisitions, the remaining patches are
consider as test examples. In Table 1, we report the perfor-
mance on semantic and instance segmentation on the train
and test examples. We indicate the number of instance scrib-
bles provided (ns) and the number of total instances (ni).
Figure 3 shows example segmentation results produced by
the tested methods.

On the MIBI single dsDNA channel dataset with manual an-
notations (MIBI-Manual), we considered 4 image patches
to provide instance scribbles and the remaining 4 for test.
For the MIBI 2-channel manual annotated dataset (MIBI 2-
Channels), we considered 2 image patches for training and 2
for testing. Quantitative results are provided in tables 1 and
2, visuals of the MIBI 2-Channels segmentation are presented

in Figure 4.
We note that results on both semantic and instance segmen-
tation produced by ImPartial outperform previous methods
in many cases. Qualitatively, we observe the segmentation
recovered by our method has less blocky artifacts and bet-
ter matches the overall shape and structure of the underlying
cells and cytoplasm instances.

Vectra Modality. We evaluate the performance of the pro-
posed method on two Vectra datasets. The first one consisted
of a single channel showing cell nuclei (dapi), results are
presented in Table 3. The second one shows a two-channel
cytoplasm and nuclei (dapi + PanCK) acquisition; here the
goal was to simultaneously segment instances of cytoplasm
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Table 4. Comparison of semantic and instance segmentation performance of the evaluated methods on the Vectra 2 Channels (PanCK and dapi) dataset. We indicate the
number of annotated instance scribbles (ns) versus the total number of available instances (ni). We also report the performance on test data not previously seen by the model.

Semantic and Instance segmentation Vectra PanCK
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

50/961 0.83 0.832 0.848 0.828 0.898 0.877 0.889 0.891 0.501 0.477 0.495 0.534 0.393 0.361 0.381 0.423
0/699 (test) 0.826 0.77 0.802 0.827 0.943 0.919 0.933 0.934 0.632 0.564 0.581 0.652 0.519 0.444 0.462 0.54

100/961 0.813 0.775 0.842 0.824 0.898 0.821 0.892 0.912 0.628 0.536 0.534 0.63 0.505 0.414 0.416 0.512
0/699 (test) 0.79 0.697 0.818 0.801 0.914 0.837 0.946 0.932 0.678 0.589 0.617 0.685 0.569 0.458 0.498 0.576

250/961 0.85 0.84 0.858 0.859 0.93 0.887 0.926 0.932 0.658 0.589 0.606 0.67 0.547 0.467 0.485 0.537
0/699 (test) 0.827 0.823 0.839 0.831 0.938 0.911 0.961 0.945 0.695 0.627 0.687 0.703 0.586 0.512 0.573 0.593

Semantic and Instance segmentation Vectra dapi
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours

ns/ni F1 score AUC score mDICE score mIOU score

50/918 0.807 0.838 0.751 0.841 0.933 0.946 0.901 0.932 0.675 0.607 0.617 0.682 0.557 0.49 0.496 0.569
0/1.2k (test) 0.802 0.829 0.719 0.836 0.946 0.951 0.887 0.957 0.729 0.666 0.66 0.728 0.617 0.553 0.54 0.622

100/918 0.773 0.84 0.767 0.825 0.932 0.965 0.917 0.946 0.664 0.579 0.613 0.68 0.543 0.465 0.496 0.566
0/1.2k (test) 0.763 0.841 0.751 0.825 0.94 0.976 0.913 0.964 0.695 0.653 0.678 0.73 0.575 0.546 0.563 0.622

250/918 0.799 0.807 0.825 0.834 0.951 0.919 0.954 0.963 0.676 0.64 0.626 0.684 0.558 0.521 0.507 0.568
0/1.2k (test) 0.784 0.803 0.766 0.826 0.962 0.938 0.938 0.973 0.714 0.686 0.671 0.743 0.598 0.582 0.55 0.605

Semantic and Instance segmentation Vectra joint PanCK + dapi
Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L Ours Base DSeg S2L ImPartial

ns/ni F1 score AUC score mDICE score mIOU score

50/918 0.835 0.83 0.85 0.834 0.897 0.874 0.886 0.875 0.496 0.432 0.455 0.552 0.384 0.333 0.351 0.434
0/1.23k (test) 0.819 0.809 0.751 0.823 0.938 0.922 0.905 0.91 0.566 0.458 0.61 0.645 0.456 0.36 0.485 0.529

100/918 0.809 0.811 0.841 0.83 0.9 0.871 0.904 0.906 0.635 0.537 0.559 0.631 0.514 0.418 0.44 0.511
0/1.23k (test) 0.802 0.808 0.762 0.809 0.921 0.916 0.896 0.929 0.645 0.546 0.645 0.647 0.527 0.429 0.528 0.531

250/918 0.844 0.838 0.859 0.844 0.926 0.894 0.917 0.929 0.629 0.576 0.561 0.654 0.511 0.459 0.446 0.534
0/1.23k (test) 0.816 0.81 0.768 0.816 0.939 0.906 0.916 0.946 0.66 0.561 0.616 0.684 0.547 0.448 0.51 0.568

(blue channel in 4), instances of nuclei (green channel in 4)
and a combination of both (simulating chromogenic bright-
field 2-channel acquisition). Results are presented in Table
4. For the single dapi channel dataset, 10 patches were se-
lected for training; their ground truth annotations were used
to randomly generate a budget of instance scribbles (ns). The
remaining 26 patches were used as test examples. For the
2-channel dapi+PanCK dataset, we used 4 patches as train-
ing examples; instance scribbles were randomly generated
for dapi (nuclei), PanCK (cytoplasm) and a combination of
both. The remaining 4 patches were set as test examples. On
this last dataset, all methods used a U-net with depth 2 and
an initial filter bank of 128 feature maps, batch size was set
to 32 due to GPU capacity. DSeg and S2L implementations
do not natively handle multiple classification objectives, so
they were trained on each objective individually, using the
2-channel input.

We achieved superior performance on the instance and se-
mantic segmentation metrics. A similar phenomenon to the
MIBI results was observed, where the recovered instances
had shapes more closely resembling ground truth labels, with
less spurious detections and segmentation noise. Our method
was also able to accomplish 3 different segmentation tasks
on the 2-channel Vectra dataset without any further adapta-
tions, which shows that it is able to adequately process multi-
channel and multi-objective data. It is worth noting that on

both the Vectra and MIBI datasets, the blind-spot network
shows remarkably good performance, which may indicate
that, in these settings, there is limited need for a large number
of annotations to get a decent baseline performance. This lat-
ter observation is also supported by the relatively minor gains
in performance we observe when we increase the number of
scribbles available to the training agent.

Conclusion and Future Work
Here we proposed a weakly-supervised method to segment
nuclei from noisy images when only few scribble annotations
of background and foreground are provided. We compared
the performance of our method and recently proposed tech-
niques on a variety of biological datasets, showing that in
most cases our approach achieves the best performance on
instance segmentation. The analysis presented in this paper
shows that all methods achieve a decent baseline performance
without a large number of annotations. Moreover, increasing
the number of annotations does not necessarily translate to a
large gain in performance.
Future work will analyze the use of continual learning tech-
niques to develop a more interactive system where the user
can improve on the segmentation at any given moment by it-
eratively providing more scribbles. This will require leverag-
ing techniques from backwards compatibility to ensure cor-
rect segmentation are not lost in the updating process. From
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our observations we think it is worth analyzing how can the
quality of the manual annotations be improved in order to ob-
tain quality samples and reduce the amount of unnecessary
annotations.
In future work, we plan to develop a Web User Interface
where people can upload their dataset, provide scribble an-
notations for a few examples and download the correspond-
ing segmentations. A related line of work towards the
goal of annotation-as-a-service includes visualizing out-of-
distribution areas of the image so that the user can be espe-
cially attentive for potential defects in the segmentation in
those areas.
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