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ABSTRACT 

Determining the valence of an odor to provide information to guide rapid approach-avoidance behavior is 
thought to be one of the core tasks of the olfactory system, yet little is known of its initial neural mechanisms 
or subsequent behavioral manifestation in humans. In two experiments, we measured the functional pro-
cessing of odor valence perception in the human olfactory bulb (OB)—the first processing stage of the 
olfactory system—using a non-invasive method as well as assessed subsequent motor avoidance re-
sponse. We demonstrate that odor valence perception is associated with both gamma and beta activity in 
the human OB. Moreover, we show that negative, but not positive, odors initiate an early beta response in 
the OB, a response that is linked to a preparatory neural motor response in motor cortex. Finally, in a 
separate experiment we show that negative odors trigger a full-body motor avoidance response, mani-
fested as a rapid leaning away from the odor, in the time period predicted by the OB results. Taken to-
gether, these results demonstrate that the human OB processes odor valence in a sequential manner in 
both the gamma and beta frequency bands and suggest that early processing of unpleasant odors in the 
OB might underlie rapid approach-avoidance decisions. 
 

INTRODUCTION 

 
Survival of any organism is dependent on 
approach-avoidance mechanisms; avoiding 
dangerous- and approaching rewarding stimuli. 
Among our senses, the olfactory system seems 
specifically tuned to aid approach-avoidance 
decisions and in particular, to assist in avoiding 
potentially dangerous stimuli. It is not surprising 
then that the very first stage of the central olfactory 
system, the olfactory bulb (OB), processes various 
information directly related to whether an odor 
should be avoided (Kay and Laurent 1999). 

In non-human animals, the OB demonstrates rapid 
plasticity to aversive stimuli (Kay and Laurent 1999) 
and has dedicated processing of odors innately 
associated with threats (Kobayakawa et al. 2007). 
Sensory systems are normally attuned to signals 
indicating negative outcomes for the individual 
given that a failure to respond to such stimuli may 

lead to fatal consequences (Haselton and Nettle 
2006). For example, fast responses are arguably 
more important in respect to initiating the action to 
withdraw from toxic fumes than the need for speed 
to initiate the action to approach positive odor 
sources. The perceptual equivalent to the motor-
driven approach-avoidance system in the olfactory 
system is the subjective perceptual experience of 
an odorant’s valence. Here, perceived 
unpleasantness of odorants emitted from 
potentially dangerous sources, such as for example 
rotten food, is translated to avoidance (Yeshurun 
and Sobel 2010). However, the underlying neural 
mechanism for this system is largely unknown. 
There are two major reasons for this. First, it is 
difficult to assess the subjective experience of a 
novel odorant’s valence in animal models. Second, 
although assessing subjective measurements from 
humans is straight-forward, until recently, there has 
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been no method that allows a non-invasive 
measure of neural signals from the human OB. 
With that said, several brain imaging studies on 
humans have targeted the central processing 
mechanisms underlying valence perception. Here, 
valence perception has mainly been localized to the 
orbitofrontal cortex, OFC (cf. Seubert et al. 2017). 
However, the OFC is an area that is situated 
relatively late in the central olfactory processing 
stream (Mainland et al. 2014) and neural 
processing of odor avoidance in non-human 
animals have been localized much earlier in the 
processing stream, already one synapse away 
from the odor receptors, in the OB (Doucette et al. 
2011; Kermen et al. 2016). Thus, it is necessary to 
study the OB to establish the underlying neural 
mechanism of the earliest processing stages to 
understand how the olfactory system process the 
subjective valence of an odorant, the first stage of 
an approach-avoidance decision. 

Based on past studies in non-human animals, we 
hypothesized that the OB in awake humans would 
demonstrate early valence-differential processing 
and induce a preparatory motor 
approach/avoidance response according to 
perceived odor valence. In Experiment 1, we 
determined whether odor valence is processed by 
the human OB by means of a recently developed 
method that allows a direct, but non-invasive 
measurement of the human OB (Iravani et al. 
2020). We found that subjective odor valence could 
be linked to gamma and beta activity in the human 
OB, independent of respiration, and that an early 
beta activity in OB processing was linked to motor 
cortex processing in a valence-dependent manner. 
Based on these results, in Experiment 2, we 
assessed whether humans, akin to non-human 
animals (Arshamian et al. 2017), demonstrate a 
rapid, full-body approach/avoidance response to 
odors in a valence-dependent manner in the time-
period predicted by Experiment 1 . We found that 
participants rapidly moved away from a negative 
odor source. Interestingly, only unpleasant odors 
produced a consistent motor response and, 
importantly, this response aligned temporally with 
the valence-associated activity in the OB 
demonstrated in Experiment 1. 

 

RESULTS 

Early phase amplitude coupling between 
beta and gamma in OB   
Odor-evoked neural signals in response to 6 odors 
with varying valence were recorded from 4 
electrodes located directly above the eyebrows, 

which, in combination with 64 EEG scalp 
electrodes, were used to extract source space 
electrobulbogram (EBG) (Iravani et al. 2020) 
signals from the OB (Figure 1a). Inhalation phase-
locked odor stimuli were delivered using a sniff 
triggered, computer controlled, and temporally 
precise olfactometer (Lundström et al. 2010). Odor 
delivery delay (~200ms) was measured with a 
photoionization detector and adjusted for in all 
analyses (Ohla and Lundström 2013). After each 
odor stimulus, participants rated perceived odor 
intensity, valence, and familiarity. A total of 19 
participants participated in 3 separate and 
seemingly identical sessions, comprising a total of 
540 trials per participant. Next, we removed trials 
with artifacts including muscle and blink (see the 
method section for details) by which on the 
average, 27.92 ± 10.49 clean trials per odor were 
included in analysis for each individual. Hence, 
considering all 6 odors, the total number of trials for 
each individual included in our analyses was on 
average 167.52 ± 25.81. More importantly, there 
was no statistical difference between the number of 
trials across odors, F(5,108) = .39 , p > .86, 
indicating that after the artifact rejection, the 
experimental design remained balance. 

We have previously established that the EBG 
measure is a valid and reliable measure (Iravani et 
al. 2020) but prior to our main analysis, we 
estimated the quality and spatial dispersion of the 
reconstructed OB signal within this unique dataset. 
To this end, we used a simulation where the spatial 
dispersion of three levels of signal-to-noise-ratio 
were assessed, namely a hypothetical ideal, the 
empirical level, and two-fold lower (i.e. two-fold 
larger noise level) than empirical level. This 
analyses confirmed that our source reconstruction 
method can successfully isolate OB’s EBG signal 
in source space given that the spatial gain was 
similar to the hypothetical ideal condition when 
assessing a signal-to-noise-ratio similar to what we 
empirically observed in the current dataset (Figure 
S1).  

To allow direct comparisons between neural and 
behavioral data, we used Representational 
Similarity Analysis (RSA)—a multivariate method 
that compares similarity (e.g. correlation) matrixes 
between continuous relationships to determine the 
representational geometry on the individual level 
(Kriegeskorte et al. 2008), therefore allowing direct 
comparisons between different parameters without 
being hindered by difference in scaling and other 
inherent differences between measuring 
techniques. In this case, we assess how well a 
perceptual feature can be decoded from neural 
activity (presented as degree of similarity between 
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measures’ Representation Dissimilarity Matrix, 
RDM). The perceptual and neural population RDMs 
were initially derived on the individual level as 
relationship-distances between individual odors, 
separately for perceptual and neural space, and 
later assessed for similarities between them in 
group level analysis (Abdi et al. 2005). In other 
words, for each time-point in the OB recording, we 
assess whether the relationship between the 6 
tested odors in the neural space are similar to the 
relationship between ratings of same odors in the 
perceptual space. Statistical relationships are then 
assessed for the group. Specifically, we compared 
how odor-induced neural activity in the OB within 
the gamma and beta bands corresponded to 
individual valence ratings of the same odors 
(Figure 1b). 

We initially assessed the relationship between 
activity of the beta and gamma frequency bands, 
determining the frequencies coupled together in 
OB and later the activity of these frequencies to 
perceived valence in RSA. Phase-amplitude 
coupling (PAC), a subclass of cross frequency-
coupling phenomena, has been identified as a 
neural mechanism detectable in most mammals 
and critical for information processing in a multitude 
of brain regions (Buzsáki et al. 2003; Bragin et al. 
1995; Kendrick et al. 2009; Lakatos et al. 2005; 
Axmacher et al. 2010; Cohen et al. 2009). Here, the 
phase of the lower frequency oscillation drives the 
power of the coupled higher frequency oscillation. 
Different functional roles have been attributed to 
PAC, including sensory signal detection (Händel 

and Haarmeier 2009), executive functions (Tort et 
al. 2009), and attentional selection (Schroeder and 
Lakatos 2009). Specifically for olfaction, it has 
recently been demonstrated that PAC in the OB 
shapes early sensory processing in mice (Losacco 
et al. 2020). Given this, we examined PAC between 
beta and gamma oscillation within the OB and its 
relation to the processing of the individual’s odor 
valence using RSA. To gain a temporal dimension 
of the PAC, we used time-resolved phase-
amplitude coupling (t-PACSamiee et al. (2017)), a 
method that also incorporates the temporal 
dynamic of the signal. 

As a first step, we assessed the relationship 
between beta and gamma bands with t-PAC within 
the first second after receiving an odor stimulus to 
determine whether the frequency of bands 
demonstrate phase-amplitude coupling and, if so, 
at which frequencies. We found significant PAC 
between beta and gamma already at 250ms after 
odor onset (~53-65 Hz), as assessed by Monte 
Carlo permutation test (Figure 1c; t = 3.85, p < .006 
and CI = [.002, .006]). Next, we assessed the co-
modulogram between beta and the detected range 
in gamma oscillations to isolate frequencies of 
interest in the beta band. We found that this 
coupling operates in the beta band within 16 to 
18Hz (t = 2.57, p < .009, CI = [0.002, 0.012]; Figure 
1d). The t-PAC and the co-modulogram results 
guided our subsequent neuronal and valence RSA 
analysis by isolating signal of interest.    
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Figure 1. Early phase amplitude coupling between beta and gamma in the OB. a) Methodological summary of 
Experiment 1 where individuals (n=19) were tested during three separate sessions that were subsequently merged. 
Source reconstruction was performed using the EEG/EGB electrodes in combination with multi-spherical head model 
and digitalized electrode positions to extract olfactory bulb time-course. Representation dissimilarity matrixes were 
constructed for both olfactory bulb neural signals and perceptual ratings; subsequent partial Pearson correlations 
were derived for each time point from all possible permutations. b) Group mean perceived valence ratings of the 6 
odors in Experiment 1. Individual’s mean ratings are indicated with filled circles and show a large variability between 
participants in rated valence of each odor. Note that for analyses, valence ratings of each individual were used to 
create a common structure with the DISTATIS method (Abdi et al. 2005). Error bars represent standard error of the 
mean (s.e.m). c) Heat map showing the strength of phase amplitude coupling as function of time. Compared to 
background, a significant coupling around 53-65 Hz (significant results assessed with permutation testing and marked 
with black boundaries) starts around 250 ms after odor onset. d) The co-modulogram between the beta and gamma 
bands (~53-65 Hz) during the whole 1s indicates that the coupling appeared in beta band around ~16-18 Hz. 
Significant peak marked with asterisk and assessed with student t-test. The statistical threshold for detecting 
significance (t = 1.96 equal to p < 0.05) is marked with gray dashed line. FP denotes frequency of slower oscillation 
or frequency phase. 

Early gamma and late beta activity relate to 
perceived odor valence  
Band-passed OB reconstructed time courses were 
transformed into a complex signal using Hilbert 
transform. Both amplitude, as well as phase were 
used to construct neural and perceptual valence 
RDMs. This was performed at each time point 
separately for each frequency band (gamma/beta) 
using the Euclidean distance across 6 odors that 
varied in valence, resulting in a sequence of RDMs 
(Figure 1a). Then, maximum partial Pearson 
correlations were calculated by an approximate 
80ms wide non-overlapping sliding window, 

sweeping 0 to 1s after odor onset anchored to 
inhalation, between two sequences of RDMs 
(Figure 2a). This resulted in a correlation time 
course while controlling for perceived intensity 
(Figure 2b). To test the significance of the 
correlation at each time point, all possible 
permutations (n=720) were tested and exact p-
values were computed. We found time-points of 
significant associations in RSA space between 
sub-band of gamma activity (53-65 Hz, consequent 
to PAC result) and perceived odor valence around 
250-325ms (r1 = .60, p1 < .010, CI = [.56 ,1]) (Figure 
2b; adjusted for measured olfactometer delay). The 
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distribution and exact p-value for the significant 
instance is shown in Figure 2c. 

Given the association between gamma activity and 
perceived valence, as well as the coupling between 
gamma amplitude and phase of beta in the t-PAC 
analysis, we subsequently assessed the potential 
relationship between beta band and perceived 
valence using RSA. The extracted time course of 
OB was band-passed to align with the results from 

the previously mentioned co-modulogram PAC (16-
18 Hz). Similar to gamma, beta oscillation values 
were extracted and converted into complex signals 
using Hilbert transform to estimate instantaneous 
amplitude and phase values. This was next 
transformed to RDMs, and partial Pearson 
correlations were performed between beta RDMs 
and valence RDM, while controlling for perceived 
odor intensity, in a similar manner as described 
above. 

 
 
Figure 2. OB activity in the gamma and beta band relates to valence perception. a) Example of relationships 
between valence and OB activity in RSA space b) Partial Pearson correlation time course between activity of gamma 
and valence on the group level. All possible permuted partial Pearson correlation of gamma activity and valence 
indicated significant correlations at a time point ~250-325ms after odor onset (p < .010). c) Distribution of all possible 
permutations for the significant instances and actual correlation indicated with red closed circles. d) Correlation time 
course of beta activity in the OB and odor valence RDMs indicating a significant relationship with valence perception 
around 800ms after odor onset. e) Distribution of all possible permuted partial Pearson correlation of beta activity 
and valence ratings for time points centered around 800ms (p <.014). Red closed circle shows the actual correlation 
within the permutation distribution.
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We found that there was a significant association 
between beta activity and valence in a time-interval 
around ~800ms after odor onset (Figure 2d). In 
other words, there was an association between 
perceived odor valence variance and beta activity 
variance around 800ms after odor onset in a sub-
band around 16-18Hz. Similar to the gamma 
activity analysis, we tested the statistical 
significance of the correlations using all possible 
permutation tests for each time point within 1s after 
odor onset. Next, we compared each actual 
correlation with the distribution derived from the 
permutation to extract the exact p-value (r = .65, p 
< 0.014, CI = [.59, 1]). The distribution and exact p-
value for the significant instance is shown in Figure 
2d. 

Behavioral studies in humans have demonstrated 
intensity-dependent regulation of the sniff response 
amplitude as early as 160ms after odor onset 
(Johnson et al. 2003) and there are demonstrated 
links between sniff magnitudes and both odor 
valence (Prescott et al. 2010) as well as odor 
intensity (Laing 1983). Similarly, sniff rhythms have 
been demonstrated to regulate OB gamma 
oscillation in anesthetized rodents (Manabe and 
Mori 2013). Therefore, to determine whether the 
discovered link between valence ratings and OB 
activity is potentially mediated by participants’ sniff 
patterns, unrelated to the odor presented, we 
assessed potential relationships between gamma 
and beta activity and relevant sniff parameters (sniff 
trace, i.e. amplitudes over time; max sniff 
amplitude; area under the curve) using separate 
Spearman rank correlations. However, our analysis 
demonstrated that there were no significant 
relationships between sniff trace and OB activity in 
either the gamma or beta bands (Supplementary 
Figure S2). 

Next, we asked whether there were any 
commonalities in the neural representations of odor 
valence in the above identified gamma and beta 
bands. To this end, the group level distance 

matrices of gamma and beta (RDMs) at the 
identified time periods were scaled down using the 
first two eigenvectors (principal component, PC) 
into 2-dimensional (2D) representations. For the 
gamma band, valence seemed to be somewhat 
linearly organized along the first principle 
component (PC1) whereas there was no obvious 
valence-dependent organization along the second 
principal component axis (PC2) (Figure 3a). For 
the beta band, there was a reverse relationship as 
well as a linear linkage between valence 
organization between the PC1-PC2 dimensions. To 
investigate statistically which frequency band best 
explained most of the individual’s valence ratings, 
we first determined whether the organization of the 
odors within the 2D projections formed clusters. To 
this end, the RDMs were first converted to similarity 
matrices and communities were evaluated using a 
Newman algorithm (Newman and Girvan 2004). 
Odor valence ratings were hierarchically clustered 
from 1 to 6 clusters and we found the elbow of 
modularity index (Q) graph at 3, which indicate that 
a 3 cluster solution best explain valence ratings 
(Figure 3b). On the neural data, we subsequently 
derived a modularity index (Q) for each of the 
gamma and beta correlation peaks given the 3 
clusters determined by hierarchical clustering of 
valence ratings and normalized their values to a 
corresponding null model from 5000 random re-
wirings (Maslov and Sneppen 2002). We found that 
the beta band had a larger Q-value than the gamma 
band, meaning that the odors formed the most 
coherent pleasant and unpleasant clusters here.  
This indicates that more detailed information of 
participants’ subjective valence ratings can be 
obtained from the beta frequency band than the 
gamma band (Figure 3c). We then statistically 
assessed whether the obtained modularity indexes 
were significantly different from the null model 
using 5000 Monte-Carlo permutations tests. We 
found that the modularity index for beta was 
significantly larger than for gamma (Z = 2.95, p < 
.003, CI = [0.009, 0.018]). 
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Figure 3. OB activity in the late-beta band is more similar to subsequent perceptual ratings than activity in 
the early gamma band. a) Odors placed within the 2-dimensional PC space, derived from peak values within de-
tected significant peaks in Figures 1b &d, separated by frequency band. Observe the linear alignment between per-
ceived odor valence and placement in PC space for the beta band. Odor names are written using abbreviations: Li 
(Linalool), 2PE (2-phenyel Ethanol), EB (Ethyl Butyrate), 1O3 (1-Octen-3-OL), and DD (Diethyl Disulfide). Colors 
code indicate average perceived valence where green colors denote positive valence and red/yellow colors denote 
negative valence. See Figure 1b for absolute valence ratings. b) Hierarchical clustering valence rating from 1 to 6 
clusters. The elbow of the graph is shown with a red closed circle.  c) Newman modularity index demonstrates that 
mean Q-values are larger for beta synchronization indicating that a more detailed odor valence readout can be in-
ferred from this time point. Error bar shows 95% confidence interval for 5000 permutations and ** in panel C indicates 
p < .01. d) t-contrast map indicated more beta power during early, and less beta power during late time points, for 
the two most unpleasant odors compared to two most pleasant odors. e) Topographical map of mu rhythm illustrated 
higher values for unpleasant compared to pleasant odors over motor cortex during interval of 300-400 ms. f) Source 
of mu rhythm was localized to right motor cortex (x 27, y -35, z 60) using eLORETA during the time-interval displayed 
in e), i.e. 300-400 ms after odor onset. 

 

These results suggest that the final odor valence 
perception can best be explained by processing in 
the beta band. Our analyses so far have, however, 
assessed odor valence by forcing ratings into a sin-
gle continuous dimension or into three clusters and 
used these continuous parameters to assess or-
ganizational relationships between odor perception 
and neural activity. This approach means that we 
cannot assess whether either one of the contrasting 
valence dimensions (pleasant or unpleasant) con-
tribute more to the OB processing. It has been ar-
gued that positive and negative valence is sepa-
rated in a 2-dimensional space (Schiffman 1974) 
and a common approach in past studies has been 
to assess valence using a dichotomized design 

where groups of odors that differ in their rated va-
lence (labeled as pleasant and unpleasant) are 
contrasted. To facilitate an assessment of whether 
there are differences in processing between pleas-
ant and unpleasant odor in the OB, we compared 
OB processing of the two most pleasant odors 
against the two most unpleasant odors, eliminating 
the two neutral middle odors, all based on the indi-
vidual’s own valence rating. When contrasting the 
two odor valence categories, we found that nega-
tive odors produced a greater synchronization re-
sponse in the early portion of the beta band (around 
50 to 200ms, t = 3.01, p < .004, probability CI-range 
= .004) whereas positive odors produced a greater 
synchronization response in the late beta band 
(around 690 to 780ms, t = 3.49, p < .002, probability 
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CI-range = .003) determined by 5000 Monte Carlo 
permutation tests. 

The separation in processing between the two 
valence extremes demonstrated that negative 
odors produced a more pronounced activity in the 
early beta band. We hypothesized that this early 
processing might be indicative of the initiation of an 
early avoidance response. This would fit behavioral 
data in humans that have shown that an odor 
associated with threat elicits a full body motor 
avoidance response (Arshamian et al. 2017). If this 
hypothesis is valid, we should observe odor 
valence-dependent modulation of preparatory 
motor responses over motor cortex in the time-
interval of these OB responses. Specifically, we 
hypothesized that we would observe greater power 
in the mu rhythm over the motor cortex for negative 
odors. Desynchronization in mu rhythm has 
previously been demonstrated to be a measure of 
preparatory motor responses to salient stimuli 
(Kumar et al. 2013; Matsumoto et al. 2010), 
whereas inhibition of motor behavior yields 
synchronization in mu rythm (Howe and Sterman 
1972; Pfurtscheller et al. 2006). To this end, the mu 
rhythm for two extremes was assessed on the 
whole scalp where we found greater power over 
motor cortex (electrode C2: t = 2.17, p < .014, 
probability CI-range = .003; electrode C4: t = 3.00, 
p < .003, probability CI-range = .001; electrode 
CP2: t = 2.01, p < .022, probability CI-range = .004; 
electrode CP4: t = 3.27, p < .001, probability CI-
range = .001; electrode CP6: t = 2.23, p < .012, 
probability CI-range = .003). Next, we localized the 
source of the mu rhythm using eLORETA and 
found a cluster around the right motor cortex (x 27, 
y -35, z 60) where the dipole voltage density was 
12% stronger for unpleasant compared to pleasant 
odors. Furthermore, for each trial, we extracted 
valence ratings and odor induced responses and 
subsequently assessed effect on mu rhythm for 
each trial using general linear model with Valence 
and Intensity as predictors. The group effect of 
Valence to predict mu power was finally estimated 
for each electrode using the student t-test. In-line 
with our hypothesis, odor valence was related to 
mu rhythm power over motor cortex in the time-
period of interest (250-450ms after odor onset, the 
interval was selected slightly larger to increase 
frequency specificity), electrode CP2: t(17) = -2.20, 
p < .042, CI = [-1.46, -0.03] and electrode FC4: 
t(17) = -2.25, p < .037, CI = [-.96 -.03] 
(Supplementary Figure S3). In other words, the 
more negative an odor was perceived, the more mu 
power over the motor cortex was observed in the 
time period of the early OB processing. 

Unpleasant odors elicit a fast avoidance 
response 
Our results so far have suggested that processing 
in the human OB is attuned to odor valence and 
that there is a link between processing in the OB 
and motor cortex activity in a valence-dependent 
manner. These results suggest a link between 
valence processing of negative odors in the OB and 
an early avoidance response. In other words, if 
results obtained in Experiment 1 are valid, when a 
negative odor stimulates the OB, a behavioral 
avoidance response should be initiated by the 
motor system in the time period shortly after the 
demonstrated mu activity, i.e. 400ms plus motor 
response time. To directly test this prediction, in 
Experiment 2, we sought to determine whether 
odor valence initiates an approach-avoidance 
response. Specifically, we wanted to determine 
whether this response is initiated based on 
processing in the early time period, where 
associations between OB processing and valence 
perception were found as well as a functional gating 
between the OB and motor cortex in the mu band. 
We operationalized approach-avoidance motor 
responses as posterior-anterior angular motion, 
derived from normalized responses from a force 
plate that measures participants’ whole-body 
micro-sway (Figure 4a). We hypothesized that a 
negative odor would elicit an avoidance response, 
manifested by the initiation of a backward motion in 
the early time period of interest. The body micro-
sway was measured as posterior-anterior angular 
motion that was normalized to the height of 
individuals and band-pass filtered to produce 
posterior-anterior momentum (PAM). Two pleasant 
and two unpleasant odors, with averaged valence 
rating illustrated in Figure 4b, were presented 
using sniff-triggered olfactometry, identical to what 
is described for Experiment 1. 

We first performed a pilot experiment (n=21) to 
allow us to determine time-point(s) of interest for 
analyses of PAM responses in a non-biased 
manner, to pre-register our hypothesis and 
analyses, and importantly, to establish known 
priors for subsequent Bayesian analyses. To this 
end, we assessed five time-points of interest, 0.25s 
(at the time of gamma processing), 0.5s (the 
hypothesized period of interest, gamma + response 
time, based on results in Experiment 1), 0.75s (at 
the time of the beta processing), and 1.0s (at the 
time of beta processing + response time) after odor 
onset across the pleasant and unpleasant odor 
conditions (Figure S4a). These time-points were 
selected to cover the full odor presentation with 
additional motor response time factored in. Within 
a LMM statistical model, with participant as 
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intercept and conditions as random slope, we found 
a significant main effect for conditions only at the 
time point 0.5s after odor onset, t(61) = 2.13, p < 
.037, CI = [.01, 0.04], with no other significant 
effects at other time-points (Figure S4b). 
Subsequent Student’s t-tests against 0 (standing 
straight) demonstrated that the backward motion in 
response to negative odors was significant, t(61) = 
2.06, p < .04, CI = [-0.28, -0.04], but without a 
potential forward motion in response to a positive 
odor, t(61) = 0.64, p > .74, CI = [-0.19, 0.39]. 

In the main experiment (Experiment 2; n=47), we 
focused our analyses on the time-point identified in 
the pilot experiment – all other aspects but the 
sample size were identical. We selected the sample 
size based on an estimated effect size of 0.3 
(derived from the pilot experiment), required power 
0.95, alpha error probability .05, and a correlation 
among measures of 0.4 – this yields a suggested 
sample size of 47 participants to enable a strong 
prediction. All hypothesis and analyses were pre-
registered at https://aspredicted.org/fk9gw.pdf 

 

 

Figure 4. Unpleasant odors elicit a fast avoidance response. a) Experimental setup in pilot and Experiment 2. 
Participants stood centrally on the force plate, with their feet together, facing a wall with a fixation cross placed at 
their eye level. Continuous respiration was measured using a respirometer and the olfactometer was triggered close 
to the nadir of a respiration cycle to synchronize the trial onset with inhalation. b) Bars show averaged valence rating 
of unpleasant and pleasant odors during the experiment (error bars showing 95% confidence intervals). c) Valence-
dependent modulation of PAM was replicated in the main experiment in line with our preregistrered hypothesis and 
indicating significant backward movement (i.e. beta values below zero) for unpleasant odors 500ms after odor onset. 
d) Non-significant correlation coefficient between PAM and respiration flow suggest that differences in breathing did 
not facilitate differences. Heatmap shows the joint distribution and dashed red line shows the correlation. Star in 
figures denote p < .05. 

 

We could replicate the result demonstrated in the 
pilot experiment with a significant difference 
between the two odor categories at time-point 0.5s 
after odor onset, t(174) = 3.24, p < .001, CI = [0.06, 
0.23] (Figure 4c). Given the fact that for Experiment 
2 we had a known prior from an independent 
dataset (result from the pilot experiment), we further 
explored this effect using Bayesian statistics. The 

Bayesian analyses supported results obtained with 
frequentist methods. We found that our analyses 
gave substantial support for a difference between 
the two parameters (Bf10 = 3.32; Supplementary 
Figure S5). However, these analyses assess 
potential differences between the two odor 
categories whereas results from the pilot 
experiment indicate that effects are mediated 
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mainly by negative odors. When assessing each 
odor valence category separately against no 
movement using one-sided Student’s t-test with 
directionality based on the pre-registration, there 
was once again only a statistically significant effect 
for the negative odors to elicit a backward motion, 
t(174) = 2.47, p < .007, CI = [-∞, -0.016], and no 
significant effect for the positive odors, t(174) = 
1.22, p > .11, CI = [-0.04, +∞]. 

We then assessed whether the difference between 
odor valence in PAM was mediated by a potential 
difference in respiratory flow, a parameter that 
previously has been demonstrated to be linked to 
odor valence (Frank et al. 2003). However, we 
found no correlation between the respiration flow 
and PAM at the time point of interest (0.5s), rho = -
0.02, p >.75, (Figure 4d). Moreover, to verify the 
lack of dependency, we assessed the null effect 
using Bayesian statistics with the known priors. 
These analyses also supported the conclusion that 
PAM and respiration were not interdependent 
(Supplementary Figure S6). 

 

DISCUSSION 

We here demonstrate that neural activity in the 
human olfactory bulb (OB) is linked to perceived 
odor valence. Specifically, we found that the OB 
processes odor information sequentially within two 
time periods; first a brief period of initial gamma 
activity across the valence dimension, and a 
temporally privileged early beta activity for 
unpleasant odors, both indirectly linked to the 
initiation of a motor avoidance response. Second, 
there was a later period of beta processing that was 
linked to the linear formation of the final subjective 
valence percept of the presented odor. These 
results indicate that one of the initial and primary 
functions of the OB is to process early odor-based 
valence information; potentially to extract early 
odor-based warning signals. 

The observation that odor valence was processed 
in the human OB mainly during two time-points, one 
early and one late stage, is in-line with the two-
stage model of odor processing in the OB 
suggested by Frederic and colleagues (2016).  
They specifically demonstrated that the OB 
executes a first fast processing, relying on gamma 
oscillations, allowing the individual to make fast 
discriminations, and a second slower processing, 
relying on beta processing, utilizing information 
from centrifugal inputs to support more deliberate 
decisions. Our data, which is in line with earlier 
human and animal work, suggests that the OB 
processes valence of unpleasant and pleasant 

odors at different time points. In this context, our link 
between early gamma and beta (for unpleasant 
odors) oscillations in the OB suggests that this 
might be a preparatory, non-deliberate mechanism 
for fast avoidance of potentially dangerous odors or 
avoidance of their sources. This hypothesis is 
further supported by previous findings that odor-
induced gamma oscillations within the OB are 
largely a local phenomenon (Martin and Ravel 
2014; Gray and Skinner 1988) and sometimes 
dependent on the individual’s behavioral state or 
past negative experience with the odor (Kay 2003). 
Moreover, because the OB is located very early in 
the odor processing stream with projections from 
the olfactory receptor neurons and monosynaptic 
connections to cerebral areas associated with 
processing of information related to threat/saliency 
(Mainland and Sobel 2006), the OB is ideally 
localized in the processing pipeline to process 
avoidance related information given the need for a 
fast response. Indeed, associating an odor with an 
aversive outcome alters a range of parameters in 
how the OB processes the associated odor. For 
example, it increases neural responses (Kay and 
Laurent 1999; Fletcher 2012) as well as axonal 
density into associated glomeruli, which in turn is 
associated with an increase in associated glomeruli 
size (Jones et al. 2008). Based on our past findings, 
it is therefore likely that one of the initial and 
important aspects of the OB is to extract and 
process odor information that is associated with a 
potential threat.  

Results from the modularity index, derived from the 
principal component analyses, indicated that the 
strongest link between the two time periods and 
final odor valence rating was the later beta activity 
occurring around 700-800ms after odor onset. This 
is also in line with the two-stage model (2016) of 
odor processing in the OB with a separation of 
processing between bottom-up and top-down 
dependent processing. Beta oscillations are often 
considered more of a ‘top-down’-dependent signal 
in opposition to gamma that is considered as more 
of a ‘bottom-up’-dependent signal (Gnaedinger et 
al. 2019; Richter et al. 2017; Kay 2014); although, it 
should be made clear that beta has been 
demonstrated to be initiated in the OB during odor 
sampling (Gourévitch et al. 2010). Past studies in 
animal models have indeed linked gamma band 
processing within the OB to intra-bulb processing 
(Kay 2014; Martin and Ravel 2014) and beta 
processing has been demonstrated to sometimes 
be dependent on centrifugal feedback from piriform 
cortex (Bressler 1984; Martin et al. 2006) and to be 
modulated by context or past odor associations 
(Frederick et al. 2016). Our data cannot, however, 
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conclusively determine whether the OB activity in 
the later time period originates from centrifugal 
information from higher order areas. Nonetheless, 
we believe that the most parsimonious explanation 
is that the late beta is representing valence-
dependent signals that project back, directly or 
indirectly, from other cerebral areas, such as the 
orbitofrontal, amygdala, and piriform cortex. These 
projections would then help shape the final  
interpretation of the odor by adding information of 
past experiences (Li et al. 2008) as well as 
information about the odor object per se (Wilson 
and Sullivan 2011; Porada et al. 2019; Olofsson et 
al. 2014) — two factors that are known to strongly 
influence the final odor valence percept (Yeshurun 
and Sobel 2010; Djordjevic et al. 2008). 

In our data, the early gamma and beta power in the 
OB seems specifically attuned to the processing 
and perception of negative odor valence with no 
clear demonstration that the OB processes odors 
associated with a positive outcome in early time 
points. This finding is in-line with recent findings in 
rodents indicating that odors with a positive valence 
are processed initially within an area downstream 
from the OB, the olfactory tubercle (Gadziola et al. 
2015; Gadziola and Wesson 2016), an area that 
does not have centrifugal direct connections with 
the OB (In ’t Zandt et al. 2019). Whether this 
regional-specific valence separation in processing 
also occurs in humans is not known. However, a 
recent study demonstrated that intracranial electric 
stimulation of the OFC, an area previously linked to 
odor valence processing in humans, could only 
produce pleasant odor experiences (Bérard et al. 
2020). The separation demonstrated in rodents 
does, however, support the 2-dimensional valence 
hypothesis that odor valence perception is not 
represented by a unidimensional spectrum, ranging 
from unpleasant to pleasant. Instead, a 2-
dimensional space where positive and negative 
valence is separated with neutral valence as the 
start point has been suggested (Schiffman 1974). 
This has also been supported by data on the 
semantic distribution of odor descriptors that are 
commonly divided into a positive and a negative 
category (Schiffman 1974; Schiffman et al. 1977). 
In contrast to the demonstrated increase in beta 
frequency for odors with more negative valence as 
compared to odors with more positive valence, we 
did not find an association between valence and 
beta activity when assessing links in RSA space 
using a linear approach in early time points. A 
possible explanation for this discrepancy might be 
that our t-PAC finding suggests that the detailed 
odor valence information for beta is reflected in 
phase and not amplitude in early time periods of OB 

processing of the odor. Hence, it is possible that the 
lack of linear association between neural activity in 
beta band and odor valence in RSA space during 
early time points is due our finding that only phase, 
but not amplitude, based on PAC coupling, is linked 
to gamma, thereby suggesting that the coupling of 
amplitude is critical for finding linear association in 
RSA space. Similarly, our present method may not 
be able to capture that the OB also processes 
positive valence during early time points due to the 
range of our odors used where only some mean 
individual ratings reached above 70 on the 0-100 
scale (see Figure 1b). It should further be noted 
that the EBG method requires that participants are 
in a nutrition deprived state to maximize signal from 
the OB, which might have an impact on the 
obtained results (Iravani et al. 2020; Royet and 
Pager 1981; Pager et al. 1972). However, this later 
aspect of the method can also mean that the 
potential perceived reward of the odor would 
increase and therefore also maximizes the 
likelihood of finding effects for positive odors. 
Future studies where odors are either individually 
selected based on their reward properties or 
conditioned with positive outcome are needed to 
conclusively determine whether the human OB 
prioritizes processing negative odor valence. 

Results in Experiment 1 suggested the existence of 
an approach/avoidance motor response occurring 
around 500 ms after odor onset in a valence-
dependent manner. In two separate experiments 
(pilot and Experiment 2) and using a design with 
preregistered hypotheses and analyses, we 
demonstrate here that odors with a negative 
valence triggered an avoidance response that was 
manifested as leaning away from the odor source. 
We have previously demonstrated a similar fast 
avoidance response in human participants to the 
odor of blood (Arshamian et al. 2017), an odor that 
is treated as an approach or avoidance trigger 
across species. Our current findings extend these 
results and suggest that odor avoidance in humans 
might extend beyond biologically important and 
potentially inherent signals and be a general 
phenomenon that is linked to the valence of the 
odor per se. Negative odors induced larger mu 
desynchronization over and within the motor cortex 
which is a response that previously has been 
demonstrated to be a measure of preparatory motor 
responses to salient stimuli (Kumar et al. 2013; 
Matsumoto et al. 2010). Although speculative, this 
mu desynchronization appeared in a time period 
that, when response time is factored in, 
corresponds to the motor avoidance response to 
negative odors demonstrated in Experiment 2. 
Moreover, this motor cortex response to the 
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negative odors appeared around 150ms after the 
valence-related increase in gamma and early beta 
activity within the OB, thereby allowing the signal 
time needed to transmit the information between 
the OB and motor cortex. For neutral and pleasant 
odors, a similar motor movement would probably be 
related to later processing. In line with this notion, 
rodents preforming a Go, No-Go task with positive 
reinforcement exhibit a simultaneous activity in the 
piriform cortex, primary motor cortex, and the mRN 
just before executing a motor response for the Go 
trials. Importantly, while these responses are seen 
in low and high gamma, as well as beta activity, they 
are only present during the second and third (final 
sniff) (Hermer-Vazquez et al. 2007). For the first 
sniff (equivalent to the data in our study), there was, 
however, no response related to the motor cortex 
for the rewarded GO trials. This indicates that for 
neutral and pleasant odors, as compared to 
unpleasant, a top-down regulation from olfactory 
cortex and motor cortex directly to the OB is more 
evident (Hermer-Vazquez et al. 2007). Our results 
suggest that the olfactory and motor systems are 
more closely linked also in humans than has 
previously been appreciated and that this, 
especially for unpleasant odors, may be initiated at 
the OB-level. 

It should be noted that while our results 
demonstrate that the human OB processes 
subjective odor valance, it does not suggest that the 
OB is the first processing stage of valence. Multiple 
studies in humans and non-human animals alike 
show that an odorant's valence partially depends on 
its physicochemical properties (Khan et al. 2007; 
Secundo et al. 2014; Poncelet et al. 2010; Bensafi 
et al. 2007; Mandairon et al. 2009; Joussain et al. 
2011; Keller et al. 2017). Physicochemical 
properties have been shown to predict olfactory 
receptor neuron activation and based on this, it has 
been suggested that odor valence is, at least 
partially, coded at the level of the olfactory 
epithelium (Joussain et al. 2011). Because the 6 
odors in Experiment 1 were selected from the 
DREAM challenge (Keller et al. 2017) to span the 
physicochemical valence space, our OB activations 
may to some extent reflect information from 
physicochemical properties originating from 
receptor neurons projecting upstream to the OB 
(Sezille et al. 2015). It is still an open question if a 
peripheral valence code originating from 
physicochemical properties reaches the OB, and if 
the OB in turn refines the signal or keeps it 
unchanged. It should, however, be noted that all 
results linking odor valence to OB processing is 
based on the individual’s own valence rating and 
not an a priori defined valence rank among the 

included odors. Specifically, we show that 
perceived pleasantness is represented uniformly 
across participants in the bulb at specific time 
periods and frequencies in a manner that is 
represented by subjective perception and not pre-
defined odor classification. This suggests that 
valence is processed and not merely manifested by 
odor identity. Valence ratings is, to a not trivial 
degree, dependent on personal experiences. 
Indeed, when we assess the relationship between 
individual’s RDM of odor valence ratings and that of 
the full group, the mean similarity is 61.6%, which 
means that about 38.2% of the total variance in 
these valence ratings (in this case, valence ranking) 
is explained by individual differences. Our choice of 
methods therefore reduces, but do not eliminate, 
the potential impact physicochemical properties 
might have on our results in favor of subjective 
valence perception. 

Even though we can demonstrate links between the 
OB and motor cortex in a relevant time-period, it 
should be noted that our whole-body avoidance 
results are only indirectly linked to the EEG data. 
For it to be directly linked, it would require 
assessing EEG source signal from individuals that 
are freely moving around which is not possible with 
current method for measuring OB responses 
because the active-electrodes strongly amplifies 
motion artifacts. To the best of our knowledge, no 
method currently exists that would allow measures 
from the OB while participants moved their full 
body. Moreover, it is important to highlight that our 
data only covers the first sniff of an unannounced 
odor. As demonstrated in rodents, OB processing is 
continuously updated with each continuous sniff 
with marked shifts in both neural and behavioral 
responses (Gupta et al. 2015; Patterson et al. 2013; 
Hermer-Vazquez et al. 2007). 

In summary, our results suggest that the human OB 
processes odor valence. We propose that the two 
stages of processing of valence in the OB is due to 
a reciprocal process where the initial fast gamma 
and beta response address negative odors, valence 
information that may be projected from the olfactory 
receptor neurons (Khan et al. 2007) or learnt from 
past aversive experiences already coded in the OB 
(Kay and Laurent 1999). In contrast, the later beta 
response seems more related to the final valence 
rating of the odor as well as potential preparation of 
the OBs initial gamma and subsequent beta 
responses for the second sniff of the same odor. At 
this time stage the OB should be influenced by 
information related to past experiences with the 
identity of the odor. Importantly, negative odors 
seem to have a privileged temporal access in the 
human olfactory bulb. This suggests that one of the 
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initial functions of the OB is to process and extract 
early odor-based warning signals to aid the 
individual’s approach-avoidance decisions. 

 

METHOD 

Experiment 1 – Valence decoding from 
oscillations within the olfactory bulb  
Participants 
In Experiment 1, 19 individuals (mean age 28.88 ± 
4.52, 7 women) who reported being healthy, non-
smokers, and with no history of head trauma or 
neurological disorders, participated in three 
separate recording sessions (all identical). Prior to 
inclusion, a working sense of smell was confirmed 
in all participants using a 5 item, 4 alternative, cued 
odor identification test (Kobal et al. 2000). All 
participants cleared the cut-off for inclusion of at 
least 3 correct answers. Given the scarcity of 
functional anosmia in the participants’ age-range, 
the probability that we erroneously included 
individuals with anosmia in the experiment is less 
than 0.05%. The study was approved by the local 
ethical review board (EPN: 2016/1692-31/4) and all 
participants signed informed consent prior to 
participation. 

Chemicals and odor delivery   
In Experiment 1, the six odorants that were used 
came from the DREAM Olfaction Prediction 
Challenge(Keller et al. 2017). In the DREAM 
project, participants rated odor pleasantness of 476 
structurally and perceptually diverse molecules. We 
averaged ratings across all participants in the 
DREAM project and ordered odors from the most 
pleasant to the most unpleasant. Based on this 
ranking, we selected six that evenly spanned the 
entire valence dimension. Next, we conducted a 
pilot study on Swedish participants and verified that 
the odorants elicited similar ratings in a Swedish 
context and diluted them down to iso-intense 
concentration. Odors used were:  0.14% Linalool 
(Sigma Aldrich, CAS 78-70-6), 0.25% Ethyl 
Butyrate (Sigma Aldrich, CAS 105-54-4), 0.1% 2-
Phenyl-Ethanol (Sigma Aldrich, CAS 60-12-8), 
0.2% 1-Oceten-3-OL (Sigma Aldrich, CAS 3391-
86-4), 1% Octanoic Acid (Sigma Aldrich, CAS 124-
07-2), and 0.25% Deithyl Disulfide (Sigma Aldrich, 
CAS 110-81-6), all diluted in neat diethyl phthalate 
(99.5% pure, Sigma Aldrich, CAS 84-66-2) and 
dilution values are given in volume/volume from 
neat concentration. Lack of trigeminal sensations in 
their presented concentration was established 
using odor laterality tests (Hummel 2000; Wise et 
al. 2012). 

Odors were delivered birhinally using a computer-
controlled olfactometer and each odor was 
presented 20 times in each session to participants 
(i.e., 60 times in total for each odor across the three 
sessions). The olfactometer has an onset-time of 
200ms, measured from computer trigger to odor 
delivered in the nose, and a sharp rise-time to 
facilitate an odor presentation with high temporal 
precision (Lundström et al. 2010). A total flow rate 
of 3 liters/minute (l/min), inserted into a constant 0.3 
l/min flow to prevent tactile sensation of odor onset 
was used. To further avoid that participants could 
predict odor onset, yet assure a clear percept, odor 
onset was (unbeknown to the participants) triggered 
by their own sniff cycle. When the assigned inter-
trial-interval (10s) had occurred, an odor was 
triggered at the nadir of the inhalation phase in the 
sniff cycle following that interval, thus assuring odor 
presentation at inhalation. A relatively long inter-
trial-interval was used to lower the risk of odor 
habitation. Participants sniff-cycle was measured 
by thermopod (Experiment 1) and respirometer 
(Experiment 2) sampling at a rate of 400 Hz 
(Powerlab 16/35, ADInstruments, Colorado) and 
respiration traces for triggering of odor were 
analyzed on-line by the LabChart recording 
software (ADInstrument, Colorado). Data were 
subsequently down-sampled off-line to 40 Hz and 
processed in MATLAB 2018a for further analyses. 

E-prime 2 (Psychology Software Tools, 
Pennsylvania) was used to record event timing, 
triggering, and sniff data logging. Jittered pre-
stimulus interval of 600~2000ms was placed before 
each trial to minimize anticipation of odor onset. 
Participants were tested in a sound attenuated 
booth, purpose amended for odor testing, with good 
air circulation to minimize potential redundant 
disturbances. Moreover, during the experiment, low 
volume white noise was presented to participants 
via headphones to mask potential airflow-related 
auditory cues from the olfactometer that might 
possibly cue odor onset. 

Procedure 
To allow us to collect a large data set for each 
individual, each participant participated in 3 
sessions on separate days with at least one day 
and at the most a month apart. Each session 
consisted of three 15 min long blocks with 5 min 
break between each to limit odor 
adaptation/habituation, totaling about 1h per 
session. Participants were presented with the 6 
different odors in a random order and after each 
odor presentation, they rated how pleasant and 
intense they perceived the presented odor to be. 
Ratings were done by placing a marker on a labeled 
visual analogue scale presented on the screen 
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ranging from 0 (very unpleasant / very weak) to 100 
(very pleasant / very strong). 

Electroencephalography, Electrobulbogram,  
neuronavigation measurement 
Sixty-four EEG scalp electrodes were placed 
according to international 10/20 standard and an 
additional 4 EBG electrodes on the forehead 
(Iravani et al. 2020). Signals were sampled at 512 
Hz using active electrodes (ActiveTwo, Bio-Semi, 
Amsterdam, The Netherland). Electrode offsets 
were manually checked prior to experiment onset 
and electrodes were adjusted until meeting the a 
priori established criteria (<40mV). Next, the 
position of all the electrodes in stereotactic space 
were determined using an optical neuro-navigation 
system (Brain-Sight, Rogue Research, Montreal, 
Canada); for more detail please see (Iravani et al. 
2020). 

EBG/EEG Data Analysis  
Preprocessing 
Data were epoched from 500 ms pre-stimulus to 
1500 ms post stimulus, re-referenced to average of 
activity at all electrodes, linear phase band-pass 
filtered at 1-100 Hz (Butterworths 4th order), and 
power-line interference filtered using discrete 
Fourier transform (DFT) filtering at electrical 
frequency (50 Hz) to remove power line noise. 
Trials with large muscle and eye blink artifacts were 
identified with an automatic algorithm. The artifact 
detection protocol comprised of band-pass filtering 
using Butterworth filter (4th order), Hilbert transform 
to extract amplitude values, and z-scoring. Trials 
with z-values above 4 were marked and removed 
from further analysis.  

Olfactory bulb time course extraction 
To extract OB’s time-course, digitized electrode 
positions were first used to co-register participants 
head to a default MNI brain using a six parameters 
affine transformation. Second, a head model was 
constructed based on a multi-shell spherical head 
model. Spherical volume conductors were 
considered for scalp, skull, gray matter, and white 
matter with the conductivity of 0.43, 0.01, 0.33, and 
0.14 (Iravani et al. 2020). The covariance matrix of 
electrodes during the 1s odor presentation were 
regularized by 10% prior to be fed into extra low-
resolution electromagnetic tomography (eLORETA) 
algorithm to estimate the time-course of the dipole 
placed in (x ±6, y 30, z -32) on trial level, which 
corresponds to OB location (Pascual-Marqui et al. 
2011; Iravani et al. 2020). The maximum projection 
of the dipoles’ time course over three principal axes 
were computed to serve as OB activity. eLORETA 
analysis was carried out in the open source Fieldtrip 

toolbox 2018 within MATLAB R2019b (Oostenveld 
et al. 2011). 

Time-frequency analysis of olfactory bulb signal 
After extracting the OB’s time-course, we assessed 
the difference in power evolution of the two most 
unpleasant and pleasant odors. The time-frequency 
map for broadband frequencies [1~100 Hz], with 
step of 1 Hz and interval [-0.1~1 s] with step of 
0.005s, was estimated using multi-tapered sliding 
window from discrete prolate spheroidal sequences 
(DPSS). The window length was adjusted to cover 
at least 3 cycles for each frequency, ranging 
[.3~3s]. Next, the time-frequency map of each trail 
was assessed and converted to decibels. Finally, to 
create the contrast map, the most unpleasant and 
pleasant category, each consisting of two odors, 
were determined on the individual level based on 
participants’ valence ratings and contrasted against 
each other.  

Mu rhythm and source localization 
Similar to time-frequency analysis of OB signal, the 
mu rhythm power for all scalp electrodes were 
estimated using multi tapered sliding DPSS widow 
for mu frequency range [10 ~13 Hz] with step of 0.5 
Hz and time interval of [.3 ~ .4 s] with step of .005 
s. Likewise to OB time-frequency analysis, the 
window lengths were chosen to cover at least 3 
cycles of mu rhythm.  Next, the mu power for the 
two most unpleasant and pleasant odors were 
estimated, baseline corrected and converted to 
decibels. Finally, a topographical map was created 
and non-parametric statistics were performed to 
create contrast and find channels that were 
significantly different in mu power. Source 
localization were performed similar to the olfactory 
bulb source localization, and after co-registration of 
electrodes to default MNI brain, a spherical head 
model with 4 tissue type was created.  The cross 
spectral density matrix of electrodes during the .3 
~.4s after the odor onset were regularized by 10% 
and fed into eLORETA to localize the source of mu 
rhythm. 

Time resolved phase-amplitude coupling (t-PAC) 
t-PAC of the extracted OB time-course were 
analyzed between gamma and beta bands with 
window length 250ms and 50% overlapping.  The 
gamma band [30~100Hz], discretized to 20 
frequency bins, and the instantons amplitude were 
extracted using Hilbert transform at each frequency 
bin. Similarly using Hilbert transformation, the 
instantaneous phase of slower oscillations (i.e. beta 
[12~30Hz]) were computed and t-PAC for each time 
bin was calculated as the power ratio of the 
composite signal of instantaneous amplitude of 
faster and phase of slower to the faster oscillation 
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during the window interval on the individual level 
(Samiee and Baillet 2017). Moreover, we quantified 
the co-modulogram level between the outcome of t-
PAC with a slower band to isolate a range of slower 
frequencies that are coupled to identified gamma. t-
PAC analysis were carried out in BrainStrom 
toolbox within MATLAB R2019b (Tadel et al. 2011). 

Representational similarity analysis (RSA) 
RSA is a powerful tool to connect different levels of 
experimentations (e.g. behavioral and brain data) 
beyond linear correlation. Here, we used RSA to 
assess the relationship between the odor valence 
rating and neuronal population activity of OB in two 
prominent odor related frequencies, gamma and 
beta. To limit our statistical tests and minimize the 
potential false positive error, we only include the 
frequencies of gamma and beta bands in the RSA 
analysis that were found to be coupled in the t-PAC 
analysis. Hence, the OB time-course was band-
pass filtered using a Butterworth 5th order to the (by 
the t-PAC) identified frequencies within the gamma 
(53-65 Hz) and beta (16-18 Hz) bands following a 
Hilbert transform to extract the instantaneous 
amplitude and phase. In RSA, instead of assessing 
the first-order isomorphism between the stimulus 
and brain representation, similarity in relationship 
within the stimuli and brain representation are 
assessed using representational dissimilarity matrix 
(RDM). To construct the RDM, OB Euclidean 
distances were used for averaged left/right OB 
activity and valence rating on the individual level.  A 
temporal neighborhood with a radius of 7 samples 
(considering our sampling rate of 512 Hz, this 
equals to ~14ms) was used, including both 
amplitude and phase, for fast gamma oscillations 
and 28 samples (equals to ~55ms) for slower beta 
oscillations. The difference in neighborhood radius 
selection is due to the difference in temporal 
resolution and ensures at least one cycle of either 
faster or slower oscillation is included in the feature 
space. The RDMs for whole 1s of odor stimuli were 
compared between the behavioral and OB 
response in a searchlight framework on the 
individual level. In line with a multidimensional 
scaling method (Abdi et al. 2005), the so-called 
DISTATIS method, we constructed a consensus 
RDM to represent the group level. To determine the 
potential relationship between neural and 
perceptual RDMs, values above diagonal line of the 
matrices was assessed using all possible permuted 
(i.e. shuffling the labels of odors; given 6 odors, the 
total possible combinations is 720) partial Pearson 
correlation to avoid inflated correlation due to 
symmetry of RDMs (Figure 1a). The group level 
RDMs were subsequently scaled down using 
eigenvector decomposition into two main axes. The 

distance matrices were converted to similarity 
matrices by inversing the distance matrix after 
added by 1, and modularity indices (Q) were 
computed using the Newman method (Newman 
and Girvan 2004) given three clusters. The three 
clusters were identified using a hierarchical 
clustering of valence rating, varying the number of 
clusters from 1 to 6 clusters and estimating the knee 
of the modularity curve where the knee of the curve 
was estimated as the furthest point from the linear 
approximation. RSA analysis and community 
detection were performed in the open source 
CoSMoSMVPA toolbox (Oosterhof et al. 2016) and 
MATLAB Network Toolbox 
https://github.com/ivanbrugere/matlab-networks-
toolbox. 

Statistical analysis  
We assessed the statistical difference in power 
evolution between the two most unpleasant and 
pleasant odors, as well as scalp mu rhythm, using 
a non-parametric statistic. The time-frequency 
maps of unpleasant and pleasant odors of OB 
signal and scalp electrodes were computed using 
multi-tapered sliding windows and compared using 
5000-permuatation Monte Carlo tests to find 
significance time/frequency bins or channels. To 
statically test the relationship between the brain 
data and valence rating in RSA, RMD matrices at 
each time point were shuffled through all possible 
combinations. In each iteration, partial Pearson 
correlation between neural and perceptual valence 
was computed with intensity as nuisance 
covariates. To extract the exact p-value from the 
permutation test, we computed the number of times 
the actual partial Pearson correlation was bigger 
than shuffle data out of total permutations (720). 
Similarly, for t-PAC analysis, non-parametric Monte 
Carlo 5000 permutation tests were performed for 
the OB coupling value at each time-frequency bin 
against baseline (250ms pre-stimulus) and exact p-
value were extracted. Subsequent t-map was 
smoothed, while preserving the shape, for 
illustration purpose. 

The distance matrices at the instances of significant 
correlation with valence for both gamma and beta 
were scaled down to first and second principle 
components (i.e., PC1 and PC2) and Newman 
modularity was calculated to assess whether the 
tested odors clusters comply with valence rating. To 
statistically test the Newman index Q, the 
modularity of similarity matrices was compared with 
the null model for each correlation peak. The null 
model was generated by 5000 times rewiring of the 
adjacency (similarity) matrix while persevering 
weight, degree and strength distribution using Brain 
Connectivity Toolbox within MATLAB R2019b 
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(Rubinov and Sporns 2011; Rubinov and Sporns 
2010). Later the actual modularity index was 
compared with the null distribution. In the post-hoc 
analysis to assess effects on pre-motor responses, 
we extracted data in the time interval 300-400ms 
after odor onset. We tested if the preparatory 
response for motor action we observed in 
Experiment 2 could be found in this experiment, 
even though here participants were sitting on the 
chair and instructed to sit as still as possible. The 
power of mu synchronization/desynchronization 
was predicted using a generalized liner model 
having valence, and intensity as predictor for each 
electrode on the scalp and yielding in beta maps on 
the individual level. Later on the beta maps were 
statically tested on the group level via the student t-
test. 

Experiment 2 – Odor valence-dependent 
approach/avoidance responses 
Participants  
Given that links between perceived odor valence 
and approach/avoidance motor responses had not 
been previously assessed, we initially performed a 
structured pilot experiment to explore the time 
period of interest of the motor response, the result 
of which was later used as a priori defined temporal 
regions of interest in Experiment 2. In the pilot 
experiment, a total of 21 individuals (age = 28.71 ± 
5.84 ,11 women) participated. In the subsequent 
Experiment 2, a total of 47 individuals (age = 25.94 
± 4.2, 29 women) participated. Inclusion criteria 
(including passing the anosmia screening test) 
were the same as described above for Experiments 
1. The studies were approved by the local ethical 
review board (EPN: 2016/1692-31/4) and all 
participants signed informed consent prior to their 
participation. 

Odors and delivery method  
In both the pilot and the main experiments, odors 
were piloted and presented as described in 
Experiment 1. In the pilot experiment, 4 odors were 
used; namely 10% Strawberry (IFF Inc.), 50% 
Carvone (CAS 6485-40-1), 50% Fish odor (IFF 
Inc.), and .0014% Ethanethiol (CAS 75-08-1). To 
limit odor dependency, Strawberry was substituted 
with vanillin, 2.55 grams in 12 milliliters (CAS 121-
33-5), and Ethanethiol with 0.25% Diethyl Disulfide 
(Sigma Aldrich, CAS 110-81-6) in the main 
experiment. However, the strawberry odor was after 
the experiment deemed to be contaminated and 
was subsequently removed from all analyses in the 
pilot experiment; thus, in the pilot experiment, only 
responses to 3 odors were analyzed. All odors were 
diluted in neat diethyl phthalate (99.5% pure, Sigma 
Aldrich, CAS 84-66-2) and concentration values 

were volume to volume except for vanillin that was 
available in crystal form. Odor selection and 
concentration was based on previous pilot 
experiments where a range of odors were rated for 
perceived valence and after sub-selection, 
concentration-adjusted to achieve intensity 
matching. 

Identical to Experiment 1, odors were (unbeknown 
to the participants) triggered by their sniff cycle, 
measured by a respirometer (Figure 4a) sampling 
at the rate of 1000 Hz (Powerlab 16/35, 
ADInstruments, Colorado), subsequently down-
sampled off-line to 40 Hz and processed in 
MATLAB 2018a for further analyses. A relatively 
long inter-trial-interval of 10s was used to reduce 
the risk of odor habitation. 

Body sway measurement 
Participant’s body micro-sway was assessed with a 
force plate (AccSwayPlus, AMTI Massachusetts) 
assessing 8 axes of motion. The force plate was 
initially allowed to warm up for a few minutes after 
which it was zeroed and a 25 seconds period of 
unloaded baseline was initially recorded for 
calibration purposes. 

Procedure 
Participants stood in the center of the force plate 
with their feet together, facing a wall where a 
fixation cross was placed at eye-height about 70 cm 
away from their face. The height of the fixation 
cross was adjusted for each individual according to 
participants’ height. Their arms were positioned 
alongside the body and they were instructed to 
avoid performing redundant movement (Figure 4a). 
Odors, with 20 repetitions, were presented in blocks 
with 4 odors, in each using a pseudorandom order 
where the individual randomization order was 
adjusted so that no odor was presented 
consecutively over the 80 presentations. After each 
odor presentation block, an auditory cue was 
presented via headphones to cue participants to 
provide a verbal rating of the perceived odor 
intensity of the odors presented within the 
preceding block. This task was performed to force 
participants to focus on the odor but not specifically 
their perceived valence. A total of 4 blocks, each 5 
minutes long, was presented. To prevent potential 
compliance effects, participants were told that the 
aim was to assess the relationship between sniff 
and odor intensity and first after the experiment they 
were informed about the true aim. At the very end, 
participants were asked to rate odor valence of 
each odor (Figure 4b). This was done at the end to 
prevent participants from discovering the true aim 
of the experiment and potentially bias their 
response in the desired direction. 
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Statistical analyses 
Posterior-anterior angular momentum, extracted 
from the body sway data recorded by the force 
plate, was assessed according to a calibration 
matrix provided by the force plate vendor. In 
addition, as suggested by the vendor (AMTI, 
Watertown, USA), the offset correction is 
implemented by removing the average of 25 
seconds unloaded recording (i.e. without participant 
standing on the force plate) prior to each session 
from the experimental force plate data. Extracted 
posterior-anterior angular momentum was 
subsequently normalized to the individuals’ height 
to estimate the linear posterior-anterior momentum 
(PAM). These PAM parameters were then epoched 
to [0, 1.25s], linear and quadratic trend were 
removed and band-pass filtered using linear phase 
FIR filter ([0.45 ~ 2 Hz], n=93, hamming window, -
53dB attenuation of stopband) to remove normally 
occurring micro-sway, produced by the motor 
system to sustain balance.  

In the pilot study, one individual was removed from 
analyses after rating the unpleasant odors as very 
pleasant (>3 standard values from the mean), thus 
leaving the total as n=21. Later, event related 
responses of the PAM were calculated for five time 
points during the odor interval with steps of .25 
second to identify the time point of interest. Linear 
mixed effect model (LMM) with by participant 
intercept and random slope of odor were fitted for 
the three time points. Having determined the time 
point of interest, we repeated the experiment in a 
completely new data set with bigger sample size 
and fitted LMM with exact similar design.  Moreover, 
as a control analysis we examined if respiration 
correlates PAM by means of Pearson correlation at 
the time point of interest. 

The analysis was repeated in a Bayesian 
framework as supplementary analysis. For the pilot 
experiment we considered a normal distribution 
with mean of 0 and standard deviation of .5 and half 
Cauchy with standard deviation 5 for random effect 
(Supplementary Figure S5a). For control analysis, 
correlation was modeled with multivariate normal 
distribution with means of μ1 and μ2 corresponding 
to mean of respiration and PAM as well as a 
covariance matrix Σ containing variances and 
correlation value for respiration and PAM. Prior 
distribution for means was normal distribution with 
mean of 0 and standard deviation of 20, prior for 
variances was uniform distribution with range of [0, 
50] and for correlation a uniform distribution with 
range of [-1 1]. 
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