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1 Abstract

The description of transcription as a stochastic process provides a framework for the analysis of
intrinsic and extrinsic noise in cells. To better understand the behaviors and possible extensions of
existing models, we design an exact stochastic simulation algorithm for a multimolecular transcrip-
tional system with an Ornstein-Uhlenbeck birth rate that is implemented via a special function-
based time-stepping algorithm. We demonstrate that its joint copy-number distributions reduce to
analytically well-studied cases in several limiting regimes, and suggest avenues for generalizations.

2 Background

2.1 Markov modeling of transcriptional processes

Recent methods in single-cell transcriptomics have enabled increasingly precise measurements of
copies of mRNA molecules in cells [1, 2]. These experimental improvements have dovetailed with
theoretical and computational improvements in modeling transcription in cells. The chemical mas-
ter equation (CME) is the standard modeling framework for discrete-valued processes [3], providing
a natural representation of biomolecular counts. CME models that can be used to compute entire
discrete distributions [4] have therefore become increasingly relevant for modeling transcription in
cells, and are being used for the purpose of statistical inference of underlying biophysical parame-
ters [5].
No canonical choice of model exists, but certain conventions and assumptions are common (See
Figure 1). In the CME formalism, a cell is generally represented as a continuous-time Markov
chain traversing a discrete state space. The transitions between states are determined by a set of
rates. If all rates are time-independent, residence time in each state is described by an exponential
random variable parameterized by the sum of efflux rates, while the choice of transition is made
based on the respective relative rates. Furthermore, the state space of the Markov chain may
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be multi-dimensional and a state may therefore correspond to a vector of quantities. A common
modeling choice uses N0 as the domain for dimensions representing molecular species and a finite
set of integers as the domain for dimensions representing gene states [6].

Figure 1: The space of commonly used stochastic models for chemical reactions [2, 6–13].

Given this formalization, it is possible to construct models of gene expression representing phys-
iology of interest. In accordance with recent advances in multimodal data acquisition and mod-
eling [14, 15], we represent mRNA dynamics by a two-stage birth-death process (BDP). A gene
locus generates nascent mRNA (unspliced or pre-mRNA) by some variant of a Poisson process. Af-
ter an exponentially distributed delay with rate β, nascent mRNA is converted to mature mRNA
(spliced mRNA). Finally, after an exponentially distributed delay with rate γ, the mature mRNA
is degraded. The choice of a two-stage BDP is informed by the physiological relevance of splic-
ing and buffering models, as well as our recent discussion of qualitative differences in stationary
distributions under different noise models [16].
The simplest stochastic description of gene expression, corresponding to unregulated constitutive
production, has a single gene state [7] that produces mRNA at a constant rate (Figure 2a). In
the light of activation and deactivation known to occur in many biological systems, a more phys-
iologically relevant model posits two distinct gene states with different mRNA production rates,
their switching governed by a telegraph process [6]. A common, and physiologically borne out
simplification known as the bursty approximation [17] considers the limit of infinitesimally short
active periods, which generate finite numbers of gene products [2,18] (Figure 2b). This description
produces statistical over-dispersion over the constitutive production model, an excess of variance
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that is referred to as intrinsic noise, i.e., noise resulting from non-trivial gene locus dynamics [19].
Another model describes extrinsic noise, i.e., noise resulting from cell-to-cell differences in rate
parameters (Figure 2c). These two sources have been studied simultaneously since the early 2000s
[19,20]; however, full analytical solutions have been limited to rather simple cases due to substantial
mathematical complexity.
In the broader context of Figure 1, the more complex transcriptional models described above arise
in a natural way from the simpler models by loosening assumptions and replacing constants by
stochastic processes. For example, the switching model is equivalent to the birth-death process with
a production rate given by the two-state telegraph process, whereas time-homogeneous extrinsic
noise models arise by replacing a parameter with a static (non-changing) process initialized at a
random value.
Finally, although we describe a method for the simulation of an SDE-driven CME in the current
work, there is a wealth of literature using continuous models of gene expressions, essentially treating
concentrations rather than single-molecule counts. A standard result in the field [21] describes an
equivalence between these two approaches: given a discrete CME, a continuous Fokker-Planck
equation (FPE) can be recovered via generating functions; given an FPE, the solution to a CME
immediately follows via Poisson mixing. This connection is frequently exploited to make CME
systems tractable [22].

2.2 Motivation

A recent report considers the extrinsic noise description in the discrete framework [9]. The authors
use the gamma distribution to model the transcription rate distribution and motivate the choice
by previous results in protein production modeling [11]. The line of reasoning posits that a set of
stochastic processes induces a stationary gamma law; therefore, the stationary behavior of a CME
under extrinsic noise can be simply computed as a mixture distribution. Specifically the molecule
copy numbers are governed by a heterogeneous birth-death process, the stationary distribution is
Poisson [7]; if the Poisson rate is, in turn, gamma-distributed, the mixed stationary distribution is
negative binomial. The motivation is well in line with previous work [8], which uses the Central
Limit Theorem to explain the log-normal distribution of parameter values as a natural consequence
of multiplicative effects.
However, upon inspection, this description raises further questions. Although an explanatory pro-
cess is invoked to motivate the choice of distribution, the process dynamics are disregarded. This
is an acceptable approximation in the limit of extremely large time-scale separation – such that
the process is substantially slower than the mRNA dynamics, leading to local equilibration of the
processes downstream of the gene locus – but it cannot be expected to hold in all timescale regimes.
Therefore, we seek to investigate the behavior of CME systems under stochastic driving at the gene
locus. To exactly match the asymptotically slow extrinsic noise regime, the process K(t) describing
the transcription rate must have a gamma stationary distribution; to reflect transient dynamics,
it must also have nontrivial trajectories. The natural representation is a mean-reverting process
described by a stochastic differential equation (SDE). Therefore, the problem requires the coupling
of a CME to an SDE, which is rather nontrivial. Although analogous problems have been explored in
the domain of multi-scale modeling over the past twenty years [23,24], analytical solutions are rare,
and none appear to be available for this model. Even simulation is challenging: standard methods
tend to use models with Brownian noise in the SDE, and require Euler–Maruyama stochastic
integration combined with various rejection schema [24–26]. Intuitively, these models not amenable
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to direct (non-rejection) simulation [27] because the assumption of time-independent rates is broken,
and the residence time must be computed using numerical integration.
To side-step this problem, we use the gamma Ornstein-Uhlenbeck (Γ-OU) model, which is well-
known from quantitative finance [28] and has recently been applied in an investigation of intrinsic
noise, albeit with rather different gene dynamics [18]. The Γ-OU model, which does not have a
Brownian noise component, affords a semi-analytical solution for the state residence time, and thus
enables simulation through a variant of Gillespie’s direct method [27]. We describe an algorithm to
compute exact residence times, discuss several points pertaining to efficient numerical implementa-
tions, and demonstrate that the algorithm is capable of recapitulating the intrinsic, extrinsic, and
constitutive models in several degenerate parameter regimes.

Figure 2: (a) Schema of the intrinsic noise model (ki: burst frequency; B: burst size drawn from
a geometric distribution; β: pre-mRNA splicing rate; γ: mRNA degradation rate. Uniform shade
of green indicates identical parameter values across all cells). (b) Schema of the extrinsic noise
model (K: transcription rate; β: pre-mRNA splicing rate; γ: mRNA degradation rate. Different
shades of green indicate different, but time-independent, values of K across cells). (c) Schema of
the constitutive production model (K: transcription rate; β: pre-mRNA splicing rate; γ: mRNA
degradation rate. Uniform shade of green indicates identical parameter values across all cells).
(d) Schema of the Γ-OU noise model (K(t): transcription rate; β: pre-mRNA splicing rate; γ:
mRNA degradation rate. Different shades of green indicate different values of K across cells and
throughout time).
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3 Notation

3.1 Probability distributions

The continuous uniform distribution is represented by X ∼ U(a, b), f(x; a, b) = 1
b−a , where x ∈ [a, b]

and a, b ∈ R. The geometric distribution is represented by X ∼ Geom(p), P (X = k; p) = (1−p)kp,
where k ∈ N0 and p ∈ (0, 1]. The geometric distribution is well-known to arise in the short-burst
limit of the two-state transcription model [2]. The negative binomial distribution is represented by

X ∼ NegBin(r, p), P (X = k; r, p) = Γ(r+k)
k!Γ(r) (1− p)rpk, where k ∈ N0, p ∈ [0, 1], and r > 0. We note

that MATLAB and the NumPy library use the opposite convention, with a p̃ parameter defined
as 1 − p. The exponential distribution is represented by X ∼ Exp(η), f(x; η) = ηe−ηx, where
x, η > 0. This is the rate parametrization. We note that MATLAB and the NumPy library use
the inverse scale parametrization with parameter θ = η−1. The gamma distribution is represented
by X ∼ Gamma(α, η), f(x;α, η) = ηα

Γ(α)x
α−1e−ηx, where x, α, η > 0. This is the shape/rate

parametrization. We note that MATLAB and the NumPy library use the inverse shape/scale
parametrization with parameter θ = η−1. In the literature, the rate η is usually given the variable
name “β”; however, we use the current convention to prevent confusion with the splicing rate
parameter. Exp(η) is equivalent to Gamma(1, η).

3.2 Stochastic processes

We follow the mathematical finance convention for the Γ-OU process [18,29]. Specifically, a gener-
alized OU process K(t) is the solution of the SDE

dK(t) = −κK(t)dt+ dZ(t),

where κ > 0, K(0) = K0 P -almost surely, and Z is a subordinator of choice [30]. The Γ-OU

process uses the compound Poisson subordinator Z(t) =
∑NP (t)

k=0 Jk, where NP (t) is a Poisson
counting process with rate λ, and independent random jump sizes Jk ∼ Exp(β). The previously
reported solution [30] yields

K(t) =

NP (t)∑
k=0

e−κ(t−τk)Jk,

where τk are the jump times of NP . Note that J0 := K0 and τ0 := 0. The resulting stationary
distribution is Gamma(λκ , β).

4 Simulation design

4.1 Simulation of the Γ-OU process

We consider the standard case of simulation on t ∈ [0, T ]. The number of Poisson arrivals in this
interval follows from the definition of a Poisson process: NP (T ) ∼ Poisson(λT ). It is well-known
[31] that the arrival times of a Poisson counting process on t ∈ [0, T ] are identically distributed
to the rank statistics of a uniformly distributed random variable. Therefore, given NP (T ) total
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jumps, their times τk, k > 0 can be computed by drawing NP (T ) random numbers from U(0, T ) and
sorting the resulting values. The jump sizes Jk, k > 0 are computed by drawing NP (T ) exponential
random variables with rate η or mean η−1. Given an initial condition, the total number of jumps,
their arrival times, and their magnitudes, the Γ-OU process path is fully determined and can be
easily computed.

4.2 Simulation of the CME

We consider a birth-death system with a single time-inhomogeneous birth rate. For illustration,
we consider nascent and mature mRNA species, with respective instantaneous counts nn and
nm. Specifically, we consider three reactions: production with rate a1 = K(t), splicing with
overall rate a2 = βnn, and degradation with overall rate a3 = γnm. Extensions to more general
schema for processing downstream of transcription are trivial. The algorithm is outlined below.
The full derivation, including the formula for τ at each step and numerical considerations for
implementation, is provided in Section S2.

1. Set t = 0. Initialize nn and nm.

2. Generate two uniform random variables u1 and u2.

3. Compute time step τ that meets the criterion τ(βnn+γnm)+
∫ t+τ
t K(t′)dt′ = g(τ) = ln(1/u1).

(a) Check whether the criterion g(τ) > ln(1/u1) at the next jump in transcription rate:

i. if so, use the Lambert W function to explicitly compute τ ,

ii. If not, check the next jump.

4. Compute instantaneous reaction rates aµ, µ ∈ {1, 2, 3}.

5. Compute net state efflux rate a =
∑3

µ=1 aµ.

6. Select reaction index µ to be the lowest i such that
∑i

ν=1 aν > u2a.

7. Advance time by τ .

8. Modify state variables according to the value of µ:

8.1. µ = 1, nn ← nn + 1

8.2. µ = 2, nn ← nn − 1, nm ← nm + 1

8.3. µ = 3, nm ← nm − 1

9. Return to step 2.

5 Results

5.1 Asymptotic regimes

In the current section, we consider several asymptotic regimes where the SDE-driven model reduces
to common physiological models of transcription. In all regimes, we simulate 104 cells and use the
downstream process rate parameters β = 1.2 and γ = 0.7. The stationary distributions are shown
in Figure 3.
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Figure 3: Simulation results in three asymptotic regimes (grey histograms: observed distributions;
red lines: analytical results; black points: cells; right row color: log analytical joint PMF). [Code]

5.1.1 Intrinsic-only noise

As κ → ∞ and η → 0, the Γ-OU stochastic process reduces to a series of peaks of infinitesimally
short duration. If κη → b, a finite quantity, the mass of each peak is finite and given by Ji/κ. This
case reduces to the bursty system studied by Amrhein et al. [18], with burst arrival rate λ and
mean burst size b. The agreement in this domain is shown in the first row of Figure 3. The time
series is provided in Figure S1. The parameters used for the simulation are κ = 10, λ = 0.1, and
η = 6.7× 10−3, with effective mean burst size b = 15.

5.1.2 Extrinsic-only noise

Purely extrinsic noise is conventionally modeled as a mixture with time-independent, gamma-
distributed transcription parameters. In the context of transcription governed by a Γ-OU process,
this corresponds, intuitively enough, to a regime with significant timescale separation between the
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gene locus noise and the downstream processing. Specifically, if κ � β, γ, the cells experience
local equilibrium. To yield a non-degenerate stationary distribution of rates, λ must also vanish.
Therefore, extrinsic noise is recapitulated whenever SDE dynamics are sparse and slow compared
to downstream kinetics. The agreement in this domain is shown in the second row of Figure 3.
The time series is provided in Figure S2. The parameters used for the simulation are κ = 0.12,
λ = 0.01, and η = 6.7× 10−2.

5.1.3 Constitutive production

The stationary distribution rates are distributed per Gamma(λ/κ, η), with mean λ
κη and variance

λ
κη2

. Therefore, if η → ∞ while λ/κ → ∞, with the finite constraint λ
κη = µ, the stationary

distribution reduces to a Dirac δ distribution with a point mass at µ. This degenerate case yields
constitutive production with a constant transcription rate µ. The downstream nascent and mature
mRNA distributions are given by N ∼ Poisson(µ/β) and M ∼ Poisson(µ/γ), in accord with
standard results [7]. The agreement in this domain is shown in the third row of Figure 3. The time
series is provided in Figure S3. The parameters used for the simulation are κ = 8.3×10−4, λ = 0.1,
and η = 20, with effective mean initiation rate µ = 6.

5.2 General parameter regime

The algorithm permits the exact, direct simulation of the SDE-driven system with arbitrary dy-
namics. The results of a sample simulation with comparable rates are shown in Figure 3. The
transcriptional rate agrees with the intended theoretical form, both throughout the time series and
at steady state. Furthermore, the observed long-term nascent and mature mRNA means agree with
the theoretical stationary expectations E[K]/β and E[K]/γ. We do not derive expressions for the
joint or marginal mRNA distributions, but note that the marginals agree fairly well with a negative
binomial fit.

6 Discussion

We have developed an exact and direct routine to simulate an SDE coupled to a birth-death
process and discussed its reduction to a set of qualitatively distinct and physiologically relevant
gene expression regimes, as shown in Figure 3. Furthermore, it is suitable for simulations in
intermediate parameter regimes, with a sample simulation depicted in Figure 4. In the current
section, we suggest extensions to broader classes of stochastic processes, as well as theoretical
directions and implications.

6.1 Generalizations to a broader class of subordinators

Due our focus on stationary behavior under gamma-distributed transcriptional parameters, we only
explore a fairly limited domain of K(t) behaviors. However, as evident from the functional form,
transcriptional dynamics driven by any subordinator Z(t) containing a finite number of jump in
every closed interval can be simulated using an identical procedure. Specifically, the core loop does
not depend on the details of the random number generation process that produces NP (t), τk, and
Jk. Therefore, a fairly wide range of K(t) dynamics can be pursued with minimal modifications to
the algorithm.
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Figure 4: Sample simulation results (κ = 0.6765, λ = 2.3, η = 1.3, β = 1.2, γ = 0.7, 104 cells).
Top row, left: time series for initiation rate, number of nascent mRNA, number of mature mRNA
(black line: mean of all iterations; grey line: single iteration, red dashed line: expected stationary
mean). Bottom row, left: stationary distributions (grey histogram: observed distribution; red
line: expected analytical distribution; blue line: best negative binomial fit). Right: empirical joint
distribution (black points: cells; normal jitter with σ = 0.05 added).

The case of time-varying η is trivial to implement. Given a function which defines η(t), it is only
necessary to draw NP (T ) exponential random variables with rates η(t1), η(τ2), ..., η(τNP (T )). The
resulting simulation is exact for analytical η(t). It may be approximate for more complex forms
of η(t) given by, e.g., deterministic or stochastic differential equations. The case of time-varying λ
is likewise straightforward; procedures for the simulation of inhomogeneous Poisson processes are
readily available [32]. Parenthetically, we note that if λ(t) has an analytical integral, its simulation
is equivalent to the exact Gillespie simulation of a pure-birth CME system; therefore, methods
described elsewhere in the report can be used to exactly simulate the process arrival times.
The simulation is by no means limited to the simple two-step BDP illustrated here. In fact, the
form of the root-finding problem in τ that gives rise to Equation S1 naturally suggests that the birth
process can be combined with any number of time-homogeneous downstream processes. Therefore,
the framework is immediately applicable to arbitrary downstream reaction graphs.
By the thinning property of a Poisson process, the simulation of a single gene locus with arrival rate
λ is equivalent to the simultaneous simulation of n gene loci with rates λ1, λ2, ..., λn. The event–
locus assignments are performed by drawing from a categorical distribution (with PMF pi = λi/λ).
Finally, given different rates ηi at each locus, the overall compound Poisson process is produced by
drawing from the distribution Exp(ηi) at each event i.

6.2 Theoretical directions

Our unified description of noise sources presents an alternative to phenomenological additive or
multiplicative noise models [10]. Further appeal lies in the functional form of the Γ-OU model,
which permits interpretation in terms of site exposure followed by linear occlusion.
We suggest that the intermediate regime of SDE parameters, with moderate rates κ and λ, presents
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a natural area for exploration, as it interpolates between the intrinsic and extrinsic noise regimes.
Qualitatively, the intrinsic noise regime corresponds to dispersion purely governed by the spike
masses and arrivals, whereas the extrinsic noise corresponds to dispersion purely governed by spike
magnitudes and the ratio of K(t) rates. We speculate that the intermediate regime corresponds
to dispersion greater than either extreme allows, and thus permits the integration of both noise
models in a single, self-consistent mechanistic description.
Although specific analytical solutions are outside of the scope of the current investigation, we
suggest that the apparent agreement in Figure 4 (blue lines with best negative binomial fits) is
only approximate, at least for the mature marginal. This hypothesis is based on the imperfect
agreement between the mature marginal and the negative binomial distribution in the limit of pure
intrinsic noise [33].
Throughout the current work, we focus upon the two-stage BDP. As recently discussed [16], the use
of a multi-stage model yields strikingly discordant results under the assumptions of pure intrinsic
and extrinsic noise. Conversely, the availability of multimodal data presents opportunities for model
discrimination, even at steady state. Therefore, we suggest that multimodal information may be
highly informative in intermediate regimes.

7 Code availability

MATLAB code that can be used to reproduce Figures 4-S3, including the simulation and plotting
routines, is available at https://github.com/pachterlab/GP_2021.
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S1 Supplementary figures

Figure S1: Simulation results in the intrinsic noise regime. Left: time series for initiation rate,
number of nascent mRNA, number of mature mRNA (black line: mean of all iterations; grey line:
single iteration, red dashed line: expected stationary mean). Right: stationary distributions (grey
histogram: observed distribution; red line: expected analytical distribution).
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Figure S2: Simulation results in the extrinsic noise regime. Left: time series for initiation rate,
number of nascent mRNA, number of mature mRNA (black line: mean of all iterations; grey line:
single iteration, red dashed line: expected stationary mean). Right: stationary distributions (grey
histogram: observed distribution; red line: expected analytical distribution).
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Figure S3: Simulation results in the constitutive production regime. Left: time series for initiation
rate, number of nascent mRNA, number of mature mRNA (black line: mean of all iterations; grey
line: single iteration, red dashed line: expected stationary mean). Right: stationary distributions
(grey histogram: observed distribution; red line: expected analytical distribution).
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S2 Supplementary information

S2.1 Time-homogeneous algorithm

For comparison, the standard time-homogeneous stochastic simulation algorithm (Gillespie algo-
rithm) proceeds as follows [27]:

1. Set t = 0. Initialize nn and nm.

2. Compute instantaneous reaction rates aµ, µ ∈ {1, 2, 3}.

3. Compute net state efflux rate a =
∑3

µ=1 aµ.

4. Generate two uniform random variables u1 and u2.

5. Compute time step τ = 1
a ln(1/u1).

6. Select reaction index µ such that
∑µ−1

ν=1 aν < u2a ≤
∑µ

ν=1 aν .

7. Advance time by τ .

8. Modify state variables according to the value of µ:

8.1. µ = 1, nn ← nn + 1

8.2. µ = 2, nn ← nn − 1, nm ← nm + 1

8.3. µ = 3, nm ← nm − 1

9. Return to step 2.

Since the computation of τ presupposes constant reaction rates, this algorithm is inappropriate for
the time-inhomogeneous case.

S2.2 Time-inhomogeneous algorithm

The case of a time-inhomogeneous birth rate necessitates a more complex coupled computation [35].
Specifically, the random time step τ is selected according to

∫ t+τ
t a(t′)dt′ = ln(1/u1) = Λ. Using

the definition of a:

∫ t+τ

t
a(t′)dt′ =

∫ t+τ

t

3∑
µ=1

aµ(t′)dt′

=

∫ t+τ

t

(
K(t′) + βnn + γnm

)
dt′

= τ(βnn + γnm) +

∫ t+τ

t
K(t′)dt′

Given a particular realization, we can directly integrate K. Specifically:
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∫ t+τ

t
K(t′)dt′ =

1

κ

NP (t)∑
k=0

e−κ(t−τk)Jk −
1

κ

NP (t+τ)∑
k=0

e−κ(t+τ−τk)Jk

This quantity is straightforward to evaluate. However, the specific functional form makes it chal-
lenging to compute τ without resorting to numerical root-finding algorithms. Therefore, an alter-
native approach is desired for fast computation.
We begin by treating the simplest case. If t > τk for all k, no more jumps occur after the current
time, and K(t + τ) exponentially decays as a function of τ , with the functional form K(t + τ) =
K(t)e−κτ . Therefore,

τ(βnn + γnm) +

∫ t+τ

t
K(t′)dt′

= τ(βnn + γnm) +
K(t)

κ
(1− e−κτ )

This implies the root-finding problem in τ :

Λ = τ(βnn + γnm) +
K(t)

κ
(1− e−κτ )

0 = τ(βnn + γnm)− K(t)

κ
e−κτ +

(
K(t)

κ
− Λ

)
0 = C1τ − C2(t)e−κτ + C3(t)

This equation has the analytical solution:

τ =
1

κ
W

(
κC2

C1
eκC3/C1

)
− C3

C1
= φW (t) (S1)

where C1, C2, and C3 are evaluated at t, whereas W is the product logarithm function, i.e. W0,
the principal branch of the Lambert W function. This solution is straightforward to compute using
standard packages, such as the MATLAB Symbolic Toolbox and the SciPy library for Python. The
alternative formulation is relevant when C1 = 0:

τ = −1

κ
ln

(
C3(t)

C2(t)

)
(S2)

Parenthetically, we note the terminal case t+τ > T , i.e. that the reaction flux up to T is insufficient
to match Λ. Although the SDE dynamics are not simulated past T , and no information about K is
known past this time horizon, this is not a problem; the simulation remains exact up until T , where
it halts. Another edge case, where φW (t) is complex-valued, implies that the total reaction flux up
to t = ∞ is insufficient to meet Λ, and again simply leads to the termination of the simulation at
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T . This edge case only occurs when C1 = 0, as the downstream reactions occur in finite time in
the converse case.
Next, we consider the first non-trivial extension: t < τk for a single k; a single jump occurs after
the current time. For convenience of notation, we define τN := τNP (T ). It remains to bound t + τ
within the region (t, τN ) or the region (τN ,∞).
Since g(τ ; t) = τ(βnn + γnm) +

∫ t+τ
t K(t′)dt′ is guaranteed to be monotonic, we can use a simple

binary decision procedure. If g(τN − t; t) = (τN − t)(βnn + γnm) + K(t)
κ (1 − e−κ(τN−t)) > Λ, the

value of the integral up to τN is an overestimate and the solution is given by Equation S1 evaluated
at t, i.e. φW (t). If the converse is true, the value is an underestimate and the solution is given by
φW (τN ) + (τN − t).
This procedure can be extended to an arbitrary number of jumps after t. The implementation
requires a choice of a search procedure; we choose a simple rightward scan. Specifically, given
t < τk < τk+1 < ... < τN :

1. Assign upper bound for the integral L← k and running time tR ← t.

2. Check whether L ≤ N .

2.1. If L ≤ N , evaluate G = g(τL − t; t) = g(τk − t; t) + g(τL − τk; τk).
2.1.1. If G > Λ, the solution is given by φW (tR) + (tR − t).
2.1.2. If G < Λ, assign L← L+ 1 and tR ← τL.

2.1.3. Return to 2.

2.2. If L > N , the solution is given by φW (tR) + (tR − t).

Since K(t) is known, it is trivial to pre-compute the quantities
∫ τi+1

τi
K(t′)dt′, i ∈ {0, 1, ..., NP (T )−

1}, where τ0 := 0. Therefore, computing the term g(τL − τk; τk) requires a summation over the
pre-computed integral terms

∑L−1
i=k

∫ τi+1

τi
K(t′)dt′ and a single evaluation of the exponential-exit

product (τL − τk)(βnn + γnm). Finally, the remainder g(τk − t; t) requires one evaluation of the
analytical integral per Gillespie time step.
With τ determined, it remains to select the specific reaction channel. The exponential-exit weights
are given by a2 = τβnn and a3 = τγnm. The weight a1 of the birth reaction is given by∫ t+τ
t K(t′)dt′, which is given by

K(t)

κ
(1− e−κτ )

if no jumps occur up within (t, t+ τ), and

K(t)

κ
(1− e−κ(τk−t)) +

M−1∑
i=k

∫ τi+1

τi

K(t′)dt′ +
K(τM )

κ
(1− e−κ(τ+t−τM ))

if t < τk < τk+1 < ... < τM < t + τ . Therefore, the following steps of the time-inhomogeneous
algorithm are identical to steps 6-9 of the time-homogeneous algorithm.
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S2.3 Implementation details

Several points regarding the efficient implementation of the algorithm bear further discussion.
For computational facility, at each step of the Gillespie simulation, we set τk−1 → t and K(τk−1)→
K(t). This approach creates a virtual jump at the current time, and allows treating the integral∫ τk
t K(t′)dt′ without creating a special edge case. Furthermore, to minimize the number of times the

pre-computed integrals are accessed, we compute ∆G at each step, compare it to Λ, and decrement
Λ by ∆G if the reaction flux is insufficient.
The formulation in Equation S1 is susceptible to overflow as κC3/C1 →∞. A näıve computation at
sufficiently high values yields eκC3/C1 =∞ and τ =∞, halting the simulation. Therefore, wherever
overflow is likely to occur, it is necessary to use the appropriate approximation to W . We follow
the approach of Iacono and Boyd [36].
As x→∞, ln(1 + x) has the Puiseux series representation ln(x) + x−1 +O(x−2). For x sufficiently
high to produce overflow, we truncate at the first term and use ln(1 + x) ≈ ln(x).
As an initial guess, we can choose W0(x) = ln(1 + xζ(x)), where ζ(x) = 1

1+0.5 ln(1+x) ; we note that
the subscript refers to the approximation order rather than the branch of the function. Using the
Puiseux series, ζ(x) ≈ 1

1+0.5 lnx . Assuming x is high enough, we can further assume ln(1+xζ(x)) ≈
ln(xζ(x)) = lnx− ln(1 + 0.5 ln(x)). Higher-order approximations follow from the iterative schema
Wn+1 = Wn

1+Wn
(1 + lnx − lnWn). We use the fifth-order iterative approximation whenever the

argument of the Lambert W function is greater than 103.
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