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Abstract 11 

Gene expression noise can reduce cellular fitness or facilitate processes such as 12 

alternative metabolism, antibiotic resistance, and differentiation. Unfortunately, efforts to 13 

study the impacts of noise have been hampered by a scaling relationship between noise 14 

and expression level from a single promoter. Here, we use theory to demonstrate that 15 

mean and noise can be controlled independently by expressing two copies of a gene from 16 

separate inducible promoters in the same cell. We engineer low and high noise inducible 17 

promoters to validate this result in Escherichia coli, and develop a model that predicts the 18 

experimental distributions. Finally, we use our method to reveal that the response of a 19 

promoter to a repressor is less sensitive with higher repressor noise and explain this result 20 

using a law from probability theory. Our approach can be applied to investigate the effects 21 
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of noise on diverse biological pathways or program cellular heterogeneity for synthetic 22 

biology applications. 23 

 24 

Introduction 25 

Protein copy numbers vary within populations of genetically identical cells due to 26 

stochasticity in the molecular and cellular level events that impact gene expression1–3.  27 

This gene expression noise can be harmful, causing metabolic or physiological 28 

challenges, or reduce the reliability with which a cell can carry out a task4–7. Indeed, 29 

evolution appears to have optimized genomic locus8, promoter architecture and 30 

sequence9, transcription and translation rate10, and selected for negative feedback11,12 to 31 

decrease noise in the expression of toxic, complex forming, highly-connected, and 32 

essential proteins8,10,13–16. On the other hand, evolution has also exploited noise as a 33 

means to regulate stress response17–19, alternative metabolism20, cell-fate 34 

determination21, and pathways enabling cell populations to divide labor or hedge bets 35 

against unpredictable environments22,23.  36 

 37 

Gene expression noise can be considered to contain an intrinsic component, relating to 38 

stochasticity in the chemical reactions of gene expression processes, and an extrinsic 39 

component, relating to noise in global conditions or upstream factors1,24,25. At low 40 

numbers of expressed proteins, intrinsic noise dominates and inversely correlates with 41 

the mean. At higher protein copy numbers, extrinsic noise becomes dominant and 42 

uncorrelated with the mean. 43 
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Tools that specifically modulate noise in the expression of genes of interest are needed 44 

to study the impact of noise on biological processes. However, controlling noise 45 

independently of mean is a major challenge due to the coupling between these two 46 

parameters9,13,14,26–28.  47 

 48 

Several strategies for decoupling mean and noise have been reported. For example, 49 

researchers have altered promoter activation kinetics9,29,30, operator site location and 50 

multiplicity31,32, and introduced transcriptional feedback33–35. However, multiple strains 51 

must be engineered to achieve different noise levels for the same mean using these 52 

methods. Independent control of mean and noise in a single strain requires manipulation 53 

of two separate processes impacting protein copy number36. This result has been 54 

demonstrated by combining two small-molecule responsive regulators in a cascade37–40, 55 

altering both the frequency and bias of promoter state switching41, tuning both 56 

transcription and mRNA degradation rates42, or using a time-varying input to 57 

independently control promoter activation frequency and transcription rate43.  58 

 59 

One important limitation to all of these previous approaches is that they rely upon genetic 60 

parts, circuits, or pathways that are native to or have been optimized to function in a 61 

particular organism. As a result, substantial re-engineering may be required to achieve 62 

the same results in each new organism of interest. Additionally, there may be fundamental 63 

limitations on the levels of gene expression and noise that can be achieved using these 64 

approaches. For example, a two-step cascade primarily allows control of extrinsic noise 65 

as it relies on transmission of noise from the upstream regulator to the output39,40. 66 
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Likewise, modulation of promoter kinetics is expected to primarily modulate intrinsic 67 

noise39 and is unlikely to be effective at high copy numbers.  68 

 69 

Here, we show that combining the protein expression distributions from multiple 70 

promoters in a single cell is a generalizable and straightforward strategy to achieve robust 71 

and independent control of mean and noise over a wide area. To this end, we first use a 72 

simple theoretical model to reveal that the mean and noise of a population distribution 73 

can be independently controlled using two co-expressed and orthogonally-regulated 74 

inducible promoters (IPs). We then implement this approach experimentally by 75 

constructing low and high noise generating IPs activated by the addition of two separate 76 

inducer molecules in E. coli. Next, we show that mean and noise of total gene expression 77 

can be manipulated using inducer combinations to control the activity of each IP. We 78 

characterize the steady-state behavior of cells harboring the IP pair and present a simple 79 

mathematical model to predict mean and noise from inducer concentrations. Next, we 80 

show that our experimental gene expression profiles can be predicted with high accuracy 81 

by simulating convolutions between the distributions contributed by each IP. Finally, we 82 

use our approach to independently tune mean and noise in the expression of a bacterial 83 

transcriptional repressor and analyze how each affects the activity of a target promoter 84 

independently.  85 

 86 

Results 87 

Model for independent control of mean and noise from two IPs 88 
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We considered two copies of a gene, encoding products 𝐺1 and 𝐺2, in a single cell. Here, 89 

the total amount of gene product, 𝐺, is 𝐺1 + 𝐺2. The mean (𝜇) value of 𝐺 across a 90 

population of such cells is obtained from 91 

 92 

𝜇(𝐺) =  𝜇(𝐺1) +  𝜇(𝐺2) (1) 93 

 94 

and the variance (𝜎2) from 95 

 96 

𝜎(𝐺)2 = 𝜎(𝐺1)2 + 𝜎(𝐺2)2 + 2𝐶𝑜𝑣(𝐺1, 𝐺2) (2) 97 

 98 

where 𝐶𝑜𝑣 is the covariance. If 𝐺1 and 𝐺2 are regulated such that their expression is 99 

stochastically independent and the covariation negligible, the noise (𝜂, defined as the 100 

standard deviation (𝜎) divided by the mean) of 𝐺 is described by a weighted average of 101 

the noise from each source 102 

 103 

𝜂(𝐺) = (
𝜂(𝐺1)2𝜇(𝐺1)2 +  𝜂(𝐺2)2𝜇(𝐺2)2

(𝜇(𝐺1) + 𝜇(𝐺2))2
)

1
2

(3) 104 

 105 

and the distribution of 𝐺 in the cell population is described by a convolution 106 

 107 

𝑝𝐺(𝑔) =  ∫ 𝑝2(𝑔 − 𝑔1)𝑝1(𝑔1)𝑑𝑔1

∞

−∞

(4) 108 

 109 
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where 𝑝1, 𝑝2, and  𝑝𝐺 are the probability density functions of 𝐺1, 𝐺2, and 𝐺, respectively. 110 

Conditions for stochastically independent 𝐺1 and 𝐺2 expression can be met if their 111 

dominant sources of noise are intrinsic or pathway specific25. 112 

 113 

Based on these results, we reasoned that mean and noise of 𝐺 could be independently 114 

controlled by regulating 𝐺1 and 𝐺2 expression from low and high noise IPs (Fig. 1a). In 115 

this approach, 𝜂(𝐺) can be varied between 𝜂(𝐺1) and 𝜂(𝐺2) while maintaining constant 116 

𝜇(𝐺) by tuning the relative expression of 𝐺1 and 𝐺2 with ratios of IP inputs (Fig. 1b). 𝜂(𝐺) 117 

can be tuned this way at different values of 𝜇(𝐺) by controlling the absolute expression 118 

of 𝐺1 and 𝐺2 with the amount of IP inputs. We also reasoned that the distribution of 𝐺 can 119 

be predicted from a convolution of the distributions of 𝐺1 and 𝐺2 (Fig 1c). One attractive 120 

feature of this approach is the direct relationship between tunability and the difference in 121 

noise produced by 𝐺1 and 𝐺2. Therefore, IPs that produce large differences in noise over 122 

the same range of means are desirable when implementing this method. 123 

 124 

Engineering a high noise promoter induced by AHL 125 

To engineer a system capable of tuning noise over a wide range, we designed two IPs 126 

that produce similar mean expression levels with very different noise values. First, we 127 

engineered a high noise IP that incorporates positive autoregulation through the 3-oxo-128 

C6-acylhomoserine lactone (AHL)-dependent transcriptional activator LuxR and its target 129 

promoter Plux. Specifically, we expressed a bicistronic mRNA encoding the reporter gene 130 

superfolder green fluorescent protein (sfgfp) and luxR as the output of Plux. To achieve 131 

high noise levels and strong inducibility, we generated a small library of variants of this IP 132 
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with luxR ribosome binding sites (RBSs) of different strengths (Fig. 2a, Supplementary 133 

Fig. 1). Initially, we expected that stronger luxR RBSs would increase positive feedback 134 

strength by increasing the translational burst size of luxR. We believed that this effect 135 

would result in more luxR expression per AHL molecule, a steeper AHL-mean transfer 136 

function, and higher noise at intermediate IP outputs44–46. To examine the performance 137 

of these high noise IP designs, we separately transformed each construct into bacteria, 138 

treated the resulting strains with different AHL concentrations, and measured the resulting 139 

sfGFP fluorescence distributions via flow cytometry. To our surprise, weaker luxR RBSs 140 

result in increased steepness in the AHL-mean transfer function and higher noise in the 141 

AHL-noise and mean-noise transfer functions, respectively (Fig. 2b-d, Supplementary 142 

Fig. 1).  143 

 144 

To understand these effects, we developed a deterministic kinetic model of the high noise 145 

IP family (Supplementary Methods, Supplementary Table 2). This model details the 146 

binding interaction between LuxR and AHL, as well as positive transcriptional 147 

autoregulation by LuxR:AHL. While such a deterministic model cannot predict gene 148 

expression noise, it allows us to analytically solve the steady-state response of the high 149 

noise IP family to AHL and identify design principles responsible for steepness of the 150 

transfer function. In particular, we find that this family of high noise IP designs is only 151 

sensitive to feedback when LuxR:AHL concentration is sensitive to LuxR fluctuations, i.e., 152 

when LuxR is limiting relative to AHL. At low luxR translation rates and intermediate AHL 153 

concentrations, the sfGFP output is bistable and exhibits hysteresis. Cell populations 154 
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undergo abrupt jumps from low to high states in this regime, resulting in steep AHL-mean 155 

transfer functions (Supplementary Fig. 2).  156 

 157 

Within this bistable window, we expected noise-driven transitions between states to result 158 

in high gene expression variability. To verify this prediction, we constructed a stochastic 159 

kinetic model of the positive feedback circuit and computed AHL-mean and AHL-noise 160 

transfer functions using Gillespie SSA simulations (Supplementary Methods, 161 

Supplementary Tables 3 and 4). Mean and noise values quantitatively match 162 

experimental values for all four RBSs (Supplementary Fig. 3). For weak RBSs, noise 163 

reaches a maximum at intermediate AHL concentrations, while stronger RBSs show 164 

monotonic decreases in noise, further demonstrating ultrasensitive circuit transitions due 165 

to bistability.  166 

 167 

Taken together, these kinetic modeling results capture the performance of our high noise 168 

IP family and recapitulate the unexpected inverse relationship between luxR RBS 169 

strength and the magnitude of feedback in the circuit. Among the high noise IP variants 170 

we tested, the variant containing the B0031 RBS generated the highest overall noise 171 

while maintaining unimodality. With this variant (hereafter named IPh), we have 172 

constructed a high noise IP that satisfies our design criteria. 173 

 174 

Engineering a low noise promoter induced by aTc  175 

To produce low noise gene expression distributions over a wide range of mean values, 176 

we designed an IP wherein sfgfp is expressed under control of the Tetracycline Repressor 177 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.01.21.427519doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427519
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 
 

(TetR)-regulated PLtet-O1 promoter, with tetR expressed from a constitutive promoter on 178 

the same plasmid (Fig. 2e). We cloned the DNA encoding this IP into different plasmid 179 

backbones with ColE1 (50-70 copies/cell), p15a (20-30 copies/cell), and SC101* (3-4 180 

copies/cell)47 origins of replication (Fig. 2e). Initially, we hoped to find differences in output 181 

noise between origin of replication variants by virtue of the scaling between copy number 182 

and intrinsic noise, or by differences in plasmid copy number variability25,47,48. Mean 183 

output range (the difference between high and low states), detection threshold (inducer 184 

concentration at half output range), and steepness all increased with plasmid copy 185 

number (Fig. 2f, Supplementary Table 5). A deterministic kinetic model of the low noise 186 

IPs (Supplementary Table 6, Supplementary Methods) capture these experimental 187 

behaviors (Supplementary Fig. 4) and provides an explanation for why their transfer 188 

functions become steeper with increasing plasmid copy number. 189 

 190 

For all origin of replication variants, we also observed that the sfGFP noise decreases 191 

monotonically as a function of both inducer and sfGFP mean until reaching a noise floor 192 

of about 0.25 (Fig 2g, h). At low induction, higher copy number variants produce lower 193 

noise but also correspondingly higher sfGFP mean, such that all variants collapse onto a 194 

similar initial trajectory. These behaviors suggest noise from this IP is dominated by 195 

intrinsic (at low to intermediate expression) and global extrinsic (at high expression) 196 

sources rather than transmitted noise from TetR or differences in copy number stringency 197 

between origins of replication. At intermediate induction, mean-noise transfer functions 198 

diverge slightly, with lower copy number variants decreasing more rapidly than higher 199 

copy number variants (Fig. 2h). A stochastic kinetic model of this low noise IP 200 
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(Supplementary Methods) recapitulates these experimental results, predicting monotonic 201 

decreases in noise as a function of aTc for all origin of replication variants, and lower 202 

noise at intermediate induction for lower copy number variants (Supplementary Fig. 3, 203 

Supplementary Tables 7-9).  204 

 205 

These kinetic models recapitulate the behavior of our low noise IPs and reveal that the 206 

observed performance differences that arise on different plasmid backbones are 207 

attributable to differences in repressor and promoter copy number. The SC101* variant 208 

generates the lowest overall noise and similar sfGFP mean output levels as IPh. Thus, 209 

we renamed this variant IPl and carried it forward for further studies. 210 

 211 

Independent control of mean and noise with low and high noise IPs 212 

To demonstrate independent control of mean and noise by summing gene expression 213 

from low and high noise IPs, we co-transformed bacteria with plasmids encoding IPh and 214 

IPl (Fig. 3a). We exposed populations of the co-transformed bacteria to a 25 x 25 (625 215 

total) panel of AHL and aTc concentrations and measured the sfGFP distributions by flow 216 

cytometry (Fig. 3b-d). We found that AHL-mean transfer functions are sigmoidal and shift 217 

higher with the level of aTc (Fig. 3b). This behavior is consistent with summation of sfGFP 218 

from IPh and IPl. Both the AHL-noise and mean-noise transfer functions decrease non-219 

monotonically, peak at intermediate AHL concentrations, and shift lower with the level of 220 

aTc (Fig. 3c,d). These properties are consistent with noise being determined by the 221 

relative contribution of IPl and IPh to total sfGFP (Eq. 3). As intended, exposure to different 222 

inducer combinations produces an area in mean-noise space over which our system can 223 
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be tuned (Fig. 3d). Thus, we can independently control mean and noise by summing gene 224 

expression from low and high noise IPs.  225 

 226 

As predicted by our model, a wide range of sfGFP noise values can be achieved at 227 

virtually the same mean (Fig. 3d-g). At low total bacterial fluorescence levels, differences 228 

between distributions with similar mean and disparate noise are masked by E. coli 229 

autofluorescence (Fig. 3f). However, as sfGFP levels increase and the contribution of 230 

autofluorescence to total cellular fluorescence becomes negligible, differences between 231 

distributions with similar mean and different noise levels become dramatic (Fig. 3e,f). 232 

Thus, while we can tune mean and noise at low and high expression levels, detecting 233 

tunability at low mean requires analysis after autofluorescence subtraction. 234 

 235 

We next determined whether Eqs (1) and (3) could quantitatively recapitulate the behavior 236 

of this system. To that end, we adopted two phenomenological equations to describe 237 

mean and noise of each IP as a function of inducer, and fit their parameters to the 238 

experimental mean-noise data in Figure 3 (Supplementary Methods). Following this 239 

approach, we observe close agreement between model predictions and experimental 240 

data, enabling accurate prediction of mean and noise from inducer concentrations and 241 

further supporting the hypothesis of additive gene expression from our two IPs. (Fig. 3b-242 

d, Supplementary Fig. 5, Supplementary Table 10). 243 

 244 

IPh/IPl outperforms previous mean-noise control systems 245 
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To our knowledge, no metric has been proposed to describe the ability of a genetically-246 

encoded system to independently tune gene expression mean and noise. The dynamic 247 

range, or ratio of output gene expression levels in the fully active versus fully inactive 248 

states, is a 1-dimensional metric frequently used to quantify IP performance. However, 249 

mean and noise are tunable over a 2-dimensional area37–39,41–43.  250 

 251 

To quantify the performance of mean-noise control systems, we developed metrics that 252 

we term dynamic area (𝐹𝐴) and dynamic noise (𝐹𝜂) (Methods). 𝐹𝐴 measures the fold-253 

change in mean-noise area over which a system can be tuned, while 𝐹𝜂 measures the 254 

largest fold-change in noise a system can achieve at a constant mean. Practically, 𝐹𝐴 255 

describes the capacity of a system to produce different combinations of both mean and 256 

noise, while 𝐹𝜂 captures the ability to modulate noise at a constant mean. We computed 257 

𝐹𝐴 and 𝐹𝜂 using the experimental mean-noise dataset measured for our system and found 258 

values of 11.39 and 6.9, respectively (Fig. 3g). By this same analysis, we find that our 259 

system performs better than any previously described mean-noise control system (which 260 

range from 2.22 to 10.17 in 𝐹𝐴 and 1.61 to 4.66 in 𝐹𝜂) we are aware of, in any organism 261 

(Supplementary Fig. 6, Supplementary Table 11). 262 

 263 

Noise values among native E. coli genes range from 0.26 to 6.09 in a manner strongly 264 

dependent on the mean13. By comparison, our system can achieve noise values ranging 265 

from 0.318 to 2.18 at just a single mean (1045 MEFL, where 𝐹𝜂 is defined), making our 266 

system capable of tuning noise through a range which is physiologically relevant to E. 267 

coli. 268 
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 269 

Convolution model predicts IPh/IPl distributions 270 

We hypothesized that the distributions produced by our combined IPh/IPl system could be 271 

predicted by simulating a convolution between distributions generated by IPl and IPh 272 

individually (Fig. 4a). To examine this hypothesis, we simulated each of the 625 273 

experimental populations resulting from exposure to the AHL and aTc panel in Figure 3 274 

by summing randomly sampled fluorescence events between populations induced with 275 

only AHL and populations induced with only aTc (termed marginal distributions) (Fig. 4b, 276 

Methods). These simulated distributions show remarkable similarity to their experimental 277 

counterparts and frequently capture subtle, higher-order behaviors observed in 278 

experimental distributions such as skew and bimodality (Fig. 4b). While the simulated 279 

distributions are highly accurate overall, fluorescence levels are systematically 280 

overestimated in distributions with very low mean. This overestimation occurs because 281 

autofluorescence and basal sfGFP fluorescence (sfGFP fluorescence in the absence of 282 

inducer) are measured twice during the summation of two cell fluorescence events (Fig. 283 

4a). Our distribution predictions are also less accurate when the AHL-induced population 284 

is near the inflection point of the AHL-mean transfer function (Fig. 3b). 285 

 286 

We quantified similarity between each pair of experimental and predicted distributions 287 

using the Bhattacharyya coefficient49 (𝑐𝐵), a metric ranging from 0 to 1 measuring overlap 288 

between two probability distributions (Fig. 4b,c, Methods). The average 𝑐𝐵 for all 289 

populations is remarkably high, at 0.92 with a standard deviation of 0.094. However, due 290 

to the previously-described effect of overestimating autofluorescence and basal sfGFP 291 
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expression, 𝑐𝐵 shows strong correlation with expression mean below about 1,000 MEFL 292 

(Supplementary Fig. 7). Mean and standard deviation of simulated distributions show 293 

strong concordance with their experimental counterparts (𝜌𝑐 of 0.969 and 0.990 294 

respectively) and this concordance is further improved (𝜌𝑐 of 0.995 and 0.993 295 

respectively) after compensation for overestimated autofluorescence and basal 296 

expression (Fig. 4d,e, Methods). Overall, this approach of simulating convolutions 297 

between two experimental marginal distributions enables simple and accurate prediction 298 

of the total fluorescence distributions generated by our system.  299 

 300 

Repressor noise decreases steepness of promoter response 301 

The transcription factor-promoter transfer function is the quantitative relationship between 302 

transcription factor expression level and target promoter activity. It has previously been 303 

shown that the shape, including the steepness, of a transcription factor-promoter transfer 304 

function can strongly depend on the levels and context of transcription factor 305 

expression50–54. Based on previous experiments measuring the impact of noise on 306 

biological processes29,37,43, we hypothesized that increasing noise in transcription factor 307 

expression would produce less steep transcription factor-promoter transfer functions. We 308 

used IPh/IPl to characterize the effect of repressor noise on mean expression from a target 309 

promoter. To that end, we first fused PhlFAM 50, a TetR family repressor from 310 

Pseudomonas fluorescens, to the C-terminus of sfGFP on both IPh and IPl. We then co-311 

transformed E. coli with plasmids expressing the modified IPh and IPl along with an output 312 

plasmid carrying mCherry expressed under the PhlFAM repressed PPhlF promoter (Fig. 313 

5a). We grew these bacteria under different combinations of AHL and aTc, allowed sfGFP 314 
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and mCherry levels to reach steady-state, and quantified both fluorescent proteins by flow 315 

cytometry (Fig. 5b,c, Supplementary Figs. 8-10). As before, mean-noise transfer functions 316 

decrease non-monotonically with respect to AHL induction, peak at intermediate AHL 317 

concentrations, and shift lower upon addition of aTc (Fig. 5b). Conversely, induction with 318 

only aTc results in comparatively low noise, which monotonically decreases with higher 319 

mean (Fig. 5b). As a result, the system achieves different sfGFP-PhlFAM noise while 320 

maintaining the same mean by applying different amounts and ratios of AHL and aTc. 321 

Mean mCherry fluorescence decreases in response to mean sfGFP-PhlFAM in a manner 322 

that strongly depends on noise (Fig. 5c, Supplementary Fig. 10). When induced with AHL, 323 

mean mCherry begins to decrease at lower mean sfGFP-PhlFAM, but requires 324 

dramatically higher mean sfGFP-PhlFAM to become fully repressed compared to when 325 

induced with aTc (Fig. 5c, Supplementary Fig. 10). Moreover, induction with combinations 326 

of AHL and aTc generates intermediate levels of this effect. Noise, therefore, makes the 327 

PhlF-promoter transfer function overall less steep, increases apparent PhlFAM activity at 328 

low mean, and decreases apparent PhlFAM activity at high mean. This striking result 329 

demonstrates how a single transcription factor can generate vastly different population 330 

level behaviors depending on the details of its expression.  331 

 332 

We applied a simple law from probability theory (Methods) to predict mean mCherry 333 

values from probability distributions of sfGFP-PhlFAM (Supplementary Methods, 334 

Supplementary Fig. 11, Supplementary Table 12). While predicted mean mCherry values 335 

show a qualitative agreement with the data (Fig. 5d), strong cell autofluorescence signal 336 
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in the fluorescence distributions at low expression levels likely undermines a more 337 

quantitative agreement. 338 

 339 

Discussion 340 

In nature, gene duplication has been proposed as a mechanism to resolve a tradeoff 341 

between expression noise and environmental responsiveness55. This hypothesis was 342 

recently validated for a pair of duplicated transcription factors in S. cerevisiae, where one 343 

member of the pair exhibits low noise and is constitutively expressed, while the other 344 

exhibits high noise and is induced by environmental stress56. This strategy appears to 345 

have evolved to minimize transcription factor noise under normal growth conditions while 346 

also allowing activation of a stress response pathway under stress-inducing conditions. 347 

Based on the results of this study, we hypothesize that gene duplication may also allow 348 

cells to adjust gene expression noise in order to increase fitness in environments where 349 

low noise is beneficial and in other environments where high noise is beneficial. 350 

 351 

Unlike previous approaches to modulating mean and noise in gene expression, our 352 

method does not require the use of a particular genetic part or circuit, a specific 353 

mechanism of noise reduction or amplification, or a particular host organism. Rather, it 354 

only requires the availability of orthogonal low and high noise generating IPs in an 355 

organism of interest and the ability to co-transform them into a single cell.  356 

 357 

Though several mean-noise control systems have been reported, there had been no 358 

method available to benchmark their performance against one another. Here, we propose 359 
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dynamic area and dynamic noise to quantify the performance of mean-noise control 360 

systems. These metrics capture the magnitude of the mean-noise area and the noise 361 

accessible at a constant mean, respectively. Like dynamic range, these metrics are 362 

independent of the absolute values of mean and noise. By comparing these two variables, 363 

one could distinguish systems that are tunable in both dimensions from systems that are 364 

primarily tunable in just a single dimension.  365 

 366 

Our model based on summation of gene expression from two IPs accurately predicts 367 

population-level mean and noise of fluorescence distributions from inducer 368 

concentrations. The success of this approach supports the hypothesis for additive gene 369 

expression from our two engineered sources and may be adapted to describe future 370 

implementations of this method. 371 

 372 

We can predict total gene expression distributions by simulating convolutions between 373 

experimental IPl and IPh distributions. While the predictions are systematically 374 

overestimated when autofluorescence and basal reporter gene fluorescence dominate 375 

(at low mean), they are otherwise surprisingly accurate and able to capture detailed 376 

population features that would not be predicted following a parametric approach. Going 377 

forward, our predictions would benefit from a method to reduce or deconvolve 378 

autofluorescence from flow cytometry measurements. While convolution predictions 379 

require advance measurement of marginal distributions, the number of convolutions that 380 

can be predicted combinatorially increases with number of marginal distributions 381 

measured. We imagine this predictive ability could be utilized to forward engineer desired 382 
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convolution distributions, including their higher moments and noise types, from existing 383 

promoter libraries57–63, constitutive or otherwise. Likewise, our method could be used to 384 

combinatorially increase the number of gene expression distributions achievable with a 385 

constitutive promoter library by expressing the same gene from combinations of two or 386 

more library members. 387 

 388 

Our results indicate that regulated promoters respond to their cognate transcription 389 

factors at lower mean expression levels but require higher mean expression levels to 390 

saturate as transcription factor noise increases. As a result, a noisy transcription factor 391 

has higher apparent activity than a less noisy transcription factor at low expression levels, 392 

while the opposite is true at high levels. These findings could be used to anticipate the 393 

effect of changing the distribution of a transcriptional regulator or create design principles 394 

for predicting and programming the shape of transcriptional dose-response curves. 395 

 396 

Our method could be used to study other noise-dependent biological phenomena such 397 

as transient stochastic resistance19,64, persister cell formation17,18, stochastic 398 

differentiation21, noise-induced cooperative behaviors22,23, or gene circuit stability 65 in cell 399 

populations. Such studies could provide a greater experimental basis for the fitness 400 

advantages conferred by noise or be used to create design principles for engineering 401 

desirable cell population behaviors using noise-driven processes.  402 

 403 

Gene expression convolution could also be used to engineer noisy phenotypes into 404 

populations of living cells. Example behaviors include genetically identical populations 405 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.01.21.427519doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427519
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

that automatically differentiate into specified ratios of cell sub-types66, form Turing-type 406 

patterns using activator and inhibitor morphogens with similar diffusion rates67, or 407 

stochastically lyse in order to release enzymes to enable the population to metabolize 408 

complex agricultural feedstocks68. Taken together, gene expression convolution is a 409 

simple strategy for studying and controlling gene expression noise in a wide range of 410 

organisms and biological pathways. 411 

 412 

Methods 413 

Molecular biology 414 

The plasmids used in this study are listed in Supplementary Table 13. Plasmid maps are 415 

shown in Supplementary Fig. 12. DNA assembly was performed by the Golden Gate 416 

method69, and cloning was performed in strain NEB 10𝛽 (New England Biolabs). A PhlF 417 

mutant (PhlFAM) with improved repression activity was amplified from the genome of strain 418 

sAJM.150650 and used in this study. 419 

 420 

Cell growth and chemical induction 421 

IP characterization and convolution experiments 422 

Experiments were performed in strain MG1655 in M9 media + 100 mM HEPES (pH 6.6) 423 

at 37°C and 250 RPM of shaking. Media was supplemented with ampicillin (50 µg/mL), 424 

spectinomycin (100 µg/mL), and chloramphenicol (35 µg/mL) as appropriate to maintain 425 

plasmids.  426 

 427 
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Frozen preculture aliquots of each experimental strain were generated by growing 428 

transformants to exponential phase (OD600 ≈ 0.1), adding glycerol to 18% (v/v), recording 429 

OD600, and freezing 100 µL aliquots in PCR tubes at -80°C.  430 

 431 

Panels of chemical inducer concentrations were prepared by diluting varying amounts of 432 

AHL (Sigma-Aldrich, K3007) in media, and aTc (Takara, 63130) in 100% ethanol, in wells 433 

of 96-well plates. Inducer concentrations in each panel well were prepared to 200X the 434 

desired final concentration. Panel plates were sealed with adhesive foil, stored at -30°C, 435 

and warmed to room temperature before experiments.   436 

 437 

Experimental cultures were prepared by diluting a volume of preculture in media to 438 

achieve a cell density of OD600  = 2 × 10−5. Culture media was distributed among wells of 439 

24-well plates (1 mL/well) and supplemented with the desired chemical inducer 440 

concentration by multichannel pipetting solution from chemical inducer panels. Culture 441 

plates were then sealed with adhesive foil and grown for 6 h to OD600 ≤ 0.3, after which 442 

time they were iced for ≥ 15 min and measured by flow cytometry. 443 

 444 

Transcription factor noise experiments 445 

Experiments were performed as described above but in LB media. LB media was found 446 

to be necessary due to high metabolic burden from mCherry expression. 447 

 448 

Flow cytometry 449 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.01.21.427519doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427519
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

Flow Cytometry was performed with a BD FACScan flow cytometer outfitted with blue 450 

(488 nm, 30 mW) and yellow (561 nm, 50 mW) solid-state lasers (Cytek). sfGFP 451 

fluorescence was measured in the FL1 channel with a 510/20 nm emission filter, and 452 

mCherry fluorescence was measured in the FL3 channel with a 650 nm long-pass filter. 453 

Event rates of 1,000–3,500 events/s were used, and all events were captured until 20,000 454 

events occurred within an SSC-FSC area characteristic of the strain. Calibration beads 455 

(Spherotech, RCP30-5A) were measured at the end of each cytometry session. Flow 456 

cytometry files were processed using FlowCal70. A gate fraction of 0.3 was used to gate 457 

events in the SSC and FSC channels, and FL1/FL3 arbitrary fluorescence units were 458 

calibrated to MEFL/MECY using calibration bead data collected during each respective 459 

cytometry session (Supplementary Fig. 13).  460 

 461 

Population mean and variance calculation 462 

Flow cytometry data for each sample was analyzed using a custom Python script that 463 

calculates arithmetic mean and noise from fluorescence distributions. The script first trims 464 

a small number of outlier observations which can heavily influence sample noise. 465 

Trimming is performed by first calculating a smooth estimation of the probability density 466 

function corresponding to the log-fluorescence distribution of the sample via kernel 467 

density estimation. The range of fluorescence values to keep is then determined by 468 

identifying the points nearest to the median at which the density estimate falls below a 469 

0.5% threshold. Sample histograms that display the trimming effect are generated and 470 

assessed to ensure the trimming functions as expected. Mean and variance of a likewise 471 
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analyzed, untransformed MG1655 sample are then subtracted from the mean and 472 

variance of experimental samples. 473 

 474 

System performance analysis 475 

The concave hull of log10 transformed mean-noise pointsets was used to calculate both 476 

𝐹𝐴 and 𝐹𝜂. R packages “alphahull” and “sp” were used to find concave hulls and convert 477 

hulls to polygon objects, respectively. Alpha parameter was chosen manually. We report 478 

log10(𝐹𝐴) as the area of the polygon defined by the hull, and log10(𝐹𝜂) as the length of the 479 

longest vertical chord spanning the hull. 480 

 481 

Convolution distribution simulation and analysis 482 

Fluorescence events were randomly sampled (n=50,000) from populations that received 483 

no AHL and summed with likewise sampled events from populations that received no 484 

aTc. To simulate the population which received neither AHL nor aTc, events were 485 

sampled from that population twice and then summed. The three highest and lowest 486 

fluorescence events were eliminated before summation to remove extreme outliers. 487 

 488 

Experimental and simulated fluorescence distributions were converted to density 489 

estimates, 𝑝𝑒 and 𝑝𝑠, respectively, to calculate Bhattacharyya coefficients: 490 

 491 

𝑐𝐵 = ∫ √𝑝𝑒(𝑥𝑖)𝑝𝑠(𝑥𝑖)𝑑𝑥
∞

0

(5) 492 

 493 

where 𝑥 is FL1 fluorescence (MEFL). 494 
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 495 

Compensation of predicted mean and standard deviation was performed by subtracting 496 

the mean and variance of autofluorescence and basal sfGFP fluorescence from the 497 

uncompensated predicted mean and variance. Agreement between log10-scale 498 

experimental and simulated mean and standard deviation was measured by Lin’s 499 

concordance correlation coefficient (𝜌𝑐)71. 500 

 501 

Model for transcriptional output of a noisy regulator 502 

Mean transcriptional output from the PPhlF promoter was modeled using the Law of The 503 

Unconscious Statistician (LOTUS):  504 

 505 

𝜇(𝑐) =  ∫ 𝑓(𝑥)𝑝𝑒(𝑥)𝑑𝑥
∞

0

(6) 506 

 507 

where mean mCherry expression, 𝜇(𝑐), of a population is found through a single-cell 508 

relationship, 𝑓(𝑥),  between FL1 and FL3 fluorescence (Supplementary Methods) and the 509 

experimental FL1 probability density estimate 𝑝𝑒(𝑥). Model predictions in FL1 and FL3 510 

were converted to sfGFP and mCherry by autofluorescence subtraction. 511 

 512 

Statistical analysis 513 

Points and density estimates throughout the text are single replicates collected over one 514 

to three separate experiments as indicated in figure legends. Standard errors on model 515 

fits are shown in the Supplementary Information. 516 

 517 
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Code availability 518 

Custom code used in this study has been deposited on GitHub at 519 

https://github.com/taborlab/NoiseControl. 520 

  521 

Data availability 522 

Datasets generated during this study have been deposited on GitHub at 523 

https://github.com/taborlab/NoiseControl. 524 

 525 
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Figures 712 

 713 
 714 

Fig. 1. Summation of gene expression from low and high noise IPs. (a) Two copies 715 

(𝐺1 and 𝐺2) of the same gene are expressed from two independently regulated IPs: one 716 

that produces low noise distributions and one that produces high noise distributions. 𝐺1 717 

and 𝐺2 sum inside cells. (b) Mean and noise of 𝐺1 and 𝐺2, separately, are functions of 718 

their respective IP’s inputs (marginal transfer functions) and have single mean-noise 719 

trajectories. Mean and noise of the sum of 𝐺1 and 𝐺2 is a function of the amount and ratio 720 

of both IP’s inputs (total transfer functions) and can be tuned within the area defined by 721 

their marginal transfer functions. (c) When 𝐺1 and 𝐺2 are summed, their marginal 722 

distributions form a convolution (⊗).  723 

724 
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 725 
Fig. 2. Engineering low and high noise IPs controlled by AHL and aTc. (a) Library of 726 
high noise IPs based on LuxR:AHL-mediated positive transcriptional feedback. LuxR is 727 

encoded under RBSs of variable strength (indicated above the RBS) in different library 728 
members. Steady-state AHL-mean (b), AHL-noise (c), and mean-noise (d) transfer 729 

functions for high noise IP variants from (a). (e) Library of low noise IPs based on 730 
TetR:aTc-inducible gene expression without feedback. Different plasmid origins on which 731 

this IP is introduced are indicated. Steady-state aTc-mean (f), aTc-noise (g), and mean-732 
noise (h) transfer functions for origin of replication variants from (e). Points within each 733 
group are single replicates collected from two separate experiments performed on two 734 

separate days. Smooth lines in (b) and (f) are fits to Hill functions with Hill coefficients 735 

(𝑛𝐻) indicated. 736 
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 737 
Fig. 3. Independent control of mean and noise by summation of gene expression 738 
from IPh/IPl. (a) Plasmids encoding IPh and IPl are co-transformed in MG1655 and 739 

induced with AHL and aTc, respectively. sfGFP from each IP sum inside cells. Steady-740 
state AHL-mean (b), AHL-noise (c), and mean-noise (d) transfer functions of cells 741 
harboring plasmids in (a) with exposure to combinations of AHL and aTc. Mean and noise 742 
values (points) and model fits (lines) shown are a subset (9 out of 25 aTc concentrations) 743 

selected for evenly spaced visualization. Selected fluorescence density estimates of cell 744 
populations induced with AHL and aTc (e) over a wide range of inducer concentrations, 745 
or (f) to a wide range of noise at virtually the same mean. (g) Concave hull (black line) of 746 

the complete mean-noise pointset (circles) used to calculate dynamic area and dynamic 747 
noise. Points and density estimates are single replicates collected from three separate 748 
experiments performed on three separate days. 749 
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750 
Fig. 4. Convolution predicts gene expression distributions from IPh/IPl. (a) Workflow 751 

for simulating convolution distributions. Fluorescence events from two experimental 752 
marginal distributions are randomly sampled and summed together. Summed events form 753 
a simulated convolution distribution which can be compared with an experimental 754 
counterpart. (b) Experimental (filled histograms) and simulated (black lines) fluorescence 755 
distributions of cell populations induced with combinations of AHL (vertically aligned, 7 of 756 

25 shown) and aTc (horizontally aligned, 7 of 25 shown). Simulations were performed 757 
using populations with no AHL induction (first column) and no aTc induction (bottom row) 758 

as marginal distributions. Bhattacharyya coefficients (𝑐𝐵) for each experimental-simulated 759 
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distribution pair is listed in each subpanel. (c) Distribution of 𝑐𝐵 for all 625 pairs of 760 

experimental and simulated distributions. (d,e) Comparison of mean and standard 761 
deviation of experimental and simulated distributions. Equivalence line (black line) and 762 

Lin’s concordance coefficients 𝜌𝑐 are shown. Uncompensated predicted values measure 763 

autofluorescence and basal sfGFP fluorescence (dashed line) twice due to the 764 

summation in (a). Compensation is described in the Methods. Experimental density 765 
estimates are single replicates collected from three separate experiments performed on 766 
three separate days.  767 
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 768 
Fig. 5. Noise modulates repressor activity on a target promoter. (a) Schematic 769 
representation of plasmids used to control noise of a transcriptional regulator and monitor 770 

its output. PhlFAM is fused to the C-terminus of sfGFP and expressed from IPl and IPh. 771 
PhlFAM activity is monitored via mCherry expression from the PphlF promoter on the output 772 
IP. (b) Steady-state sfGFP-PhlFAM mean-noise transfer functions of cells harboring 773 

plasmids in (a) with exposure to combinations of AHL and aTc. (c) Mean mCherry 774 

expression as a function of mean sfGFP-PhlFAM. (d) LOTUS model prediction of mean 775 
mCherry as a function of sfGFP-PhlFAM. Points represent single replicates collected on a 776 
single day. 777 
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