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Abstract 
Single-cell RNA-sequencing data can revolutionize our understanding of the patterns of cell-cell 
and ligand-receptor connectivity that influence the function of tissues and organs. However, 
the quantification and visualization of these patterns are major computational and 
epistemological challenges. Here, we present Connectome, a software package for R which 
facilitates rapid calculation, and interactive exploration, of cell-cell signaling network topologies 
contained in single-cell RNA-sequencing data. Connectome can be used with any reference set 
of known ligand-receptor mechanisms. It has built-in functionality to facilitate differential and 
comparative connectomics, in which complete mechanistic networks are quantitatively 
compared between systems. Connectome includes computational and graphical tools designed 
to analyze and explore cell-cell connectivity patterns across disparate single-cell datasets. We 
present approaches to quantify these topologies and discuss some of the biologic theory 
leading to their design. 
 
Introduction 
 
Cell-to-cell communication is a major driver of cell differentiation and physiological function 
determining tissue/organ development, homeostasis, and response to injury. Within tissues, 
cells have local neighbors with whom they directly communicate via paracrine signaling and 
direct cell-cell contact, and long-range or mobile partners with whom they exchange 
information via endocrine signaling.  In solid tissues, cell types have specific cellular niches 
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incorporating localized matrix and signaling environments, which facilitate phenotypic 
maintenance and support specialized cell functions. Circulating immune cells use an extensive 
library of chemokines to coordinate multicellular system responses to threat or injury. The 
advent of single-cell technologies has made it technologically possible, for the first time, to 
codify cell-specific ligand-receptor patterns in complex tissues with both high accuracy and 
robust statistical confidence. The resulting signaling topologies are strongly suggestive of 
intercellular communication vectors and can be revealed through a variety of techniques (1-8). 
The combination of single-cell sequencing data with ligand-receptor mapping is therefore a 
promising approach to exploring, understanding, and reverse-engineering complex tissue 
systems-biology for biologic, therapeutic, and regenerative efforts. 
 
A connectomic network from a single tissue has unique properties that must be taken into 
consideration for biologically relevant downstream information processing. Tissue-derived 
connectomic networks are directional – i.e. each ligand-receptor interaction matrix is 
asymmetric; multi-modal – i.e. many ligand-receptor mechanisms contribute to the 
connectome; and weighted – i.e. interaction edges can be assigned quantitative values. These 
properties make data mining and data visualization substantially more complex than in some 
other genres of network science. Added dimensions can additionally come into play when it is 
necessary to compare cell-cell signaling in tissues between experimental conditions, over time 
during growth or remodeling, or between disparate tissue systems in which the same cell type 
annotations are not necessarily present. Here we describe a new computational package in R 
called Connectome which facilitates each of these tasks.  
 
Connectome is a multi-purpose tool designed to create ligand-receptor mappings in single-cell 
data, to identify non-random patterns representing signal, and to provide biologically-
informative visualizations of these patterns. Connectome formalizes and generalizes the 
methods first developed in Raredon et al. 2019 (1), allowing extension of the same analyses to 
any single-cell dataset, or sets thereof, in association with the R package Seurat. By default, 
Connectome uses the FANTOM5 database of ligand-receptor interactions (9), but it also allows 
mapping against any user-provided ligand-receptor list. Because the reference database can be 
customized, Connectome can be used to investigate newly discovered, or hypothesized, ligand-
receptor mechanisms of particular interest. 
 
To demonstrate Connectome, we apply the software analysis in three distinct use cases. First, 
we demonstrate application to a single tissue by analyzing single-cell human pancreas data. 
Second, we describe differential connectomics, comparing IFN-stimulated human PBMCs with 
unstimulated control data. Third, we apply Connectome to a longitudinal wound-healing 
dataset in mouse muscle. For brevity, extended discussion of certain topics has been compiled 
in a Supplemental Methods sections. All software is publicly available at 
https://github.com/msraredon/Connectome. Detailed vignettes and instructions for use are 
published at https://msraredon.github.io/Connectome/. Exact scripts for replicating all figures 
in this manuscript are included in Supplemental Data D1. 
 
Defining the data structure of tissue connectomics 
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The connectomic mapping discussed here treats every cell parcellation (e.g., different cell 
types, phenotypically distinct cell states of the same cell type, etc.) as a single node, averaging 
ligand and receptor values across a given cell parcellation to yield mean values which are then 
linked. Mean-wise connectomics has the advantage of accommodating the zero-values intrinsic 
to single-cell data, while simplifying the system so that every cell parcellation is represented by 
a single, canonical node. However, as this approach will blend the effects of all cellular 
archetypes within a cluster, initial cell parcellation must be done carefully for the resulting 
connectomic networks to be biologically meaningful. 
 
An edgeweight must be defined for each edge in the celltype-celltype connectomic dataset. 
Connectome, by default, calculates two distinct edgeweights, each of which captures 
biologically relevant information. The first edgeweight, also referred to as ‘w1’ or ‘weightnorm,’ is 
defined as a function (by default, the product) of the celltype-wise normalized expression for 
the ligand and the receptor, or 
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Where (k) denotes a specific ligand-receptor pair, 𝐶𝑒𝑙𝑙𝑡𝑦𝑝𝑒"
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expression of ligand 𝐿$ in celltype (i), and 𝐶𝑒𝑙𝑙𝑡𝑦𝑝𝑒#
*!
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 is the normalized expression of 
receptor 𝑅$ in celltype (j). Weightnorm is useful for differential connectomics, in which exact 
edges are compared across tissue conditions. However, Weightnorm is encumbered by the fact 
that it ignores the cell-type specificity of many ligands and receptors.  Weightnorm will weigh a 
highly expressed but non-specific cell-cell link as stronger than a highly specific but lowly-
expressed gene. This does not align with biologic intuition for many cell-cell signaling 
mechanisms, nor with the goal of parsing out rare cell types that may have outsized biological 
relevance. Therefore, Connectome also, by default, calculates a second edgeweight, 
alternatively referred to as ‘w2’ or ‘weightscale,’ which is defined as a function (by default, the 
mean) of the gene-wise z-scores of the ligand and receptor, or 
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is the system-scaled expression of ligand 𝐿$ in a celltype (i) and 
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 is the system-scaled expression of receptor 𝑅$ in a celltype (j). Because 
weightscale incorporates information on the topology of the entire system being analyzed, 
leveraging system z-scores of each gene, it is ideally suited to exploring cellular ‘roles’ within a 
single tissue system. It also can be used to compare cellular prominence within signaling 
networks across disparate tissue systems, or across species, in which normalized values may 
vary but their relative expressions across cell types do not (1). 
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Alternative edgeweights, such as those incorporating a score for likelihood of downstream 
signal transduction (5) or those which take into account proximity information from spatial 
transcriptomics or histology-registered techniques (10, 11), may reveal additional patterns. For 
the purposes of this software program, Connectome defaults to the above edgeweights 
definitions because we have found them to be effective for understanding biological questions 
addressed in our studies. 
 
Statistical significance depends upon the question being asked, the test being applied, and the 
threshold for important differences, and has a very different meaning depending on whether a 
research team is investigating a single tissue, comparing multiple tissues, or studying a 
physiologic process. However, we find two general statistical patterns to be of key importance, 
and we have built-in functionality to Connectome to help the researcher narrow in on these 
patterns. First, when studying a single tissue system (i.e., one organ in one condition), it is often 
desirable to focus on those ligand-receptor interactions which are highly associated with 
(markers for) specific celltype-celltype vectors. While such a pattern is not a guarantee of 
biological relevance, it is often useful to learn those mechanisms which can mark celltype-
celltype vectors in the same ways that transcripts can mark celltypes. Second, when comparing 
two tissue systems (i.e., one organ in two experimental conditions) it is generally interesting to 
focus on those mechanisms which, regardless of their association with a specific celltype-
celltype vector, are differentially regulated across condition. In the online vignettes, we detail 
computational methods which can be used to define statistically significant edges matching 
each of these use cases. 
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Figure 1: Single-tissue connectomic topology. (A) Pancreas single-cell data is parcellated into defined cell types. 
These cell types are then mapped against a ground-truth database of known ligand-receptor mechanisms. This 
yields a comprehensive edgelist of cells expressing ligand connecting to cells expressing receptor, with associated 
edge attributes. Note that a single ligand may hit multiple receptors and vice-versa (B) A conceptual visualization 
of the data architecture and biologically informative cuts through the data. (C-E) Selected quantitative 
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visualizations of interactome-, vector-, and niche-networks made with Connectome. These three plots, 
respectively, allow (C) identification of top cell types utilizing a given L-R mechanism, (D) top mechanisms 
employed by a cell-cell vector, and (E) top cell-mechanism combinations in a position to influence a receiving cell. 
In C-E, edge thickness is proportional to weightscale, which is larger when an edge is more highly associated with a 
specific celltype-celltype vector. In all cases, the network shown has been limited to those edges in which the 
ligand and receptor are both expressed in > 10% of their respective clusters and have a p-value of < 0.05. In 
subpanel E, for illustration, the network has been further thresholded to those edges with a ligand and receptor z-
score of > 1.  
 
Visualizing the connectomic signature of a single tissue 
 
Figure 1 shows the workflow for ligand-receptor connectomics in a single tissue. In this instance 
we use single-cell data from 8 separate single-cell RNA libraries of human pancreatic tissue, 
available through the SeuratData database (12). As a first step (Figure 1A), the tissue data are 
parcellated into defined cell types using a standard clustering workflow.  Then, a mapping is 
created against a ground-truth database of known ligand-receptor mechanisms. This mapping 
yields a large edgelist, wherein nodes are defined as cell types and edge attributes contain 
quantitative information derived from cell type-specific expression levels. Source nodes denote 
the ligands, and target nodes refer to the cognate receptors. This data architecture is stored as 
a data frame in R, the environment which is particularly amenable to subsetting networks of 
interest and working with graph theory-based computational packages. This process is 
performed by a single function in Connectome which allows customization of edgeweight 
definition and edge attribute calculations. 
 
Conceptually, the data architecture for a single edge attribute (one column in the above 
discussed edgelist data frame in Figure 1A) can be thought of as a 3D matrix (Figure 1B), where 
rows are source (sending) cells, columns are target (receiving) cells, and the z-axis is the full list 
of ground-truth known ligand-receptor mechanisms.  This allows clear visualization of the data 
that needs to be subset in order to explore a single interactome (red), outgoing network 
(purple), niche network (blue), or cell-cell vector (green).  The blue rectangle represents a 
niche-network, containing information on all edges in a position to influence a single cell type. 
The purple rectangle shows all edges coming from a single cell type.  The red rectangle is a 
single interactome, containing information for a single signaling modality between all cell types. 
The green prism represents a single cell-to-cell vector, containing information for all signaling 
modalities. 
 
Visualization of these connectomic networks can be done in multiple ways. Connectome 
includes a series of functions designed for tissue network exploration, including one which 
generates plots allowing immediate quantitative visualization of individual interactomes (e.g. 
Fig 1C), celltype-to-celltype vectors (Fig 1D) and niche networks (Fig 1E). Further, the similarity 
between individual celltype-to-celltype vectors (vectortypes) can be analyzed using a k-nearest-
neighbor style embedding (Fig S1). This style of visualization places vectortypes in a 2-
dimensional space and provides a quantitative way to cluster vectortypes based on which 
ligand-receptor mechanisms are most highly weighted in each celltype-to-celltype pairing. We 
provide a custom function in Connectome to perform this analysis. 
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Tissue network centrality analysis 
  
A major goal of tissue science and cell biology is to understand the roles that individual cells 
types play and their ability to affect other cell types. It is of interest, therefore, to rank cell 
types based on their ability to produce or receive information within a given signaling network, 
or signaling family. To quantify these roles, Connectome is capable of performing a centrality 
analysis, an example which is shown in Figure 2. In this analysis, the total connectome for a 
single tissue is first subset down to only those edges belonging to a single signaling family 
(Figure 2A). This weighted graph is then used to calculate two centrality metrics: the Kleinberg 
hub and Kleinberg authority scores (represented as the dot size), and the cumulative directed 
edgeweight (x-axis), for each cell type within the network.  The dot sizes arising from the 
Kleinberg scores are then used to visualize outgoing and incoming centrality of each cell type 
(Figure 2B), for a variety of specific signaling mechanisms.  For example, the endothelial cell 
population of the pancreas has a high outgoing centrality score for signaling along the PDGB 
axis to the mesenchyme compartment (green circle in upper left panel of Figure 2B, 
“endothelial”, highly connected to the ochre circle in upper right panel, ‘activated stellate’).  
The result is a ranking of outgoing and incoming centrality for every cell type, across every 
signaling family, for each target cell type within the tissue.  Collectively, this analysis creates a 
comprehensive portrait of potential extracellular signal transfer within a given tissue system. As 
shown in Figure 2, this information can then be used to group each signaling family based on 
the cell type that is best positioned to receive information (shown, sorted by incoming 
centrality) or best positioned to generate a signal (not shown - requires sorting by outgoing 
centrality). 
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Figure 2: Centrality analysis for a single tissue system. (A) The global connectome for the pancreas is iteratively 
subset to each individual signaling family, after which Kleinberg hub and authority scores are calculated for each 
cell type. (B) Signaling families, grouped by dominant receiving nodes, crafts a quantitative portrait of global tissue 
system signaling architecture. Of note and in alignment with biologic intuition, mesenchymal cells are top network 
receivers of PDGF-family signals, epithelial cells are top network receivers of EGF-family signals, immune cells are 
top networks receivers of CSF- and CC (Chemokine)-family signals, and endothelial cells are in top network 
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receiving positions for VEGF-, and ANGPT-family pathways. Centrality analysis was performed once for all signaling 
families, groupings were designated by top receiving node, and the four grouped plots were then individually re-
made (see Supplemental Data D1). 
 
Differential connectomics with aligned nodes 
 
It is common in systems biology to examine changes in cell-cell signaling between two systems, 
i.e., in a multicellular tissue before and after treatment with a drug or chemokine (Figure 3A). In 
one such example, if the same cell types are present in both systems, we may calculate direct, 
one-to-one comparison of all edges using the Connectome package. It should be noted, 
however, that within a differential connectome, there are four distinct types of perturbed 
edges, since for each cell in a differential edge, the ligand and the receptor may be either 
increased or decreased (Figure 3B).  
 
If both the ligand and receptor are upregulated, we may reasonably call the edge ‘activated’, 
while conversely, when both the ligand and receptor are downregulated, we may think of the 
edge as ‘deactivated’. The two alternate cases, when a ligand is upregulated and a receptor 
down, or vice-versa, are more complicated to interpret. Although such patterns may initially 
suggest ligand-pressure or ligand-starvation, in which the downstream cell changes its 
character in response to upstream influence, it is important to note that in most tissue systems 
there are many cells interacting at once, and that there are likely multi-cell feedback loops in 
play which confound easy interpretation of such patterns. 
 
To accommodate this data architecture and identify strongly perturbed edges regardless of 
category, we defined a ‘perturbation score’ that is calculatable for each edge, expressed as the 
product of the absolute values of the log-fold change for both the receptor and ligand, or: 
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are the normalized expression of the ligand in celltype 

(i) in the test and control condition, respectively, and 𝐶𝑒𝑙𝑙𝑡𝑦𝑝𝑒#
*!
.*,.

and 𝐶𝑒𝑙𝑙𝑡𝑦𝑝𝑒#
*!
-#".$#'

 are the 
normalized expression of the receptor in celltype (j) in the test and control condition, 
respectively. The perturbation score is calculated in the above fashion so that edges with large 
changes on both the ligand and receptor side, regardless of sign, have very high scores, and 
minimally perturbed edges have a score of zero. Figure 3 demonstrates this concept in the 
interferon-simulated vs. control dataset of human peripheral blood mononuclear cells available 
through SeuratData (13). Figures 3C shows log fold changes for selected ligands and receptors, 
and the resulting perturbation scores (which are always positive) for each cell-ligand-receptor-
cell edge. Perturbed edges can then be grouped by their differential pattern and their 
perturbation scores visualized in readily-explorable network form (Figure 3D). 
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Figure 3: Differential tissue connectomics. (A) Schematic showing comparison of a perturbed multicellular system 
against a known control or reference set of interactions. (B) Assuming we are only interested in those edges in 
which either the ligand or the receptor change due to perturbation, each edge in a differential systems comparison 
falls into one of four distinct styles: the ligand and receptor are either both up, both down, or some combination.  
(If edges are also to be considered in which only the ligand or receptor change, then there are eight distinct 
categories of edge shift.) Dual ligand/receptor increase or decrease are consistent with edge activation or 
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deactivation, respectively. A decreased ligand paired with an elevated receptor suggests ligand starvation, as is 
often seen in in vitro experiments.  And increased ligand paired with a decreased receptor suggests the converse, 
ligand pressure. (C) Application to IFN-stimulated versus control PBMC data, showing how a positive ligand fold 
change (red arrow) and negative receptor fold change (blue arrow) combine to form a single positive edge 
perturbation score (green arrow). For illustration purposes, the differential network here has been heavily 
thresholded (minimum perturbation score of 2, a minimum expression cutoff of 20%, and only significant edges) 
yielding the presence of grey squares and the low number of displayed nodes and mechanisms. (D) Shows 
differential cell-cell signaling in IFN-stimulated PBMCs versus controls, sorted by style of perturbation. Edge 
thickness is proportional to perturbation score. Edge color correlates with source celltype. Blue and red arrow-
heads emphasize the same edge similarly emphasized in (C). Networks in D, for illustration, have been thresholded 
to a minimum perturbation score of 2 and a minimum percentage cutoff of 10%. In all cases, differential network 
analysis has been limited to those edges where the expression of both the ligand and receptor, in their respective 
populations across condition, are differentially expressed with a p-value < 0.05 as assessed by a Wilcoxon Rank 
Sum test (see Methods, Supplemental Data D1). 
 
Longitudinal connectomics for a dynamic tissue-system process 
 
Comparing tissue-level connectomics datasets can be difficult when the cell nodes are not 
directly comparable between the two tissue systems. Such a situation can occur if new cell 
types are recruited into, or eliminated from, a tissue system.  Alternatively, normal 
differentiation processes may take place which cause a new cell type to emerge. Such changes 
occur frequently, whether due to inflammation, response to injury, wound healing, or normal 
development. Many unanswered questions in tissue science center around how these changing 
cellular landscapes correlate with shifting cell-cell communication patterns that are present in 
tissues and organs. Because the centrality analysis shown in Figure 2 quantifies network 
topology while being agnostic to specific nodes being present, this same technique allows for 
the comparison of disparate tissue systems which do not necessarily contain the same cell 
types. 
 
As an example of a comparison of tissue systems containing different cell types, the muscle 
wound-healing dataset recently published by De Micheli et al. (14) provides an excellent use-
case for longitudinal tissue connectomics. In this study, done in vivo in mice, muscle tissue was 
injured and then allowed to heal over time. scRNAseq was performed on Day 0, immediately 
before injury, and then on Days 2, 5, and 7 post-injury. Cells were parcellated on a per-time-
point basis, leading to clear trends in cell type tissue fractions over time (Figure 4A). Certain cell 
types are present in the tissue throughout the wound healing process (i.e., endothelial cells, 
fibro/adipogenic progenitors (FAPs)), while others are recruited into the tissue solely during 
acute wound healing (i.e., monocytes/macrophages/platelets). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427529doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427529


 12 

 
Figure 4: VEGFA signaling over time in healing muscle tissue. (A) Schematic of in vivo muscle injury experiment 
from De Michelis et al. (14) and associated dynamics in cell type dissociation fraction. (B) Vegfa signaling networks 
within muscle tissue at each time point. Edges coming from fibro/adipogenic progenitors (FAPs) are colored 
maroon while edges coming from monocytes/macrophages are colored blue. These network plots have been 
thresholded (minimum 10% expression) for legibility: the only source nodes which meet this criteria are the FAPs 
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in Day 0, 5, and 7 and the Monocyte/Macrophage cluster in Days 2 and 5. Edge thickness is proportional to 
weightscale. (C) Centrality analysis, over time, for all Vegfa-mediated edges between all cell types, without any 
thresholding. Recruited monocytes take over dominant Vegfa production in healing tissue from homeostatic 
fibro/adipogenic progenitors. Endothelial cells are consistently in the dominant position to receive information, 
through their expression of multiple receptors including Kdr, Flt1, and Nrp1/2. (D) Normalized expression of Vegfa 
(ligand) and Kdr (receptor) for all cell types over time, showing relative expression. This analysis can be generalized 
to any network made from any combination of ligand-receptor mechanisms. For simplicity we show an example 
here based on only a single ligand. 
 
For demonstration, we explore the network topology of cell-cell signaling based on Vascular 
Endothelial Growth Factor A (Vegfa) over time. Figures 4B-D suggests that there is a dramatic 
change in the dominant source of this ligand during wound healing. In the baseline state, FAPS 
are the dominant producers of Vegfa. Immediately after injury, FAPs reduce their production of 
this ligand, and newly recruited Monocytes/Macrophages/Platelets take up dominant 
production of Vegfa. On Day 5, these two cell types share this functional role, and at the 
conclusion of healing, FAPs again dominate the network. Endothelial cells, meanwhile, are 
always expressing a panoply of receptors for this secreted factor and are in a prime position to 
receive angiogenic information. We see that supporting cell types, including smooth muscle 
cells and tenocytes, are also in a position to receive Vegfa-mediated information before injury 
and after the conclusion of healing (green sectors).  Further, we observe that muscle stem cells 
(MuSCs) are also capable of sensing aspects of Vegfa-mediated signaling, in particular on Day 5 
post-injury, when they co-express and upregulate established angiogenesis-modulating 
receptors Egfr, Gpc1, and Itgb1 (15-17). It should be noted that, because of the parcellations 
chosen, this technique cannot necessarily tell the difference between an entire population of 
cells shifting in character versus a new phenotypic archetype emerging within an existing 
population. Further sub-clustering (i.e. finer, follow-up parcellation) is currently required to 
explore these kinds of questions.  
 
Comparison to existing cell-cell interaction software 
 
There are multiple approaches to performing connectomic ligand-receptor mappings in single-
cell data (5-8). In order to demonstrate that the mappings performed by Connectome are not 
spurious and that the edgeweights align with alternative methods of interaction weighting, we 
performed a cross-comparison with the software package CellPhoneDB (6). Selected results 
from this study are shown in Figure S3; the methods and workflow for this cross-workflow 
comparison are present in the Methods and in Supplemental Data D1, respectively. 
CellPhoneDB uses two mathematic techniques to assess interaction relevance, the first being a 
mean of the normalized values of ligand and receptor expression, and the second being a 
system-wide permutation test performed on the network for each ligand-receptor mechanism 
(6). These methods contrast notably with the Connectome edgeweights described above. 
Nevertheless, the two software packages yield highly comparable results and edgeweight 
rankings, both in terms of which mechanisms are most highly weighted for a given celltype-
celltype pair, and in terms of which celltype pairs most preferentially engage through a given 
mechanism. The observed similarity in system architecture seen in Figure S3 both validates the 
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relevance of the edgeweights calculated by Connectome and demonstrates that each technique 
converges on a common portrait of cell-cell signaling present in the underlying single-cell data. 
 
 
Discussion 
 
Connectome is a multi-purpose toolset which can be used to map, explore, and visualize 
patterns of ligand-receptor expression in any single-cell dataset. The software is available open-
access on GitHub and includes vignettes to replicate the full analysis presented here. It allows 
quantification and observation of both fine-grain (single-mechanism, single-celltype-to-celltype 
vector), and coarse-grain (total signaling family, cross-system) connectivity patterns. 
 
There are a number of clear caveats to the above described techniques. First and foremost, 
strongly paired ligand and receptor expression is not direct evidence of cell-cell communication. 
For many ligand-receptor mechanisms, cells must be in direct or very close proximity in order to 
communicate via that mechanism. Suspension-based single-cell sequencing, however, does not 
preserve spatial histologic information, and so the techniques described here are attempting to 
make a somewhat qualitative portrait of a tissue based on what interactions are possible; any 
claim of actual transduction requires extensive wet-lab experimentation. Even for two cell types 
in a system which exclusively express a ligand and the cognate receptor each, respectively, a 
robust claim of transduction cannot be made: such an argument is only supported by evidence 
of downstream, intracellular effect via the receptor in question. Although this can be 
computationally predicted (5), the complexity of intracellular signaling networks makes this 
task fundamentally confounded for many ligand-receptor mechanisms. 
 
Secondly, the outputs of Connectome, like any ligand-receptor mapping software, are only as 
good as the ground-truth database against which the original mapping takes place.  This is why 
we have made the ground-truth customizable in this platform. Customization allows removal of 
extraneous connections with low biologic relevance, or addition of newly-discovered or 
researcher-determined mechanisms. The software here utilizes the FANTOM5 database 
without modification, but iterative application has shown that a custom database is generally 
required for many specific researcher inquiries.  For immune cell studies in particular, it can be 
useful to curate a custom ground-truth database, which includes all immunomodulatory cues of 
potential interest. 
 
Connectome is designed to be a fundamental tool for single cell researchers, computational 
biologists, and tissue engineers. It is intended to allow rapid, low-computationally-intensive-
access to cell-cell signaling patterns that are present in single-cell data. Our intent is to allow 
researchers to quickly identify strongly-expressed signaling genes, to find strong pairings 
between cell types within identified signaling mechanisms, and to condense large amounts of 
network-level connectivity information into simple, quantitative plots which reflect the 
structure of tissue systems. We show here that Connectome can be applied to individual 
tissues, paired experimental conditions, and longitudinal datasets.  In each case, Connectome 
yields biologically relevant information that can be used to help answer, and inform, specific 
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questions regarding biological systems.  We hope that it will prove useful for the larger biologic, 
engineering, and medical community. 
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Supplemental Methods 
 
 
Definitions 
 
This manuscript uses some terms which are worth defining here. The term connectome refers 
to the complete set of interactions between nodes in a cell system, in the same way that 
transcriptome refers to the complete set of transcribed genes within a cell. The term 
parcellation refers to the way that the above system is divided up into distinct nodes, and in the 
application described in this manuscript, is synonymous with celltype cluster. The way a system 
is parcellated strongly affects its node architecture and therefore the shape of the resulting 
connectome. An edge, here, is a single unique celltype-ligand-receptor-celltype interaction. 
Edge attributes are quantitative or qualitative pieces of information associated with an edge. A 
differential connectome is the network that results when two connectomes are directly 
compared, edge-for-edge. Centrality, as used in the text, refers to quantitative metrics of how 
‘connected’ a given node is to other nodes, in either an outgoing (sending) or incoming 
(receiving) fashion. 
 
Edgeweight definition and usage: 
 
The Connectome software automatically refines two edgeweights which are meant to be 
employed in distinct use-cases and are each useful for specific computational explorations and 
illustrations.  The ‘weight_norm’ edge attribute is derived from the normalized expression of 
the ligand and the receptor in the single-cell data.  This edge weight is meant to be used when 
comparing multiple distinct cellular systems to each other, as when computing differential 
connectomics. The ‘weight_scale’ edge attribute is derived from the z-scores of the ligand and 
the receptor in each edge, and is of higher value when the ligand and receptor are more 
specific to a given pair of cell types. This edgeweight is meant to be used when exploring a 
single cell system, but it is not ideal for direct edge-to-edge cross-system comparisons, since 
variable cell sampling and/or cell parcellation will affect it. 
 
It should be noted that batch effects have the potential to affect normalized gene expression 
values (18), and therefore also have the potential to affect certain quantitative edge attributes 
in the connectomic mapping. Care should therefore be taken when comparing connectomics 
between systems with substantial batch effects. 
 
Calculation of statistical significance (single tissue system): 
 
For certain computational and visualization tasks, it becomes advisable to narrow focus from 
the full connectome to only those edges deemed significant. To do so, we recommend limiting 
analysis to only those edges where the ligand and the receptor are both expressed in greater 
than a certain fraction of their respective clusters, generally 10%. It is often then further useful 
to limit analysis to those edges where both the ligand and the receptor have a p-value of less 
than 0.05, as determined by a system-wide Wilcoxon Rank Sum Test (calculated by default 
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within CreateConnectome.) These thresholds can be further reduced within FilterConnectome, 
to identify those pathways of greatest significance, and can be crossed with additional 
thresholding to limit edge representation to specific vectors or signaling families (see vignettes 
online). 
 
Calculation of statistical significance (differential tissue system): 
 
In the case of differential connectomics, special care has to be taken to include edges which are 
not significant in a single experimental condition but which become significant in another. The 
min.pct argument in DifferentialConnectome, therefore, only needs to be satisfied in either the 
reference dataset or in the test dataset; this allows inclusion of mechanisms which emerge or 
disappear.  
 
The vignette online shows how to use a Wilcoxon Rank Sum test to compare each pair of 
commensurate cells across two datasets and to thereby determine which ligands and which 
receptors are differentially expressed to a statistically significant degree. The differential 
connectome can then be thresholded to only those edges where both the ligand on the sending 
cell and the receptor on the receiving cell are differentially expressed between experimental 
conditions. All differential connectomics presented and discussed in this manuscript and online 
utilize this statistical approach. 
 
Centrality definition and usage: 
 
Centrality and CompareCentrality both calculate and plot-to-compare two key centrality metrics 
for networks of interest: the cumulative incoming/outgoing edgeweight for each node, and the 
Kleinberg Hub and Authority scores for each node. These two centrality metrics often correlate, 
but they do not always flawlessly agree on exact node ranking. There is no single, proper and 
agreed upon way to best calculate network centrality (19); these two metrics were chosen 
because they are commonly used in network research and are biologically interpretable. 
Cumulative incoming/outgoing edgeweight fraction is the sum of the incoming and outgoing 
edges, calculated per node, expressed by default as the fraction of total edgeweight within the 
considered system; this ranks each node’s ability to contribute or listen to a given set of 
interactions. Hub-Authority centrality is a heavily-used information flow metric (20), which 
should be interpreted, in this instance, to reveal Hubs which send signal to Authorities, and 
Authorities which receive information from Hubs. Each of these metrics provide interpretable 
information regarding biologic network structure. 
 
Perturbation score definition and usage: 
 
The perturbation score, defined explicitly in the main text, varies from 0 to Infinity, and 
increases proportionally to both the log fold-change of the ligand (in either direction) and to the 
log fold-change of the receptor (in either direction). It is generally useful to limit analysis to 
those edges which have ligand and receptor expression in > 10% of their respective clusters in 
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either the control or the test condition, to avoid noisy measurements (see Supplemental Data 
D1); this thresholding functionality is built into CircosDiff and DifferentialScoringPlot. 
 
Signaling family categorization: 
 
The signaling family categorizations used in this manuscript are carried over from (1) with minor 
updates per recent literature findings. These groupings are loaded by default within 
Connectome. It should be noted that each signaling mechanism is allowed only a single 
designation in this formulation; in biologic reality, however, many signaling mechanisms can be 
considered to belong to multiple signaling families. These groupings are meant as a guide for 
hypothesis generation and later downstream exploration, rather than as definitive 
classification. 
 
Analysis of pancreas data: 
 
A fully replicable workflow for the processing of the pancreas data and generation of subpanels 
in Figure 1 and Figure 2 is included in Supplemental Data D1.  In brief, the panc8 data was 
downloaded from SeuratData, normalized, scaled, and run through the CreateConnectome with 
a min.cells.per.ident cutoff of 75. Downstream analysis was limited to those edges where both 
the ligand and the receptor were expressed in > 10% of their respective clusters, and which had 
a p-value < 0.05 for both the ligand and the receptor. Additional thresholds applied for specific 
visualization purposes present in the figures can be seen in Supplemental Data D1. 
 
For the centrality analysis present in Figure 2, Centrality was first run across all signaling 
families.  Each signaling family was then grouped according to which of the 4 cell classes was 
found to dominate incoming centrality within the given dataset. Centrality was then re-run 4 
times, once for each set of signaling families, to yield the 4 sub-graphs. A script to replicate this 
workflow is present in Supplemental Data D1. 
 
Analysis of IFN-stimulated vs. Control PBMC data: 
 
A fully replicable workflow for the processing of the IFN-stimulated vs. Control PBMC data and 
generation of subpanels in Figure 3 is included in Supplemental Data D1.  In brief, the ‘ifnb’ 
dataset was loaded from SeuratData. Each dataset was normalized, scaled, and run through 
CreateConnectome. The two connectomes were then passed to DifferentialConnectome. A 
Wilcoxon Rank Sum test was then performed for each individual cell across conditions, for all 
ligands and all receptors, and the results from this test were used to limit the differential 
connectome to only those edges showing statistically significant differences (p < 0.05) for both 
the ligand and the receptor. Downstream analysis was further limited to those edges which had 
ligand and receptor expression in > 10% of their respective clusters in either the control or the 
test condition. Figure 3C was made with DifferentialScoringPlot and Figure 3D was made with 
CircosDiff, both of which are built in to Connectome.  
 
Analysis of muscle wound-healing data: 
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A fully replicable workflow for the processing of the muscle wound-healing data and generation 
of subpanels in Figure 4 is included in Supplemental Data D1.  In brief, raw data was loaded 
from De Micheli et al. (14), normalized, scaled, and run through CreateConnectome. ggplot was 
use for Fig 4A, CircosPlot for Fig 4B, and CompareCentrality for Fig 4C. A custom script, present 
in Supplemental Data D1, was used for Fig 4D. 
 
Comparison between Connectome and CellPhoneDB: 
 
To create Supplemental Figure S3, the most recent version of CellPhoneDB (v2.1.4) was 
downloaded and the log normalized pancreas gene expression data and corresponding cell type 
labels were input to CellPhoneDB. All the CellPhoneDB parameters were set to default. Edge 
were only considered which had their mechanisms present in the FANTOM5 database, their 
ligand and receptor both expressed in greater than 10% of their respective clusters, and a p-
value < 0.05 (in the case of CellPhoneDB) or a ligand and receptor p-value of < 0.05 (in the case 
of Connectome). For visualization, those mechanisms shown in Figure S3 are a selection of 
those, within the above set, which also have a ligand and receptor z-score > 1. The function 
EdgeDotPlot, provided within the Connectome software package, was used to make panel A. 
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Supplemental Figures 
 

 
 
Figure S1: Shared nearest neighbor graph visualization of vector types. Graphs shown are generated using k=3 
in k-nearest neighbor calculation which uses the weight_norm edge attribute of all ligand-receptor mechanisms as 
features. Each node is a vector type, and an edge is drawn between two nodes that share at least one neighbor. The 
weights of the edges that reflect the similarity between two nodes are calculated using the rank scheme defined by 
(21). Nodes in the upper left graph are colored in two parts, with the left color representing the sending celltype 
and the right color representing the receiving. The upper right shows a Louvain clustering of this same graph. As a 
demonstration, the lower panels emphasize those vectortypes originating only from endothelial cells and landing 
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only on endothelial cells, respectively. Note (i.e. in Cluster 2) that two vectortypes can be highly similar even 
though they do not all originate from, or land on, the same cell types. This is indicative of substantial overlap in the 
ligand-receptor mechanism weighting between those two cell types. 
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Figure S2: Runtime for connectome computation with and without statistical analysis. Simulation was run on 
the panc8 dataset from SeuratData, with and without calculation of p-values for each ligand and receptor, on each 
edge, via a system-wide Wilcoxon Rank Sum test. In both cases, runtime is dependent on both parcellation number 
and cell number. This simulation was run on a 2.9 GHz 8-core MacBook Pro laptop. 
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Figure S3: Comparison of outputs from Connectome with outputs from CellPhoneDB. To validate that the 
mappings and edgeweight calculations performed by Connectome are accurate, we compared A) selected outputs 
from the application of Connectome to the panc8 dataset to B) those generated through the application of 
CellPhoneDB (6) to the same dataset and with the same ground-truth list of ligand-receptor mechanisms (see 
Methods). Note the high similarity of findings across all columns and rows, in particular the specificity of DLK1-
NOTCH4 to the beta – endothelial vector, the specificity of ANGPT2-TEK to the endothelial – endothelial vector, and 
the specificity of DLL4-NOTCH3 to the two endothelial – stellate cell vectors. The two plots are not identical because 
the two software packages use very different means of calculating cell-cell interaction relevance; we have attempted 
to make nonetheless comparable visualizations here. In (A), the size of the dot represents the log of the product of 
the normalized expression of ligand and receptor plus 1, while the color represents the log of the mean of the scaled 
expression of ligand and receptor plus 1. In (B), the size of the dot represents the negative log of the permutation-test 
p-value of each mechanism, while the color represents the log of the mean of the normalized expression of ligand 
and receptor. Note that the color of the dots in panel A (Connectome weightscale) closely correlates with the size of the 
dots in panel B (CellPhoneDB p-values). These plots are intended to convey that the two mappings and statistical 
weightings are similar and that both approaches reveal similar biological patterns.  
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Supplemental Data D1: R scripts to replicate all figures in manuscript 
 
All software is available at https://github.com/msraredon/Connectome. Detailed vignettes and 
instructions for use are published at https://msraredon.github.io/Connectome/. For ease of 
reproduction, the exact scripts used to generate the analysis in this paper are copied below. 
 
 
#Set WD 
setwd("~/Box Sync/Connectome Paper/Figures") 
#Libraries 
library(Seurat) 
library(SeuratData) 
library(Connectome) 
library(ggplot2) 
library(cowplot) 
####Load Pancreas Data (Used in Fig 1 & 2) #### 
data('panc8') 
table(Idents(panc8)) 
Idents(panc8) <- panc8[['celltype']] 
table(Idents(panc8))        
#Make Connectome 
panc8 <- NormalizeData(panc8) 
connectome.genes <- 
union(Connectome::ncomms8866_human$Ligand.ApprovedSymbol,Connectome::ncomms8866_human$Receptor.A
pprovedSymbol) 
genes <- connectome.genes[connectome.genes %in% rownames(panc8)] 
panc8 <- ScaleData(panc8,features = genes) 
panc8.con <- CreateConnectome(panc8,species = 'human',min.cells.per.ident = 75,p.values = T,calculate.DOR = F) 
 
#Embed 
pancreas.list <- SplitObject(panc8, split.by = "tech") 
pancreas.list <- pancreas.list[c("celseq", "celseq2", "fluidigmc1", "smartseq2")] 
for (i in 1:length(pancreas.list)) { 
  pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE) 
  pancreas.list[[i]] <- FindVariableFeatures(pancreas.list[[i]], selection.method = "vst",  
                                             nfeatures = 2000, verbose = FALSE) 
} 
reference.list <- pancreas.list[c("celseq", "celseq2", "smartseq2")] 
pancreas.anchors <- FindIntegrationAnchors(object.list = reference.list, dims = 1:30) 
pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, dims = 1:30) 
DefaultAssay(pancreas.integrated) <- "integrated" 
pancreas.integrated <- ScaleData(pancreas.integrated, verbose = FALSE) 
pancreas.integrated <- RunPCA(pancreas.integrated, npcs = 30, verbose = FALSE) 
pancreas.integrated <- RunUMAP(pancreas.integrated, reduction = "pca", dims = 1:30) 
#Save 
DefaultAssay(pancreas.integrated) <- "RNA" 
save(pancreas.integrated,file = 'pancreas.integrated.Robj') 
load("~/Box Sync/Connectome Paper/Figures/pancreas.integrated.Robj") 
 
#### Plotting Figure 1 ##### 
#UMAP 
png('panc8_UMAP.png',width = 5.5,height = 4,units = 'in',res = 300) 
DimPlot(pancreas.integrated,reduction = 'umap',group.by = "celltype") 
dev.off() 
 
#colors~ 
gg_color_hue <- function(n) { 
  hues = seq(15, 375, length = n + 1) 
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  hcl(h = hues, l = 65, c = 100)[1:n] 
} 
cell.types <- sort(as.character(names(table(Idents(panc8))))) 
cols.use <- gg_color_hue(length(cell.types)) 
names(cols.use) <- cell.types 
 
 
# x1 Interactome 
png('interactome_circos.png',width = 7,height = 4.5,units = 'in',res = 300) 
CircosPlot(panc8.con, 
           mechanisms.include = c('DLL4 - NOTCH3'), 
           weight.attribute = 'weight_norm', 
           min.z = NULL, 
           min.pct = 0.1, 
           lab.cex = 0.01, max.p = 0.05, 
           gap.degree = 5, 
           cols.use = cols.use, 
           title = 'Single Interactome (DLL4 -> NOTCH3)') 
dev.off() 
 
# x1 Vector 
png('vector_circos.png',width = 7,height = 4.5,units = 'in',res = 300) 
CircosPlot(panc8.con, 
           sources.include = 'endothelial', 
           targets.include = 'activated_stellate', 
           min.z = 0, 
           min.pct = 0.1, 
           lab.cex = 0.3, max.p = 0.05, 
           weight.attribute = 'weight_sc', 
           cols.use = cols.use, 
           title = 'Single Vector (Endothelial -> Activated Stellate)') 
dev.off() 
 
# x1 Niche 
png('niche_circos.png',width = 7,height = 4.5,units = 'in',res = 300) 
CircosPlot(panc8.con, 
           targets.include = 'activated_stellate', 
           min.pct = 0.1, 
           lab.cex = 0.3, 
           min.z = 1,max.p = 0.05, 
           weight.attribute = 'weight_sc', 
           cols.use = cols.use, 
           title = 'Single Niche (Activated Stellate)') 
dev.off() 
 
 
 
 
#### Plotting Figure 2 #### 
 
# Big connectome 
png('Big_Connectome_v2.png',width = 10*.82,height = 8*.82,units = 'in',res = 300) 
CircosPlot(panc8.con,min.pct = 0.2,max.p = 0.05,lab.cex = 0.01,gap.degree = 0.01,cols.use = cols.use) 
dev.off() 
 
png('Single_mode_connectome.png',width = 10*.8,height = 8*.8,units = 'in',res = 300) 
CircosPlot(panc8.con,modes.include = 'VEGF',min.pct = 0.05,max.p = 0.05,lab.cex = 0.01,gap.degree = 
0.01,cols.use = cols.use) 
dev.off() 
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# Centrality categorization 
Centrality(panc8.con,weight.attribute = 'weight_norm',cols.use = cols.use,min.pct = 0.05,max.p = 0.05) 
epi.auth <- c('ADAM','Transferrin','MET','TNF','Ephrins','NEGF','MMP','Laminins','FGF','EGF','Intracellular 
trafficking','Matrix glycoproteins','UNCAT','Neurotrophins','APOE') 
ec.auth <- c('Interleukins','CXCL','VEGF','KIT','Collagens','SLIT','Semaphorins','TGFB','Fibronectin','IGF','WNT','Matrix 
(assorted)','NOTCH','ANGPT','BMP') 
mes.auth <- c('Vasoactive','Lysophosphatidic acid','PDGF','Protease inhibition') 
imm.auth <- c('RARRES','MHC','Cell-cell adhesion','CC','CSF','Complement','TLR','Chemotaxis') 
 
pdf('Centrality.Mes.pdf',width = 12,height = 3) 
Centrality(panc8.con,weight.attribute = 'weight_norm',cols.use = cols.use, 
           modes.include = mes.auth,min.pct = 0.05,max.p = 0.05) 
dev.off() 
pdf('Centrality.Epi.pdf',width = 12,height = 4) 
Centrality(panc8.con,weight.attribute = 'weight_norm',cols.use = cols.use, 
           modes.include = epi.auth,min.pct = 0.05,max.p = 0.05)  
dev.off() 
pdf('Centrality.Imm.pdf',width = 12,height = 4) 
Centrality(panc8.con,weight.attribute = 'weight_norm',cols.use = cols.use, 
           modes.include = imm.auth,min.pct = 0.05,max.p = 0.05) 
dev.off() 
pdf('Centrality.Endo.pdf',width = 12,height = 5) 
Centrality(panc8.con,weight.attribute = 'weight_norm',cols.use = cols.use, 
           modes.include = ec.auth,min.pct = 0.05,max.p = 0.05) 
dev.off() 
 
 
#### Load IFN Data (Used in Fig 3) #### 
InstallData('ifnb') 
data('ifnb') 
table(Idents(ifnb)) 
Idents(ifnb) <- ifnb[['seurat_annotations']] 
table(Idents(ifnb)) 
# Make differential connectomes: 
# First identify ligands and receptors which have mapped in the dataset: 
connectome.genes <- 
union(Connectome::ncomms8866_human$Ligand.ApprovedSymbol,Connectome::ncomms8866_human$Receptor.A
pprovedSymbol) 
genes <- connectome.genes[connectome.genes %in% rownames(ifnb)] 
# Split the object by condition: 
ifnb.list <- SplitObject(ifnb,split.by = 'stim') 
# Normalize, Scale, and create Connectome: 
ifnb.con.list <- list() 
for (i in 1:length(ifnb.list)){ 
  ifnb.list[[i]] <- NormalizeData(ifnb.list[[i]]) 
  ifnb.list[[i]] <- ScaleData(ifnb.list[[i]],features = rownames(ifnb.list[[i]])) 
  ifnb.con.list[[i]] <- CreateConnectome(ifnb.list[[i]],species = 'human',p.values = F) 
} 
names(ifnb.con.list) <- names(ifnb.list) 
diff <- DifferentialConnectome(ifnb.con.list[[1]],ifnb.con.list[[2]]) 
# Stat sig: 
# Stash idents and make new identities which identify each as stimulated vs. control 
celltypes <- as.character(unique(Idents(ifnb))) 
celltypes.stim <- paste(celltypes, 'STIM', sep = '_') 
celltypes.ctrl <- paste(celltypes, 'CTRL', sep = '_') 
ifnb$celltype.condition <- paste(Idents(ifnb), ifnb$stim, sep = "_") 
ifnb$celltype <- Idents(ifnb) 
Idents(ifnb) <- "celltype.condition" 
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# Identify which ligands and receptors, for which cell populations, have an adjusted p-value < 0.05 based on a 
Wilcoxon rank test 
diff.p <- data.frame() 
for (i in 1:length(celltypes)){ 
  temp <- FindMarkers(ifnb,  
                      ident.1 = celltypes.stim[i],  
                      ident.2 = celltypes.ctrl[i], 
                      verbose = FALSE, 
                      features = genes, 
                      min.pct = 0, 
                      logfc.threshold = 0) 
  temp2 <- subset(temp, p_val_adj < 0.05) 
  if (nrow(temp2)>0){ 
    temp3 <- data.frame(genes = rownames(temp2),cells = celltypes[i]) 
    diff.p <- rbind(diff.p, temp3) 
  } 
} 
diff.p$cell.gene <- paste(diff.p$cells,diff.p$genes,sep = '.') 
 
# Filter differential connectome to only include significantly perturbed edges 
diff$source.ligand <- paste(diff$source,diff$ligand,sep = '.') 
diff$target.receptor <- paste(diff$target,diff$receptor,sep = '.') 
diff.sub <- subset(diff,source.ligand %in% diff.p$cell.gene & target.receptor %in% diff.p$cell.gene) 
 
#### Plotting Figure 3 #### 
pdf('diff.score.small.pdf',width = 12,height=3.25) 
DifferentialScoringPlot(diff.sub,min.score = 1.5,min.pct = 0.1,infinity.to.max = T,aligned = F) 
dev.off() 
pdf('diff.score.big.pdf',width = 22 ,height=4.5) 
DifferentialScoringPlot(diff.sub,min.score = 1.5,min.pct = 0.1,infinity.to.max = T,aligned = F) 
dev.off() 
 
pdf('diff.score.small.2.pdf',width = 12*0.9,height=3.25*0.9) 
DifferentialScoringPlot(diff.sub,min.score = 2,min.pct = 0.2,infinity.to.max = T,aligned = F) 
dev.off() 
pdf('diff.score.big.2.pdf',width = 22*0.9 ,height=4.5*0.9) 
DifferentialScoringPlot(diff.sub,min.score = 2,min.pct = 0.2,infinity.to.max = T,aligned = F) 
dev.off() 
 
 
## Ligand and receptor are both **UP**: 
diff.up.up <- subset(diff.sub,ligand.norm.lfc > 0 & recept.norm.lfc > 0 ) 
diff.up.down <- subset(diff.sub,ligand.norm.lfc > 0 & recept.norm.lfc < 0 ) 
diff.down.up <- subset(diff.sub,ligand.norm.lfc < 0 & recept.norm.lfc > 0 ) 
diff.down.down <- subset(diff.sub,ligand.norm.lfc < 0 & recept.norm.lfc < 0 ) 
png('up.up.png',width = 8.5,height = 4.5,units = 'in',res = 300) 
CircosDiff(diff.up.up,min.score = 2,min.pct = 0.1,lab.cex = 0.8) 
dev.off() 
png('up.down.png',width = 8.5,height = 4.5,units = 'in',res = 300) 
CircosDiff(diff.up.down,min.score = 2,min.pct = 0.1,lab.cex = 0.8) 
dev.off() 
png('down.up.png',width = 8.5,height = 4.5,units = 'in',res = 300) 
CircosDiff(diff.down.up,min.score = 2,min.pct = 0.1,lab.cex = 0.8) 
dev.off() 
png('down.down.png',width = 8.5,height = 4.5,units = 'in',res = 300) 
CircosDiff(diff.down.down,min.score = 2,min.pct = 0.1,lab.cex = 0.8) 
dev.off() 
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#### Load Muscle Injury Data (Used in Fig 4) #### 
GSE143437_DeMicheli_MuSCatlas_metadata <- 
read.delim("~/Documents/GitHub/Connectome/vignettes/GSE143437_DeMicheli_MuSCatlas_metadata.txt") 
GSE143437_DeMicheli_MuSCatlas_rawdata <- 
read.delim("~/Documents/GitHub/Connectome/vignettes/GSE143437_DeMicheli_MuSCatlas_rawdata.txt") 
raw.data <- GSE143437_DeMicheli_MuSCatlas_rawdata 
meta.data <- GSE143437_DeMicheli_MuSCatlas_metadata 
rm(GSE143437_DeMicheli_MuSCatlas_rawdata) 
rm(GSE143437_DeMicheli_MuSCatlas_metadata) 
# Reformat rownames 
raw.data.2 <- raw.data[,-1] 
rownames(raw.data.2) <- raw.data[,1] 
meta.data.2 <- meta.data[,-1] 
rownames(meta.data.2) <- meta.data[,1] 
# Create Seurat Object 
musc <- CreateSeuratObject(counts = raw.data.2) 
musc <- AddMetaData(musc,metadata = meta.data.2) 
Idents(musc) <- musc[['cell_annotation']] 
 
# Identify ligands and receptors which have mapped in the dataset: 
connectome.genes <- 
union(Connectome::ncomms8866_mouse$Ligand.ApprovedSymbol,Connectome::ncomms8866_mouse$Receptor.A
pprovedSymbol) 
genes <- connectome.genes[connectome.genes %in% rownames(musc)] 
 
# Split by timepoint 
data <- SplitObject(musc, split.by = 'injury') 
for (i in 1:length(data)){ 
  data[[i]] <- ScaleData(data[[i]]) 
} 
 
# Normalize, Scale, and create Connectome: 
musc.con <- list() 
for (i in 1:length(data)){ 
  data[[i]] <- NormalizeData(data[[i]]) 
  data[[i]] <- ScaleData(data[[i]],features = genes) 
  musc.con[[i]] <- CreateConnectome(data[[i]],species = 'mouse',p.values = F) 
} 
names(musc.con) <- names(data) 
 
#### Plotting Figure 4 #### 
library(reshape2) 
library(ggthemes) 
require(RColorBrewer) 
# Colors 
col.names <- names(table(Idents(musc))) 
pal <- c('yellow','red','blue','orange','purple','green') 
cols.use <- colorRampPalette(pal)(length(col.names)) 
names(cols.use) <- col.names 
 
# Facet Plot 
mich <- table(Idents(musc),musc@meta.data$injury) 
mich <- as.matrix(mich) 
mich[,1] <- mich[,1]/sum(mich[,1]) 
mich[,2] <- mich[,2]/sum(mich[,2]) 
mich[,3] <- mich[,3]/sum(mich[,3]) 
mich[,4] <- mich[,4]/sum(mich[,4]) 
mich <- data.frame(mich) 
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colnames(mich) <- c('Celltype','Timepoint','Fraction') 
mich$color <- cols.use[mich$Celltype] 
 
pdf('mich.fraction.pdf',width =14,height = 5.5) 
ggplot(mich,aes(x=Timepoint, y=Fraction,fill = Celltype)) +  
  geom_bar(stat = 'identity') +  
  #geom_line(aes(group = 'Celltype'))+ 
  facet_wrap(~ Celltype, nrow = 2,labeller = label_wrap_gen())+ 
  scale_fill_manual(values = cols.use)+ 
  #scale_colour_identity()+ 
  theme_hc() + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1,size = 16), 
        axis.text = element_text(size = 14), 
        axis.title = element_text(size = 16, face = "bold"), 
        legend.position="none", 
        strip.text = element_text(size = 14,face = 'bold')) 
dev.off() 
 
pdf('Day 0.pdf',width = 10,height = 5) 
CircosPlot(musc.con[[1]],features = 'Vegfa',min.pct = 0.1,cols.use = cols.use,title = 'Day 0') 
dev.off() 
pdf('Day 2.pdf',width = 10,height = 5) 
CircosPlot(musc.con[[2]],features = 'Vegfa',min.pct = 0.1,cols.use = cols.use,title = 'Day 2') 
dev.off() 
pdf('Day 5.pdf',width = 10,height = 5) 
CircosPlot(musc.con[[3]],features = 'Vegfa',min.pct = 0.1,cols.use = cols.use,title = 'Day 5') 
dev.off() 
pdf('Day 7.pdf',width = 10,height = 5) 
CircosPlot(musc.con[[4]],features = 'Vegfa',min.pct = 0.1,cols.use = cols.use,title = 'Day 7') 
dev.off() 
pdf('ColorKey.pdf',width = 10,height = 5) 
VlnPlot(musc,features = 'Vegfa',cols = cols.use,pt.size = 0) 
dev.off() 
 
pdf('vegfa.centrality.pdf',width = 11*0.9,height = 6*0.9) 
CompareCentrality(musc.con, 
                  weight.attribute = 'weight_norm', 
                  features = 'Vegfa',cols.use = cols.use,normalize = T) 
dev.off() 
 
# Define a function: 
Longitudinal <- function(con.list,LOI,ROI,use.scaled = F,cols.use = NULL,...){ 
  data <- data.frame() 
  for (i in 1:length(con.list)){ 
    con.list[[i]]$sample.name <- names(con.list)[i] 
    data <- rbind(data,con.list[[i]]) 
  } 
   
  temp <- subset(data,ligand == LOI & receptor == ROI) 
   
  if(use.scaled == F){ 
    temp$ligand.plot <- temp$ligand.expression 
    temp$recept.plot <- temp$recept.expression 
  }else{ 
    temp$ligand.plot <- temp$ligand.scale 
    temp$recept.plot <- temp$recept.scale 
  } 
   
  p1 <- ggplot(temp,aes(x = factor(sample.name, levels = names(con.list)), 
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                        y = ligand.plot,group = source,color = source)) + 
    geom_line() + 
    geom_point() + 
    xlab('Sample') + 
    ylab('Ligand Expression')+ 
    ggtitle(LOI)+ 
    theme(plot.title = element_text(hjust = 0.5,face = 'bold'), 
          axis.text.x = element_text(angle = 45,vjust = 1, hjust=1)) 
   
  p2 <- ggplot(temp,aes(x = factor(sample.name, levels = names(con.list)), 
                        y = recept.plot,group = target,color = target)) + 
    geom_line() + 
    geom_point() + 
    xlab('Sample') + 
    ylab('Receptor Expression')+ 
    ggtitle(ROI)+ 
    theme(plot.title = element_text(hjust = 0.5,face = 'bold'), 
          axis.text.x = element_text(angle = 45,vjust = 1, hjust=1)) 
   
  if (!is.null(cols.use)){ 
    p1 <- p1 + scale_colour_manual(values = cols.use) 
    p2 <- p2 + scale_colour_manual(values = cols.use) 
  } 
   
  plot_grid(p1,p2,ncol=2) 
} 
 
pdf('longitudinal.pdf',width=14*0.8,height = 4*0.8) 
Longitudinal(musc.con,LOI = 'Vegfa',ROI = 'Kdr',cols.use = cols.use) 
dev.off() 
 
 
#### Comparison with CellPhoneDB (Figure S3) #### 
#Load CellPhoneDB data 
pvalues <- read.delim("pvalues.txt") 
means <- read.delim("means.txt") 
 
#Alphabetize factor order 
panc8.con$vector <- factor(panc8.con$vector, levels = sort(unique(panc8.con$vector))) 
 
#Change naming of pairs 
panc8.con$pair <- paste(panc8.con$ligand,panc8.con$receptor,sep = '_') 
 
 
#Identify some interesting and potentially comparable edges 
temp <- subset(panc8.con,pair %in% means$interacting_pair) 
temp.set <- FilterConnectome(temp,min.pct = 0.1,max.p = 0.05,min.z = 1) 
temp.set <- temp.set %>% group_by(vector) %>% top_n(1,weight_sc) %>% arrange(vector) 
mechs <- as.character(unique(temp.set$pair)) 
 
# Make an EdgeDotPlot plot with Connectome 
pdf('DotPlot.temp.set.pdf',width = 20,height = 8) 
EdgeDotPlot(temp,mechanisms.include = mechs) 
dev.off() 
 
# Make a plot with the similar CellPhoneDB function (from repo online) 
temp2 <- temp 
temp2$vector1 <- paste(temp2$source,temp2$target,sep = '.') 
temp2$vector2 <- paste(temp2$source,temp2$target,sep = '|') 
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columns <- unique(temp2[temp2$vector1 %in% colnames(pvalues),]$vector2) 
 
dot_plot(selected_rows = sort(mechs), 
         selected_columns = sort(columns), 
         width = 20,height = 8) 
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