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Abstract 16 

Motivation: Classifying proteins into functional families can improve our understanding of a 17 

protein’s function and can allow transferring annotations within the same family. Toward this 18 

end, functional families need to be “pure”, i.e., contain only proteins with identical function. 19 

Functional Families (FunFams) cluster proteins within CATH superfamilies into such groups of 20 

proteins sharing function, based on differentially conserved residues. 11% of all FunFams 21 

(22,830 of 203,639) also contain EC annotations and of those, 7% (1,526 of 22,830) have at 22 

least two different EC annotations, i.e., inconsistent functional annotations. 23 

Results: We propose an approach to further cluster FunFams into smaller and functionally 24 

more consistent sub-families by encoding their sequences through embeddings. These 25 

embeddings originate from deep learned language models (LMs) transferring the knowledge 26 

gained from predicting missing amino acids in a sequence (ProtBERT) and have been further 27 

optimized to distinguish between proteins belonging to the same or a different CATH 28 

superfamily (PB-Tucker). Using distances between sequences in embedding space and 29 

DBSCAN to cluster FunFams, as well as identify outlier sequences, resulted in twice as many 30 

more pure clusters per FunFam than for a random clustering. 52% of the impure FunFams 31 

were split into pure clusters, four times more than for random. While functional consistency 32 

was mainly measured using EC annotations, we observed similar results for binding 33 

annotations. Thus, we expect an increased purity also for other definitions of function. Our 34 

results can help generating FunFams; the resulting clusters with improved functional 35 

consistency can be used to infer annotations more reliably. We expect this approach to 36 

succeed equally for any other grouping of proteins by their phenotypes. 37 

Availability: The source code and PB-Tucker embeddings are available via GitHub: 38 

https://github.com/Rostlab/FunFamsClustering  39 

Key words:  Functional families, protein function, CATH, EC numbers, unsupervised 40 

learning, contrastive learning, word embeddings, transfer learning  41 

Abbreviations used: DBSCAN, density-based spatial clustering of applications with noise; d; 42 

dimensions; EC, Enzyme Commission; FunFam, functional family; LM, language model; NLP, 43 

natural language processing 44 
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Introduction 1 

Knowledge about the function of a protein is crucial for a wide array of biomedical applications 2 

and the classification of protein sequences into functional families can help transferring 3 

annotations from a functional family to an uncharacterized protein. Functional families can also 4 

reveal insights into the evolution of function through sequence changes [1]. To gain meaningful 5 

insights into protein functionality through functional families, it is important that those families 6 

are consistent, i.e., only contain functionally similar proteins. 7 

CATH FunFams [2, 3] provide a functional sub-classification of CATH superfamilies [4, 8 

5]. Superfamilies are the last level (H) in the CATH hierarchy; they group sequences which are 9 

related by evolution, often referred to as homologos. However, proteins in one superfamily can 10 

still be functionally and structurally diverse. Functional families (FunFams) provide a further 11 

sub-classification of superfamilies into coherent subsets of proteins with the same function. 12 

FunFams can be used to predict function on a per-protein level as described through Gene 13 

Ontology (GO) terms [6, 7], to predict functional sites [8], or to improve binding residue 14 

predictions by combining predictions of one FunFam in a consensus prediction [9]. 15 

The Enzyme Commission number (EC number) [10] numerically classifies enzymatic 16 

functions based on the reactions they catalyze. It consists of four levels and each level provides 17 

a more specific description of function than the previous one. The function of two proteins is 18 

more similar, the more levels of their two EC numbers are identical, particularly, for the levels 19 

EC3 and EC4 which describe the chemical reaction and its substrate specificity. 20 

For 22,830 FunFams (11% of all), annotations for EC numbers for all four levels are 21 

available at least for one member. By design, proteins from the same FunFam should share 22 

the same EC class (annotated up to level 4). However, 1,526 FunFams (7% of 22,830) 23 

accounting for 16% of all sequences in the 22,830 FunFams with EC annotations have more 24 

than one annotation, and 180 (1% of 22,830) accounting for 2% of the sequences have even 25 

four or more different annotations (Fig. S1 in Supporting Online Material (SOM)). Different EC 26 

annotations within one FunFam could originate from moonlighting enzymes, i.e., enzymes with 27 

multiple functions [11]. Assuming the moonlighting enzyme to have two EC numbers, only one 28 

would be inconsistent with the other FunFam members rendering that FunFam inconsistent. 29 

However, different EC annotations can also result from impurity, i.e., FunFams containing 30 

proteins with different functions. Splitting FunFams further could provide a more fine-grained 31 

and consistent set of functionally related proteins. 32 

Over the last few years, novel representations (embeddings) for proteins have emerged 33 

from adapting language models (LMs) developed for natural language processing (NLP) to 34 

protein sequences [12-16]. These embeddings are learnt solely from protein sequences 35 

without any additional annotations (self-supervised) using either auto-regressive pre-training 36 

(predicting the next amino acid, given all previous amino acids in a sequence, e.g., ELMo [17] 37 

or GPT [18]) or masked language modeling (reconstructing corrupted amino acids from the 38 

sequence, e.g., BERT [19]). To do well in those tasks, the LM is forced to learn frequently co-39 

occurring sequence patches as well as more complex protein features such as those 40 

underlying secondary structure formation [20] as it is not possible to learn all possible amino 41 

acid permutations over the large set of protein sequences used for training. Features learnt 42 

implicitly by these models can be transferred to any task requiring protein representations by 43 

extracting the hidden states of the LM for a given protein sequence (transfer learning). It was 44 

shown previously that those learnt representations – referred to as embeddings – capture 45 
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higher-level features of proteins, including aspects of protein function beyond what is available 1 

through traditional comparisons using sequence similarity or homology-based inference [21]. 2 

Therefore, we hypothesized that this orthogonal perspective – using embedding rather than 3 

sequence space to transfer annotations – might help to find functionally consistent sub-groups 4 

within protein families built using sequence similarity. 5 

Here, we proposed a clustering approach to identify clusters in FunFams that are more 6 

consistent in terms of shared functionality. To this end, shared functionality was defined as 7 

sharing the same EC annotation up to the fourth level (i.e., completely identical EC numbers). 8 

We represented protein sequences as embeddings, i.e., fixed-size vectors derived from pre-9 

trained LMs. We used the LM ProtBERT [15] to retrieve the initial embeddings, and applied 10 

contrastive learning to map them onto a new embedding space where proteins within one 11 

CATH superfamily were closer together than proteins from different superfamilies. The 12 

resulting embeddings are called PB-Tucker. Clustering was then performed based on the 13 

Euclidean distances between those embeddings using DBSCAN [22]. Within each FunFam 14 

DBSCAN identified clusters as dense regions in which all sequences were close to each other 15 

in embedding space; it classified proteins as outliers if they were not close to other sequences 16 

in the FunFam. That allowed the identification of (i) a more fine-grained clustering of the 17 

FunFams, and (ii) single sequences which might have been falsely assigned to this FunFam. 18 

Analyzing whether or not embedding-based clustering reduced the number of different EC 19 

annotations in a FunFam allowed validating our new approach. 20 

 21 

 22 

Methods 23 

FunFams dataset. The current version of CATH (v4.3) holds 4,328 superfamilies split into 24 

212,872 FunFams. The FunFams generation process, albeit changing through time, consists 25 

of various steps, starting with the clustering of all sequences within a CATH superfamily at 26 

90% sequence similarity, encoding these clusters in Hidden Markov Models and creating a 27 

relationship tree between all clusters using GeMMA [23] and HHsuite [24]. Subsequently, 28 

CATH-FunFHMMer [7] is applied to transverse the tree and GroupSim [25] conservation 29 

patterns are employed to merge or cut the tree branches to obtain the largest possible 30 

alignment that is functionally pure. CATH FunFams have higher functional purity than CATH 31 

superfamilies and conserved residues are enriched in functional sites [7]. 32 

 33 

EC annotations and EC purity. EC annotations for the FunFams dataset were obtained using 34 

the UniProt [26] SPARQL API and cross-assigned to all UniProt IDs available within the 35 

FunFams. Since proteins in the same FunFam are assumed to share a function, we expect all 36 

proteins in one FunFam to have the same EC number(s). If not, the FunFam is considered 37 

impure, i.e., it contains sequences which do not belong to this functional family. Impurity can 38 

naively be defined as any FunFam with more than one EC number. However, some proteins 39 

are annotated with multiple EC numbers. These proteins might actually execute multiple 40 

functions (moonlighting) [11] or annotations might be wrong. Such an impurity is not caused 41 

by an error in the creation of the FunFams and cannot be removed by further clustering the 42 

FunFams. Instead, the naïve definition of impurity considers FunFams with one protein with 43 

two different EC numbers as impure even if all other proteins share the same two EC numbers, 44 

i.e., the annotations would be consistent and therefore, the FunFam should be considered as 45 
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pure. Consequently, we refined the definition considering FunFams as impure if one or more 1 

relatives were annotated to additional EC numbers different to the other family members. We 2 

only considered EC annotations with all four levels; all others were treated like those without 3 

annotation.  4 

 5 

Protein representation.  We used ProtBERT [15] to create fixed-length vector 6 

representations, i.e., vectors with the same number of dimensions irrespective of protein 7 

length. ProtBERT uses the architecture of the LM BERT [19] which applies a stack of self-8 

attention [27] layers for masked language modeling (Supporting Online Material Section 1 9 

(SOM_1) for details). Fixed-length vectors were derived by averaging over the representations 10 

of each amino acid extracted from its last layer. This simple global average pooling provides 11 

an effective baseline [12, 15, 20]. In the following, ProtBERT refers to this representation. 12 

In order to capture the CATH hierarchy more explicitly, ProtBERT representations were 13 

mapped to a new embedding space via contrastive learning. While supervised learning 14 

requires phrasing a prediction task as e.g., a classification or regression task, contrastive 15 

learning only requires some notion of similarity between samples. This similarity is used to 16 

learn a new vector space that clusters similar samples while dissimilar items are separated. 17 

Similarity can be defined between sample triplets potentially capturing their triangular relation; 18 

in this case an anchor sample is given together with a positive and negative sample with the 19 

positive being more similar to the anchor than the negative. The network then learns to push 20 

anchor and positive toward each other while pushing anchor and negative apart. While 21 

mapping a CATH-like hierarchy onto supervised classification is challenging, using a hierarchy 22 

to define relative similarity between triplets is straightforward as anchor and positive only need 23 

to share one level more in the hierarchy than anchor and negative. Toward this end, ProtBERT 24 

representations were projected in two steps from 1024-dimensions (1024-d) to 128-d using 25 

CATH v4.3 [3] for training the two-layer neural network (details in SOM_1). In the following, we 26 

call these new 128-d embeddings PB-Tucker (Heinzinger et al., unpublished). PB-Tucker has 27 

been trained to differentiate CATH superfamilies and seemed to better capture functional 28 

relationships between proteins in one superfamily than the original ProtBERT (data not shown; 29 

SOM_1 for more details). 30 

 31 

Clustering. Representing sequences as PB-Tucker embeddings, we calculated the Euclidean 32 

distance between all sequences within one FunFam. The distance d between two embeddings 33 

x and y was defined as: 34 

 35 

𝑑(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖)21024
𝑖=1        (Eqn. 1) 36 

Based on these distances, we clustered all sequences within one FunFam using the 37 

implementation of DBSCAN [22] in scikit-learn [28] For a set of data points, DBSCAN identifies 38 

dense regions, i.e., regions of points that are close to each other, and classifies these regions 39 

as clusters. Data points not close to enough other data points are classified as outliers. 40 

DBSCAN is based on the identification of core points that seed a cluster; all points within a 41 

certain distance of the core point are added to this cluster. Two free parameters were 42 

optimized: (1) The number of neighbors n (including the point itself) a point needs to have to 43 
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become “core point”; n implicitly controls the size and number of clusters, and (2) the distance 1 

cutoff . Data points A and B are considered close, if d(A,B)< . For our application, DBSCAN 2 

has two major advantages: (1) The number of clusters does not have to be set a priori, and (2) 3 

clustering and outlier detection are simultaneous. 4 

If not stated otherwise, we used the default n=5 although it has been suggested to use 5 

values between n=D+1 and n=2*D-1 where D is the number of dimensions [29] With d=128 for 6 

the PB-Tucker embeddings that implies n=255. Since FunFams vary in size, n might be 7 

adjusted to that size. For five superfamilies, we tested, in addition to n=5, n=129, n=255 as 8 

fixed neighborhood sizes, as well as n=0.05*|F|, n=0.1*|F|, n=0.2*|F| (|F|=number of 9 

sequences in FunFam) as variable neighborhood sizes dependent of the size of the FunFam. 10 

Observing differences in the distances between the members of different superfamilies 11 

(Fig. S2), it appeared best to choose superfamily-specific values for . Initially, we wanted to 12 

determine a distance threshold reflecting the expected distance between any two members of 13 

the same FunFam. However, large distances between members in one FunFam might reveal 14 

impurity rather than a generic width of a family. Instead, we computed the median over those 15 

distances for all FunFams in one superfamily and used this value for each FunFam. This way, 16 

the value still reflects the expected distance between two members of a FunFam, but the effect 17 

of large distances due to impurity should be averaged out by considering all FunFams in a 18 

superfamily. In detail, for each member in each FunFam in a superfamily, we calculated its 19 

average distance to all other members of that FunFam (distance distribution for five 20 

superfamilies in Fig. S2). Given the distribution of these average sequence distances, we 21 

chose the median distance as , i.e., we chose a distance cutoff so that 50% of all sequences 22 

in a superfamily were on average within a distance of  to all other sequences in the same 23 

FunFam. Decreasing  raises outliers and yields smaller clusters while increasing  reduces 24 

outliers and yields larger clusters. 25 

 26 

Measuring purity of clustered FunFams. To estimate whether the clustering of an impure 27 

FunFam led to more consistent sub-families, we calculated the percentage of pure clusters. 28 

Clusters with no EC annotation were excluded. For each FunFam, we calculated the clusters 29 

with one single EC annotation as percentage of all clusters with EC annotations and defined 30 

this measure as the purity of a FunFam (Eqn. 2). We then defined the percentage of completely 31 

pure FunFams as the percentage of FunFams with a purity of 100. 32 

 33 

𝑃𝑢𝑟𝑖𝑡𝑦(𝐹) =
#𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑝𝑢𝑟𝑒

#𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑤𝑖𝑡ℎ 𝐸𝐶𝑠
∙ 100    (Eqn. 2) 34 

We also calculated the purity of a FunFam in terms of its size, i.e., the number of sequences 35 

contained in it: 36 

 37 

𝑃𝑢𝑟𝑖𝑡𝑦𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝐹) =
#𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑝𝑢𝑟𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

# 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝐸𝐶𝑠
∙ 100  (Eqn. 3) 38 

 39 

Confidence intervals (CIs). 95% symmetric confidence intervals (CIs) were calculated from 40 

1, 000 bootstrap samples with replacement to indicate the spread of data and certainty of 41 

average values. 42 

 43 
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 1 

Final dataset. To construct the dataset used in this analysis, we extracted all superfamilies 2 

with at least one impure FunFam, i.e., at least one FunFam with more than one EC annotation. 3 

Since embeddings could only be computed for continuous sequences, we excluded 4 

sequences with multiple segments. After this removal, some FunFams became orphans 5 

(single member) and were also excluded. This led to a final dataset of 458 superfamilies 6 

(10.6% of all superfamilies) with 110,876 FunFams (52.1%) and 13,011 (6.1%) with EC 7 

annotations. Those 13,011 FunFams accounted for 20% of all proteins in the FunFams 8 

(1,669,245 sequences). All FunFams in a superfamily were used to determine a reasonable 9 

distance cutoff for clustering while clustering was only performed for FunFams with EC 10 

annotations. FunFams without EC annotations could have been clustered, too. However, since 11 

EC annotations served as criterion for evaluation, only FunFams with such annotations were 12 

clustered to save computational time and hence energy. 13 

 14 

Results & Discussion 15 

Embedding clusters increased EC purity.  We began with 13,011 FunFams (6% of all) with 16 

at least one EC annotation. Of these, 1,273 (10%) contained more than one EC annotation 17 

(impure FunFams). Applying DBSCAN to all EC annotated FunFams, we split these into 18 

26,464 clusters (21,546 for pure and 4,918 for impure FunFams). On average, 4.5% (95% 19 

confidence interval (CI): [4.4%; 4.6%]) of the sequences in a FunFam were classified as 20 

outliers (Table S1 in Supplementary Online Material (SOM)). 63% of the DBSCAN clusters 21 

contained proteins with EC annotations; only 4% of those contained more than one EC 22 

annotation (compared to 10% in all FunFams; Fig. 1A). Only 10% of all proteins (155,044 of 23 

1,593,567) belonged to clusters with more than one EC annotation compared to 21% (356,565 24 

of 1,668,273) for FunFams (Fig. 1B). Consequently, a larger fraction of clusters was pure (i.e., 25 

contained one EC annotation) than of FunFams both in terms of numbers of clusters and 26 

numbers of proteins (Fig. 1). 27 

 28 

 29 

 30 

Fig. 1: EC purity for FunFams and embedding clusters.  This analysis considered 13,011 FunFams 31 

with EC annotations. Panel A shows the distribution of all families (FunFam/Clusters), i.e., the 32 

percentage of FunFams and embedding-based clusters with n EC annotations (n≥1 for FunFams and 33 

n≥0 for new clusters; note: bars left and right of integer values n, not separated by a white space denote 34 

n annotations). Panel B shows the distribution of all proteins, i.e., the percentage of proteins in families 35 
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(FunFam/Cluster) with n EC annotations. This number does not reveal how many proteins have an EC 1 

annotation. Of the 13,011 FunFams, 10% were impure, i.e., they contained more than one EC 2 

annotation (100-value for dark blue bar at 1 in panel A), and 21% of all proteins were part of these 3 

impure FunFams. After embedding-based split of FunFams, 64% (16,906) of the resulting clusters 4 

contain ECs (100-light blue bar at 0) and 4% (606) of those 16,906 were annotated to more than one 5 

EC accounting for 11% of proteins in clusters with ECs. 6 

 7 

To further understand the extent to which the clustered FunFams provide a functionally more 8 

consistent subset, we determined for each impure FunFam, the fraction of clusters that were 9 

pure (Methods). To begin: 37% of all clusters had no EC annotated proteins and were excluded 10 

from further analysis. Of the remaining 16,906 clusters (63%), 22% were impure, i.e., 11 

contained more than one EC annotation. On average, 63% (CI: [60%; 66%]) of the clusters for 12 

a FunFam were pure (Fig. 2; dashed blue line) accounting for 58% (CI: [55%; 61%]) of all 13 

proteins (Fig. 2; dotted red line). 52% of all impure FunFams were split into completely pure 14 

clusters, i.e., for every other FunFam, the embedding-split clustered into functionally consistent 15 

sub-families (Fig. 2, right most blue point “100% Pure Clusters”) accounting for 38% of all 16 

proteins (Fig. 2, right most red point). This measure gave conservative estimates as it only 17 

considered completely pure clusters, ignoring improvements through reduction of EC 18 

annotations, e.g., when a group had originally m+1 annotations and the clustering improved to 19 

m, this improvement was ignored for all m>1. 20 

 21 

 22 

 23 

Fig. 2: Fraction of pure clusters for impure FunFams.  We show the percentages of all FunFams 24 

(blue line) or of all proteins (red line) in FunFams at levels of increasing cluster purity (Eqns. 2, 3). On 25 

average, 63% of clusters for a FunFam were pure (dashed blue line) accounting for 58% of the proteins 26 

(dotted red line). 52% of impure FunFams were split only into pure clusters (right most blue point) 27 

accounting for 38% of the proteins. 28 

 29 

Improving EC purity without over-splitting.  While splitting impure FunFams through 30 

embedding-based clustering based clearly improved the EC purity of these FunFams, we 31 

wanted to avoid over-splitting. Trivially, the more and smaller clusters a FunFam is split into, 32 

the more likely it is that these clusters are pure. In the non-sense extreme case of having N 33 

clusters for N sequences (each sequence a cluster), all clusters are trivially pure. One 34 

constraint to avoid generating too many clusters (over-splitting) is to do substantially better 35 

than by randomly splitting into the same number of clusters. We computed the random 36 
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clustering using the same cluster sizes and outlier numbers as realized by the embedding-1 

based clustering. Embedding-based clustering outperformed random (Fig. 3): More than twice 2 

as many clusters were impure for random than for embedding-based clustering (Fig. 3A, 3 

471% vs 221%); the average purity of a FunFam was almost two times higher for 4 

embedding-based clustering than for random (Fig. 3B, 633% vs. 385%), and 3.5 times more 5 

FunFams were split into exclusively pure clusters by the embedding-based clustering (Fig. 3C, 6 

523% vs 151%). This corresponded to 4.8% (CI: [4.4%; 5.2%]) of all proteins clustered into 7 

pure clusters at random compared to 38% (CI: [33%; 43%]) of all proteins for embedding-8 

based clustering, i.e., an over 7-fold increase (Fig. 3C, red bars). 9 

 10 

 11 

 12 

Fig. 3: Embedding-based clusters improve EC purity over random. Random clusters were 13 

computed using the same cluster size and outlier number realized by the embedding-based clustering, 14 

but the FunFam members were randomly assigned to one of these clusters or were classified as outliers. 15 

Plots on the left (blue colors) show percentages of FunFams/Clusters, plots on the right show 16 

percentages of proteins. A. The fraction of impure clusters was higher for the random clustering than 17 

for our clustering (29% vs 12%). B. Through DBSCAN embedding-based clustering, each impure 18 

FunFam was, on average, split into 63% pure clusters while for the random clustering, the average 19 

purity was only 38%. C. More than half of all FunFams (53%) were split only into pure clusters for 20 

embedding-based clustering but only 15% for a random clustering. Error bars indicate symmetric 95% 21 

confidence intervals. 22 

 23 
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An ideal split of impure FunFams generates clusters defined by single EC numbers, i.e., all 1 

cluster members share the same EC annotation and all proteins with the same EC annotation 2 

end up in the same cluster. Ignoring the latter leads to over-splitting. For the embedding-based 3 

clustering, 81% of the ECs occurred in one cluster (Fig. 4). However, some of the outliers had 4 

EC annotations. When also counting those (as single member clusters), the percentage of EC-5 

exclusive clusters dropped to 63% (Fig. 4). These results suggested the embedding-based 6 

clustering to have largely avoided over-splitting. Nevertheless, 8% of all experimentally known 7 

EC numbers were annotated to proteins from at least three different clusters (17% if including 8 

outliers; Fig. 4) and some (10%) of the outliers shared the EC number with the cluster from 9 

which they had been removed. This might indicate over-splitting or suggest a more fine-grained 10 

functional distinction between those proteins than is captured in the fourth EC level. 11 

 12 

 13 

 14 

Fig. 4: Most EC numbers only occur in one cluster. For each EC number in a FunFam, we counted 15 

the number of embedding-based clusters in which it occurred to gauge potential over-splitting. 81% of 16 

the ECs only occurred in one cluster (darker bars). If we considered outliers as clusters with one 17 

member, this number dropped to 63%. These results suggest that the clustering did not over-split the 18 

FunFams and that functionally related proteins ended up in the same cluster. 19 

 20 

If the increased purity through clustering had been a random effect, the embedding space 21 

clustering would be EC-independent. If so, we expect no difference in the distributions of 22 

embedding distances between pure and impure FunFams, and a similar number of clusters 23 

and outliers. However, pure FunFams were, on average, split into only two clusters, while 24 

impure FunFams were split into four clusters (Table S1). The number of clusters can, thus, 25 

indicate whether a FunFam is impure or not, i.e., if a FunFam is split into many clusters, it 26 

should be considered for further manual inspection to establish whether all proteins were 27 

correctly assigned to this functional family (more details in SOM_2.1). 28 

 29 

Different levels of EC annotations gave similar results. Up to this point, we only 30 

distinguished whether two proteins were annotated to the same or to different EC numbers, 31 

ignoring that two proteins with ECs A.B.C.X and A.B.C.Y more likely have similar molecular 32 

function than a pair with A.* and D.*. Pairs of the first type (difference only in 4th-EC level) will, 33 

on average, be more sequence similar than pairs of the second type (different EC numbers at 34 

the top level). Most impure FunFams were impure due to differences on the fourth level of EC 35 

annotations (Fig. S4). Although we analyzed the clustering at higher levels of the EC 36 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427551doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427551
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

classification, the results were inconclusive, probably due to data sparsity (SOM_2.2 for more 1 

details). 2 

 3 

Details of parameter choice mattered. For a more detailed analysis of particular details of 4 

our method, in particular, for the choice of embeddings and clustering parameters, we chose 5 

five superfamilies with diverse properties (CATH identifiers: 3.40.50.150, 3.20.20.70, 6 

3.40.47.10, 3.50.50.60, 1.10.630.10; SOM_3).  7 

More consistent clustering from PB-Tucker. When using ProtBERT embeddings to 8 

cluster the five chosen superfamilies, the number of clusters and outliers was smaller, but the 9 

fraction of impure clusters was higher than when using the default PB-Tucker embeddings 10 

(19% for ProtBERT vs 13% for “default”; Table S4). The average purity was also higher for 11 

PB-Tucker (“default” = 59%) than for ProtBERT (51%) (Table S4). Thus, PB-Tucker appeared 12 

superior in capturing functional differences, yielding a more fine-grained and pure clustering. 13 

Smaller distance thresholds led to smaller and purer clusters. The distance threshold 14 

q of DBSCAN defines whether or not two points are close enough to each other to be grouped. 15 

For the default clustering, we chose the median distance between all proteins for each 16 

superfamily (Methods). The observed distribution of distances (Fig. S2) suggested choosing 17 

superfamily-specific thresholds. As expected, the smaller q, the more clusters and outliers will 18 

result (“q =1st quartile” vs “default”; Table S4). Largely due to splitting FunFams into more 19 

clusters at smaller q, the resulting clusters were seemingly purer with only 4% impure clusters 20 

(vs. 13%) and an average purity of 83% (vs. 59%) (Table S4). In contrast, larger q thresholds 21 

(here the 3rd quartile) affected fewer, more impure clusters (Table S4). Thus, the choice of q 22 

highly influences the clustering results. For some applications, lower values of q might be best 23 

to obtain a large, highly consistent set of small sub-families that can serve e.g., as seed to 24 

further extend those sub-families to larger functionally related families. Also, especially for 25 

FunFams for which using a larger cutoff did not result in any clusters and only a small number 26 

of outliers, decreasing the distance threshold can help to still identify which sequences might 27 

cause impurity. 28 

Default neighborhood size resulted in best clustering. DBSCAN forms clusters around 29 

“core points” which are points with at least n neighbors. For the five superfamilies, we tested 30 

fixed neighborhood sizes of nÎ[5;129;255] and variable neighborhood sizes dependent on the 31 

size of the FunFam n=x*|F|, with |F| as the number of proteins in a FunFam and xÎ[0.01;0.1;0.2] 32 

(Methods). While n=129 and n=255 were in the range of what is recommended for n [29], the 33 

clustering was worse than for the default parameter (n=5) (Table S4). Specifically, the number 34 

of outliers exploded for these large neighborhood sizes (Table S4, Fig. S5). 35 

Since FunFams differ substantially in the number of proteins, we hypothesized that – 36 

similar as for q – it could be reasonable to choose a different n for each FunFam. However, 37 

this did not improve compared to the default clustering (Table S4); the default n=5 was a good 38 

choice. 39 

No consistent influence of level of EC annotation. Assessing how well our clustering approach 40 

worked depending on the level on which EC annotations were different (E.g., for a given level, 41 

for example EC level 3, we checked that annotations for level 1 and 2 were consistent) did not 42 

reveal a consistent trend (Fig. S4). The results for the five chosen superfamilies were similar 43 

(Fig. S6) underlining the more general findings that the level of EC annotation causing impurity 44 
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did not tremendously influence the results of the clustering (see SOM for a more detailed 1 

analysis). The performance is rather impacted by other factors like the presence of 2 

moonlighting proteins or missing annotations. We applied a rather conservative definition of 3 

purity: If one protein is annotated to two EC numbers and another protein in the same cluster 4 

is only annotated to one of those two, we considered this cluster impure. We would argue that 5 

it makes sense to group all proteins with two annotations in one cluster and proteins with only 6 

one annotation in another. However, those proteins also clearly share some function and 7 

considering those FunFams or clusters as impure is probably too strict. Also, we cannot be 8 

sure whether proteins with only one annotation are correctly annotated or are missing an 9 

annotation. In general, missing annotations limited our approach. Many resulting clusters did 10 

not contain any sequence with an EC annotation making it hard to assess whether those 11 

clusters were pure or not. Assessing how well our clustering approach worked depending on 12 

the level on which EC numbers differed in impure FunFams (e.g., for EC level 3, annotations 13 

for levels 1 and 2 were consistent) did not reveal a consistent trend (Fig. S4). The results for 14 

the five chosen superfamilies were similar (Fig. S6) underlining the more general findings that 15 

the level of EC annotation causing impurity did not crucially affect the embedding-based 16 

clustering (SOM_3.2). Instead, the performance was likely impacted more by other factors 17 

such as the presence of moonlighting proteins or missing annotations. We applied a rather 18 

conservative definition of purity: If one protein is annotated to two EC numbers and another 19 

protein in the same cluster is only annotated to one of those two, we considered this cluster 20 

impure. We would argue that it makes sense to group all proteins with two annotations in one 21 

cluster and proteins with only one annotation in another. However, those proteins also clearly 22 

share some function and considering those FunFams or clusters as impure is probably too 23 

strict. Also, we cannot be sure whether proteins with only one annotation are correctly 24 

annotated or are missing an annotation. In general, missing annotations limited our approach. 25 

Many resulting clusters did not contain any protein with an experimental EC annotation making 26 

it hard to assess whether those clusters were pure or not. 27 

 28 

Clustering increased purity of ligand binding. Another way to assess the purity of molecular 29 

protein function within a group of proteins is by comparing the extent to which they are similar 30 

in terms of ligand-binding. We extracted bound ligands from BioLip [30] and only considered 31 

annotations defined as the cognate ligand [31] (SOM_1.2). Of the 13,011 FunFams considered 32 

so far, 950 (7%) contained any annotation about a ligand bound, and of those 950, 158 (17%) 33 

were annotated with more than one different ligand. Embedding-based clustering split 33% of 34 

these FunFams into clusters with only one type of ligand, i.e., “pure” clusters (compared to 35 

52% for EC level 4) and an average purity of 36% (compared to 63% for ECs). Although ligand 36 

annotations remained limited, these results confirmed that embedding-based clustering 37 

increased functional purity of FunFams for an aspect of function not used during method 38 

development. 39 
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Conclusions 1 

FunFams [4, 5] provide a high-quality sub-classification of CATH superfamilies into families of 2 

functionally related proteins [3, 32]. However, some FunFams are impure and 7% of all 3 

FunFams with EC annotations contain at least two different ECs (Fig. S1). Here, we introdued 4 

a novel approach toward clustering proteins through embeddings derived from the LM 5 

ProtBERT [15] and further optimized to capture relationships between proteins within one 6 

CATH superfamily (called PB-Tucker). Similarity between embeddings can capture information 7 

different from what is captured by sequence similarity. In particular, it can reveal new functional 8 

relations between proteins [21]. Clustering all FunFams with more than one EC annotation 9 

(impure FunFams) using DBSCAN [22] reduced the percentage of impure clusters to 22% 10 

(95% confidence interval (CI): [21%, 23%]). An impure FunFam was on average split into 63% 11 

pure clusters (CI: [60%: 66%]) and more than half (53%, CI: [50%; 56%]) of all impure 12 

FunFams were split into fully pure sub-families (Fig. 2). This corresponded to a four-fold 13 

increase over random clustering (Fig. 3B). In terms of number of proteins (rather than number 14 

of clusters), the increase was almost ten-fold. Only 4.8% (CI: [4.4%; 5.2%]) of the proteins 15 

were in FunFams split into pure clusters for random while this number rose to 38% (CI: [33%; 16 

43%]) for the PB-Tucker embedding-based clustering.  17 

A more detailed analysis of five hand-picked superfamilies (Table S2) showed that the 18 

default choices for the DBSCAN parameters were reasonable (Figs. S4 & S5, Table S4), with 19 

the default n=5 to define the number of neighbors for a point to be considered a core point and 20 

the distance threshold q determined automatically based on the median distance between 21 

proteins within one FunFam. 22 

Restricting the analysis to experimental EC annotations limited the validation of our 23 

approach to a small fraction (6.1%) of all FunFams and even for those FunFams, most EC 24 

annotations remain unknown. Nevertheless, we have shown that our approach could capture 25 

more fine-grained functional relationships and enabled splitting FunFams into more 26 

functionally consistent sub-families. Especially for FunFams without many known functional 27 

annotations, our clustering can be used to (i) investigate whether or not the family could be 28 

impure based on the number of clusters resulting from the embedding-based split, or (ii) more 29 

safely infer functional annotations between members of one functional cluster than between 30 

members of one FunFam. We presented evidence suggesting that the findings for EC 31 

annotations will hold for other aspects of protein function, e.g., for binding. While we only 32 

applied this approach to FunFams using embeddings optimized for CATH, this clustering could 33 

be applied to any database of functional families using a more generalized version of those 34 

embeddings.  35 
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