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Abstract  
Vision neuroscience has made great strides in understanding the hierarchical 

organization of object representations along the ventral visual stream (VVS). How VVS 

representations capture fine-grained visual similarities between objects that observers 

subjectively perceive has received limited examination so far. In the current study, we 

addressed this question by focusing on perceived visual similarities among subordinate 

exemplars of real world-categories. We hypothesized that these perceived similarities are 

reflected with highest fidelity in neural activity patterns downstream from inferotemporal 

regions, namely in perirhinal and anterolateral entorhinal cortex in the medial temporal-

lobe. To address this issue with fMRI, we administered a modified 1-Back task that 

required discrimination between category exemplars as well as categorization. Further, 

we obtained observer-specific ratings of perceived visual similarities, which predicted 

behavioural performance during scanning. As anticipated, we found that activity patterns 
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PERCEIVED SIMILARITY BETWEEN OBJECTS 2 

in perirhinal and anterolateral entorhinal cortex predicted the structure of perceived visual 

similarity relationships among category exemplars, including its observer-specific 

component, with higher precision than any other VVS region. Our findings provide new 

evidence that subjective aspects of object perception that rely on fine-grained visual 

differentiation are reflected with highest fidelity in the medial temporal lobe. 

Introduction 
  

The ability to perceive similarities and differences between objects plays an integral role 

in cognition and behaviour. Perceived similarities are important, for example, for 

categorizing a fruit at the grocery store as an apple rather than a pear. The appreciation 

of more fine-grained similarities between exemplars of a category also shapes behaviour, 

such as when comparing different apples in order to select one for purchase. Indeed, 

experimental work in psychology has confirmed that the similarity of objects influences 

performance in numerous behavioural contexts, including but not limited to 

categorization, object discrimination, recognition memory, and prediction (see Medin et al 

1993; Goldstone & Son, 2012; Hebart et al 2020, for review). Yet, despite the well-

established links to behaviour, how the brain represents these similarities between 

objects is only beginning to be understood. A central question that has received limited 

investigation so far is how fine-grained visual similarities that observers subjectively 

perceive among subordinate category exemplars map onto neural object 

representations.  Answering this question can provide insight as to what brain regions 

provide the ‘read-out’ for such subjective reports. Moreover, this endeavor holds promise 

for understanding how differences in the way in which observers perceive their visual 

environment are reflected in variations in functional brain organization (Charest & 

Kriegeskorte, 2015). 
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Functional neuroimaging, combined with pattern analysis techniques, provides a powerful 

tool for examining the mapping between similarity relationships in visual perception of 

objects and similarities in corresponding neural representations (Kriegeskorte & Kievit, 

2013). A significant body of research addressing this issue has focused on the 

characterization of category structure and other coarse object distinctions, such as 

animacy. Findings from this research indicate that activity patterns in a large expanse of 

the ventral visual stream (VVS), often referred to as inferotemporaI cortex (IT) or ventral 

temporal cortex, capture much of this structure in the environment (Kriegeskorte et al., 

2008; Connolly et al., 2012; Mur et al., 2013; Proklova et al., 2016; Cichy et al., 2019). 

For example, numerous studies have revealed a similarity-based clustering of response 

patterns for objects in IT that is tied to category membership (e.g., Kriegeskorte et al., 

2008; Proklova et al., 2016; see Grill-Spector & Weiner., 2014 for review). In these 

studies, and in most related work, the primary focus has been on similarity in relation to 

object distinctions that are defined in objective terms, and on the characterization of 

neural representations that is shared by observers. As such, they do not address whether 

activity patterns in IT also capture similarity relationships among objects that characterize 

subjective aspects of visual perception that may vary across individuals’ reports. When 

neural activity that corresponds to subjectively perceived visual similarities has been 

examined, extant research has mostly focused on specific object features, such as shape 

or size (Op de Beeck et al., 2008; Haushofer et al., 2008; Schwarzkopf et al., 2011; 

Moutsiana et al., 2016) rather than on similarities between complex real-world objects 

that differ from each other on multiple dimensions. A notable exception to this research 

trend is an fMRI study that focused on perceived similarities among select real-world 

objects that are personally meaningful (e.g., images of observers’ own car, their own 
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bicycle; Charest et al., 2014), which demonstrated links between observer-specific 

perceived similarity and the similarity structure embedded in activity patterns in IT.   

In order to reveal the mapping between fine-grained perceived visual similarities among 

category exemplars and similarities in neural activity, it may not be sufficient to focus on 

activity in IT but critical to consider VVS regions situated downstream on the medial 

surface of the temporal lobe. Perirhinal cortex (PrC), and the primary region to which it 

projects, i.e., lateral entorhinal cortex, are of particular interest when such perceived 

similarity relationships concern entire objects. The representational-hierarchical model of 

object processing in the VVS asserts that structures in the medial temporal lobe 

constitute the apex of its processing hierarchy (Murray & Bussey, 1999; Bussey & 

Saksida, 2007; Cowell, 2012; Kent et al., 2016). It proposes that there is a progressive 

integration of object features along the VVS that allows for increasing differentiation in the 

representation of objects from posterior to more anterior regions in the service of 

perception as well as other cognitive domains (e.g. recognition memory). Visual objects 

are thought to be represented in PrC in their most highly integrated form based on 

complex feature conjunctions (Murray & Bussey, 1999; Buckley & Gaffan, 2006; Bussey 

& Saksida, 2007; Graham, Barense, & Lee, 2010; Kent et al., 2016), which support 

perceptual discrimination of even highly similar exemplars from the same object category 

(e.g., O’Neil et al., 2009, 2013). Lateral entorhinal cortex (or its human homologue 

anterolateral entorhinal cortex; alErC; Maass et al. 2015; Olsen et al., 2017) has been 

suggested to extend this role in visual object discrimination through integration with 

additional spatial features (Connor & Knierim, 2017; Yeung et al., 2017). Taken together, 

these properties make PrC and alErC ideally suited for providing the read-out for 
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subjective reports of perceived visual similarity among the subordinate exemplars of 

object categories. Although more posterior VVS regions may also predict perceived 

similarity, the representational-hierarchical model asserts that they do not provide the 

same level of differentiation as regions at the apex in the medial temporal lobe. Moreover, 

they may also not capture those aspects of perceived similarity structure that are 

observer specific.  

There is some evidence from human lesion studies suggesting that the integrity of 

regions in the medial temporal lobe is critical for perceiving the similarity among complex 

objects when it is high and objects cannot be easily discriminated from each other. This 

evidence comes from experiments that used variants of the oddity-discrimination task. In 

this task, participants view multiple objects (a minimum of three) on a computer screen 

and are asked to report the item that is least similar to the others. A finding documented 

in multiple reports (Buckley et al., 2001; Barense et al., 2007; Bartko et al., 2007; Inhoff et 

al., 2019; c.f., Stark and Squire, 2000; Levy et al., 2005; Hales et al., 2015) is that 

patients with medial temporal-lobe lesions that include PrC and alErC show deficits in 

oddity-discrimination tasks when complex objects with substantial feature overlap are 

compared, but not when oddity judgments require comparison of simple visual stimuli that 

can be distinguished based on a single feature such as colour or luminance. While the 

results of this lesion research have critically informed theoretical arguments that PrC 

plays a role in perceptual discrimination of objects (see Bonnen et al., 2021, for a recent 

computationally focused review), it is important to note that they do not provide a 

characterization of similarity structure of neural representations in PrC and alErC, nor a 

characterization of the transformation of representations from more posterior VVS regions 
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to these regions in the medial temporal lobe. Moreover, lesion findings do not speak to 

whether neural representations in the medial temporal lobe even capture the perceived 

similarity structure that is unique to individual observers.  

In the current fMRI study, we tested the idea that the visual similarity structure among 

exemplars of real-world categories that observers subjectively perceive and report is 

predicted with higher precision by the similarity structure of neural activity in PrC and 

alErC than in the more posterior VVS regions traditionally considered in neuroscience 

investigations of visual object perception, including IT. During scanning, we administered 

a novel experimental task that required visual discrimination between consecutively 

presented exemplars from real-world categories as well as categorization (see Fig. 1). In 

addition, we obtained ratings of perceived visual similarities among these exemplars from 

each observer offline (see Fig. 2), as well as estimates of similarity derived from an 

influential computational model that describes objects at their intermediate visual feature 

level (HMAX, (Riesenhuber, Poggio, 1999; Cadieu et al., 2007; Serre, Olivia, Poggio, 

2007; Khaligh-Razavi, Kriegeskorte, 2014). At the behavioural level, we found that 

discrimination performance was highly sensitive to fine-grained perceived similarity 

among exemplars, including those aspects that were observer-specific. Representational 

similarity analyses (RSA) of ultra-high resolution fMRI data revealed, in line with our 

hypotheses, that activation patterns in PrC and alErC predict this fine-grained structure 

within categories with higher precision than any other VVS region, and that they do so in 

a way that even captures those aspects of similarity structure that are unique to individual 

observers.   

Results 
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Perceived Visual Similarity Structure among Exemplars Varies across Observers 

We used inverse multidimensional scaling (iMDS, Kriegeskorte & Mur, 2012) to create 

participant-specific models of perceived visual similarity for 4 exemplars from 10 different 

categories (see Fig. 1). Specifically, participants were instructed to arrange images of 

objects in a circular arena by placing those they perceived to be more visually similar 

closer together, and those they perceived to be less visually similar farther apart. 

Participants completed these arrangements offline, i.e., outside of the scanner, in two 

phases, with the first phase involving sorting of the full set of 40 objects in a single 

arrangement (Supplementary Fig. 1A). The second phase required sorting of exemplars 

within categories in 10 separate arrangements (one per category; Fig. 1A). Given our 

interest in representations that capture fine-grained object similarities within categories, 

our primary fMRI analyses relied on the similarity structures computed based on sorting 

in this second phase. The distances between all pairwise exemplars within each category 

were used to create a behaviour-based (i.e., subjective-report) representational 

dissimilarity matrix (RDM; Fig. 1B), which included a split of the range of similarities into 

three levels for sensitivity analyses in behaviour and neural activation patterns (see 

Methods for further detail). Examination of intersubject correlations of each participant’s 

RDM and the mean of all other participants’ RDMs (excluding their own) revealed a mean 

value of r = 0.69 (t-test r>0: p<.001). When we calculated an RDM for ratings averaged 

across participants, and compared it with an RDM derived from a computational model 

developed to capture objects at their intermediate visual feature level (HMAX, 

(Riesenhuber, Poggio, 1999; Cadieu et al., 2007; Serre, Olivia, Poggio, 2007; Khaligh-

Razavi, Kriegeskorte, 2014), we also found a significant correlation (r = 0.25, p< 0.001), 
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suggesting that average ratings capture a shared component in the subjective ratings that 

relate to some objective image characteristics. Follow-up analyses that focused on this 

relationship in different subranges of similarity among exemplars (low, medium, high; see 

Figure 1B) revealed, however, that the estimates derived from the HMAX model were 

only significantly correlated with average ratings at low and medium levels (low r = .45 ; p 

< .001; medium r = .24 ; p < .001; high r = .05 ; p > .05). This pattern suggests that at 

their finest grain, judgments of similarity within categories rely on integrated object 

representations that (i) are not captured by intermediate feature level descriptions, and (ii) 

are observer-specific. Indeed, the range of intersubject correlations in reported similarity 

(calculated across exemplars and categories) that was present in our sample of 

participants provides direct evidence for variability across observers (r = 0.54-0.81; see 

Fig 1C, and Supplementary Fig. 1 for data on individual categories). There are also hints 

that this variability is most pronounced at the finest grain of judgements, as reflected in 

reduced intersubject correlations for high similarity exemplars (high r = .64; medium r = 

.65, low r = .72; high < low; t(22) = 3.41; p < .001). Critically, in a separate behavioural 

experiment conducted in another sample of participants, we found that individual 

differences in perceived visual similarity structure among exemplars are temporally stable 

observer characteristics (see Supplementary Fig. 2). We leveraged this variability across 

observers in subsequent analyses for assessing the precision of our fMRI results, 

examining whether the structure of neural representations in PrC and alErC even predict 

the perceived similarity structure that is unique to individual observers at its finest grain. 
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Figure 1. Perceived Visual Similarity ratings obtained offline with inverse multidimensional scaling 

(iMDS). (A) Task required placement of all exemplars from each category in circular arena, with 

distances reflecting perceived visual similarity. Arrows indicate the six pairwise distances used to 

compute Representational Dissimilarity Matrix (RDM). (B) Behaviour-based RDM computed using 

dissimilarity (1 – Pearson’s r) and conversion to percentiles for individual observers. Only values 

below diagonal were included. Six distances (between 4 exemplars) per category were rank-

ordered and grouped into three levels of similarity (low, middle, high; for more detail, Supp. Fig. 

1). (C) Intersubject correlations for perceived similarity ratings across all exemplars and 

categories. Correlations were computed between each participant’s RDM with the mean RDM 

(excluding the participant). Red horizontal line marks mean inter-subject correlation, with 

variability in perceived visual similarity structure across observers reflected in the range 

displayed.  
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Behavioural Discrimination Performance during Scanning is Sensitive to 

Observers’ Perceived Visual Similarity Structure  

Participants underwent ultra-high resolution fMRI scanning while completing a novel 

Category-Exemplar 1-Back Task designed to tax fine-grained visual object discrimination 

(see Fig. 2A). This task required responding to two different types of repetition, namely 

repetition of Same Exemplars or of different exemplars from the Same Category, across 

consecutive trials. Participants were asked to provide a button-press response when they 

noticed repetitions, with different buttons for each type of repetition. On all other trials, 

participants were not required to provide a response. Importantly, this task was designed 

to ensure that participants engaged in categorization, while also discriminating between 

exemplars within categories.  Performance on the Category-Exemplar 1-Back Task was 

sensitive to perceived visual similarity between exemplars as reflected in observers’ 

offline ratings and formalized in the behavioural RDMs with 3 different levels of similarity 

(Fig 2. B-C; see also Supplementary Table 1). Specifically, response errors on Same 

Category trials increased with increasing visual similarity (significant linear slope; t(22) = 

18.35, p < .0001). Moreover, response times for correct responses on Same Category 

trials were positively correlated with perceived visual similarity level (t(22) = 13.47, p < 

.0001). Critically, task performance was also sensitive to the unique perceived similarity 

structure within categories expressed by observers. When we compared the influence of 

participant’s own similarity ratings with that of others on behaviour (Fig. 2B-C), we found 

a significantly larger positive slope in error rate (t(22) = 8.30; p<.0001) and in response 

times (t(22) = 9.68; p<.0001) for participants’ own ratings. This pattern of behaviour 

suggests that perceived visual similarity between exemplars influenced participants’ 
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PERCEIVED SIMILARITY BETWEEN OBJECTS 11 

discrimination performance during scanning, and, that it did so in an observer-specific 

manner.  

 

 
Figure 2. fMRI Task: Category-Exemplar 1-Back Task. (A) Images of objects depicting one of the 

40 exemplars from 10 different categories were presented. Participants indicated repetitions on 

catch trials with two different button presses depending on whether the image was an exact 

repeat of the one previously presented (same exemplar, same category) or a repeat at the 

category level (different exemplar, same category). The majority of trials (75%) reflected no 

repetitions on either level and required no response. Only trials that required no response (non 

catch trials) were included in the fMRI analyses. (B) Percentage of errors that reflect Exact 

Repeat responses on Same Category trials as a function of perceived similarity (mean slope 

indicated with thick red line; for accuracy on all other trial types see Supplementary Materials 

Table 1). Own values reflect behavioral performance as a function of participants’ own visual 

similarity ratings; Other values reflect performance based on other participants ratings (for a total 

of 22 iterations, which are then averaged). Error rate increased with increasing similarity as 

reflected in slopes (in black/grey ***P<.0001). Error rate was more sensitive to participants’ own 

ratings as reflected in significantly higher slopes for the Own versus Other ratings (in green 

***P<.0001). (C) Response times on correct Same Category trials as a function of perceived 

similarity (mean slope indicated with thick red line). Own and Other values calculated as in (B). 

Response times increased with increasing similarity and were more sensitive to participant’s own 

than other participants’ ratings. Results in (B,C) show that behavioural performance on 1-Back 

task is most sensitive to perceived similarity as reflected in participants’ own ratings.  
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Patterns in Multiple VVS Regions Predict Perceived Visual Similarity Structure 

among Exemplars 

To investigate whether the similarities between activation patterns in PrC and 

downstream alErC predict perceived similarities between exemplars in observers’ reports, 

we employed anatomically defined ROIs and created participant-specific models of neural 

similarity between all 40 object exemplars on the no-response trials. In order to examine 

the anatomical specificity of our findings, we also created such models for ROIs in other 

VVS and medial temporal-lobe regions. Specifically, these ROIs included early visual 

cortex (EVC), lateral occipital cortex (LOC), posteromedial entorhinal cortex ErC 

(pmErC), parahippocampal cortex (PhC), and temporal pole (TP) for comparison (see 

Fig. 5 for visualization; note that LOC and PhC have typically been included in ROI 

definitions of IT in prior work; e.g., Charest et al., 2014; for direct comparison of results in 

IT and LOC see Supplementary Material Figure 5). Pairwise dissimilarities of neural 

patterns were employed to compute the brain-based RDMs (Fig. 3A-B); Pearson’s 

correlations were calculated so as to examine whether these RDM’s predicted 

participants’ own behaviour-based RDMs that were derived from their offline reports of 

perceived similarity (Fig. 3C). Our analyses revealed that neural activation patterns in 

PrC and alErC did indeed correlate with participants’ perceived visual similarity RDMs 

(Bonferroni-corrected p<.01). Patterns in other regions of the VVS (EVC; p<.003; LOC 

p<.002) were also significantly correlated with these behaviour-based RDMs. Critically, 

patterns in regions previously implicated in scene processing, specifically PhC and 

pmErC (Schultz et al., 2015; Maass et al., 2015; Schroder et al., 2015), did not predict the 

perceived similarity structure for objects (all p > 0.5). Having established that activity 
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patterns in multiple VVS regions predict perceived visual similarities between exemplars, 

we followed up on this finding by asking whether PrC and alErC capture these similarities 

with higher fidelity than earlier regions (EVC and LOC). Towards this end, we next 

examined whether these regions predict similarity structure even when exemplars only 

differ from each other in subtle ways.   

 

Figure 3. Brain-based representational dissimilarity matrices (RDMs) and their relationship to 

perceived visual similarity. (A) In each Region-of-Interest (ROI), mean multi-voxel activation 

patterns were calculated for every exemplar using the No Response trials in the Category-

Exemplar 1-Back task. Pairwise pattern dissimilarities were computed as 1-Pearson’s r. (B) 

Pairwise pattern dissimilarity percentiles were used to create participant-specific brain-based 

RDMs. (C) Brain-based RDMs were correlated with participants’ own behaviour-based similarity 
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RDMs derived from their offline reports (black double arrows = within subject r). (D) Activation 

patterns in EVC, LOC, PrC, and alErC show significant correlations with participants’ own 

perceived similarity ratings of objects (brain-based RDM X behaviour-based perceived similarity 

RDM within subjects; *P<.05, **P<.01 Bonferroni-corrected based on regions; Error bars 

represent SEM). EVC = Early Visual Cortex; LOC = Lateral Occipital Complex; PrC = Perirhinal 

Cortex; alErC = anterolateral entorhinal cortex; pmErC = posteromedial entorhinal cortex; PhC = 

Parahippocampal cortex; TP = Temporal Pole; see Fig. 5a for visualization). 

 

PrC and alErC are the Only Regions Whose Patterns Predict Perceived Visual 

Similarity Structure among Exemplars when Similarity Is High 

In this set of analyses, we examined the mapping between perceived similarity structure 

and neural activity patterns at a more fine-grained level within categories. Given prior 

evidence that PrC allows for the disambiguation of highly similar objects (Murray & 

Bussey, 1999; Buckley & Gaffan, 2006; Bussey & Saksida, 2007; Graham, Barense, & 

Lee, 2010; Kent, Hvoslef-Eide, Saksida, & Bussey, 2016), we anticipated that patterns in 

PrC, and possibly downstream alErC, would represent even the most subtle visual 

differences that observers perceive between exemplars, whereas earlier VVS regions 

would not. To address this issue with RSA in our stimulus set, participants’ behaviour-

RDMs, which were based on 6 pairwise distances between exemplars in each category, 

were divided into the three levels of similarity (low, medium, high; see Figure 1B and 

Supplementary Figure 1C for range comparison). Recall that our behavioural analyses 

revealed, as previously described, that discrimination performance on the Category-

Exemplar 1-Back task was highly sensitive to these different levels of similarity. Figure 4 

displays the results of our level-specific fMRI analyses, which were conducted for those 

regions whose activity patterns showed significant correlations with participants’ full 

perceived visual similarity space between exemplars (as shown in Fig. 3D). Correlations 
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PERCEIVED SIMILARITY BETWEEN OBJECTS 15 

between perceived similarity structure and activity patterns in PrC and alErC were 

significant at all three levels of similarity (Bonferroni-corrected p < .01; Fig. 4A). In 

contrast, correlations for activity patterns in posterior VVS regions were significant only at 

the lowest level of perceived similarity (Bonferroni-corrected p < .01). This pattern of 

results cannot be attributed to differences in stability of activity patterns across levels of 

similarity for different regions; supplementary analyses revealed that stability was 

significant for all regions and did not interact with level of similarity (see Supplementary 

Figure 3). Direct comparison between regions also revealed that correlations in PrC and 

alErC were higher than in LOC and EVC at medium and high levels of perceived 

similarity (Bonferroni-corrected p<.05; Fig. 4A).  

The described results suggest that object representations in posterior VVS regions may 

not have sufficient fidelity to allow for differentiation of exemplars that are perceived to be 

highly similar by observers, and that are most difficult to discriminate on our Category-

Exemplar 1-Back task. We followed up on this idea with complementary classification 

analyses of our fMRI data using a linear support vector machine (Mur, Bandettini, & 

Kriegeskorte, 2009). These analyses were conducted so as to examine in which VVS 

regions activity patterns associated with exemplars of high perceived similarity would be 

sufficiently separable so as to allow for classification as distinct items. They confirmed 

that activity patterns associated with specific exemplars can indeed be successfully 

classified in PrC and alErC at higher levels of perceived similarity than in posterior VVS 

regions (Figure 4B for further detail).   
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Figure 4. Relationship between brain RDMs and reports at different levels of perceived visual 

similarity for ROIs showing significant effects in Fig. 3d (A) Correlation of brain-based RDM and 

participants’ own behaviour-based RDM at low, medium, and high levels of similarity. Only 

activation patterns PrC and alErC show significant correlation with ratings at middle and high 

levels of perceived similarity (*P<.01, Bonferroni-corrected for regions and levels).  Correlations in 

PrC and alErC were significantly larger than those in EVC and LOC at the medium and high 

levels of perceived similarity (horizontal lines indicate P<.05). (B) Box and whisker plots for 

classification accuracy of neural activation patterns at each level of perceived similarity in different 

ROIs. We adopted a common classification approach using linear support vector classifier and 

leave-one-run-out cross-validation (Misaki, Kim, Bandettini, & Kriegeskorte, 2010). Results from 

one tailed t-tests to probe whether classifier performance was above chance indicate that 

patterns in LOC are distinguishable only at lowest level of perceived similarity within categories. 

PrC and alErC are only regions in which patterns are distinguishable at medium and high levels of 

perceived similarity. (*P<.05, Bonferroni-corrected). 
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The analyses presented so far only focused on specific regions of interest. To answer the 

question of whether PrC and alErC are the only regions whose activity patterns predict 

perceived visual similarity between exemplars within categories, we also conducted 

whole-volume searchlight-based RSA. As expected based on our ROI analyses, patterns 

in PrC and alErC, as well as in earlier VVS regions, showed a predictive relationship in 

these searchlight analyses when the full range of perceived visual similarity values 

between exemplars was considered; no regions in the scanned brain volume outside of 

the VVS exhibited this predictive relationship (Threshold- Free Cluster Enhancement 

corrected p<.05; Fig. 5C-D). Critically, our searchlight analyses revealed that PrC and 

alErC were indeed the only regions in the entire scanned brain volume whose patterns 

correlated with observer’s reports when similarity between exemplars was perceived to 

be high, and objects were most difficult to discriminate on the Category-Exemplar 1-Back 

task (TFCE-corrected p<.05; Fig. 5E-F). 
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Figure 5. Visualization of ROIs and Results from Whole Volume Searchlight Analyses. (A, B) 

Visual depiction of ROIs. Early Visual Cortex (EVC = green), Lateral Occipital Complex (LOC = 

cyan), Perirhinal Cortex (PrC = pink), Parahippocampal Cortex (PhC = orange), Anterolateral 

Entorhinal Cortex (alErC = blue), Posteromedial Entorhinal Cortex (pmErC = yellow), Temporal 

Pole (TP = purple). (C, D) Cortical regions revealed with searchlight analysis in which brain-based 

RDMs were significantly correlated with behaviour-based perceived similarity RDMs across full 

range. Significant correlations were observed in PrC, alErC and more posterior VVS regions. (E, 

F) Cortical regions revealed with searchlight analysis in which brain-based RDMs were 

significantly correlated with behavioural RDMs at highest level of perceived similarity. Significant 

correlations were observed only in PrC and alErC. Maps are displayed with corrected statistical 

threshold of p<.05 at cluster level (using threshold-free cluster enhancement).   

 

Patterns in Posterior VVS Regions Predict Similarity Structure that is Shared by 

Observers and Tied to Object Characteristics at the Intermediate Feature Level  

Because our behavioural results point to shared as well as observer-specific components 

in the perceived similarity structure that participants reported, we conducted several 

additional sets of analyses, aiming to address which VVS regions would show activity 

patterns that might predict these different components. In this context, we considered that 
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the perceived similarity structure among exemplars that is shared across observers for 

low and medium levels is tied to objective image characteristics at the intermediate 

feature level, as reflected in the significant correlation between averaged similarity ratings 

and estimates derived from the HMAX model in our data (see Behavioural Results 

above). Given the assertion of the representational hierarchical model that objects are 

represented in PrC and alErC based on complex feature conjunctions (rather than 

intermediate features), we predicted that the shared component of perceived similarity  

estimates of the HMAX model would predict activity patterns only in VVS regions 

posterior to PrC and alErC. Indeed, we found a significant predictive relationship of 

activity patterns in regions EVC and LOC (Bonferroni-corrected p<.01) but not in PrC and 

alErC (all Bonferroni-corrected p>.05; see Fig. 6A and B) for average perceived similarity. 

This significant relationship in posterior VVS regions was also only present at low (for 

EVC and LOC) and medium levels of similarity (for LOC; see Fig. 6B). Analyses that 

directly employed the estimates of similarity between object images obtained from the 

computational HMAX model (Riesenhuber, Poggio, 1999; Cadieu et al., 2007; Serre, 

Olivia, Poggio, 2007; Khaligh-Razavi, Kriegeskorte, 2014) revealed strikingly similar 

findings (see Fig 6B vs D). Activity patterns in EVC and LOC showed a significant 

correlation with the HMAX model at low and medium but not at the highest level of 

similarity; Bonferroni-corrected p<.01). Critically, activity patterns in PrC and alErC did not 

correlate with estimates from the HMAX model nor with average ratings at any level of 

object similarity (all Bonferroni-corrected p>.05; see Fig. 6C and D). Together, these 

results suggest that activity in VVS regions posterior to PrC and alErC capture the 

components of perceived visual similarity structure among exemplars that is shared by 

observers and that is closely related to object features at the intermediate feature level. 
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At the same time, these neural representations in posterior VVS regions do not appear to 

allow for differentiation of exemplars at high levels of perceived similarity that tend to be 

observer-specific. 

 

Figure 6. Brain-based representational dissimilarity matrices (RDMs) and their relationship to 
average perceived visual similarity. Brain-based RDMs were correlated with (A) the  average 
behaviour-based similarity RDMs and (B) the different levels of average similarity RDMs; and with 
(C) the entire HMAX model (D) the different levels of similarity derived from the HMAX model 
Patterns in EVC and LOC show relationship to average whole perceived similarity ratings 
**P<.01, Bonferroni-corrected based on regions. EVC and LOC also show correlations to the 
average low, and LOC to the medium level of perceived similarity *P<.05, Bonferroni-
corrected  EVC = Early Visual Cortex; LOC = Lateral Occipital Complex; PrC = Perirhinal Cortex; 
alErC = anterolateral entorhinal cortex; pmErC = posteromedial entorhinal cortex; PhC = 
Parahippocampal cortex; TP = Temporal Pole) 
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Patterns in PrC and alErC Predict Fine-Grained Perceived Visual Similarity 

Structure among Exemplars in an Observer-Specific Manner  

In the final set of analyses we directly focused on the variability across participants’ 

reports of similarity in order to address whether activity patterns in PrC and alErC even 

predict even those perceived similarities with high precision that are unique to individual 

observers. We reasoned that if neural patterns in a region represent the observer’s 

unique perceived similarity structure, brain-behaviour correlations should be higher when 

calculated within rather than between participants (Fig. 7A black vs grey arrows; see 

Supplementary Table 2 for similar results revealed with a multiple regression approach). 

In other words, if there are observer-specific relationships, activity patterns should predict 

participants’ own perceived similarity structure better than someone else’s. Such 

analyses would reveal that interindividual differences are not only present in the 

perceptual reports of observers and in their discrimination performance, as demonstrated 

in our behavioural analyses, but also in corresponding neural representations in PrC and 

alErC. Indeed, initial analyses of our fMRI data demonstrated the presence of stable 

observer-specific activity patterns for the object exemplars probed in our study in all 

regions of interest (see Supplementary Materials Figure 4).  The i-index introduced by 

Charest et al. (2014), which directly measures differences in correlations for the same 

(i.e., own) versus other observers, allowed us to examine which of these observer-

specific activation patterns predict observer-specific structure in reports of perceived 

similarities. These analyses confirmed our expectation that the neural activation patterns 

in PrC and alErC predict observer-specific perceived visual similarity structure 

(Bonferroni-corrected P[within-participant r > between-participant r]<.01). In contrast, 
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activation patterns in posterior VVS regions, EVC and LOC (Bonferroni-corrected 

P[within-participant r> between-participant r]>.05) did not uniquely predict participants’ 

own perceived similarity structure (Figure 7B). Not surprisingly, regions that did not 

predict participants’ perceived similarity structure at all (pmErC, PhC, and TP; Figure 3D), 

also did not have significantly above zero i-indices (Bonferroni-corrected P[within-

participant r > between-participant r]<.05). Critically, PrC and alErC showed significant 

Brain-Behaviour i-indices even when we restricted analyses to fine-grained differentiation, 

i.e., to the subrange of high levels of perceived similarity (Bonferroni-corrected P[within-

participant r > between-participant r]<.05). Taken together, these results reveal that 

activity patterns in PrC and alErC even predict perceived similarities that are unique to 

individual observers, which are most prevalent in fine grained structure, with high 

precision . 

  
Figure 7. Brain-based representational dissimilarity matrices (RDMs) and their relationship to 

observer-specific perceived visual similarity. (A) Brain-based RDMs were correlated with (i) 
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participants’ own behaviour-based similarity RDMs (black double arrows = within subject r) and 

(ii) other participants’ behaviour-based similarity RDMs (grey arrows = between subject r) for 

comparison. (B) Patterns in PrC and alErC show relationship to perceived similarity ratings that 

are observer specific as reflected in Brain-Behaviour i-index (i.e., within minus between subject 

correlation; *P<.05, Bonferroni-corrected based on regions, with testing against a null-distribution 

created by randomizing subject-labels; Error bars represent SEM estimated based on 

randomization). PrC and alErC also show significant higher  i-index than other regions as 

indicated with horizontal lines; *P<.05, Bonferroni-corrected. (C) Only patterns in PrC and alErC 

show relationship observer-specific perceived similarity ratings at the middle and high levels of 

perceived similarity. (*P<.01, Bonferroni-corrected for regions and levels).  Correlations in PrC 

and alErC were significantly larger than those in EVC and LOC at the medium and high levels of 

perceived similarity (horizontal lines indicate P<.05).  EVC = Early Visual Cortex; LOC = Lateral 

Occipital Complex; PrC = Perirhinal Cortex; alErC = anterolateral entorhinal cortex; pmErC = 

posteromedial entorhinal cortex; PhC = Parahippocampal cortex; TP = Temporal Pole; see Fig. 

5a for visualization) 

 

Discussion  

Vision neuroscience  has made great strides in understanding the hierarchical 

organization of object representations along the ventral visual stream (VVS). How VVS 

representations capture fine-grained differences between objects that observers 

subjectively perceive has received limited examination so far. In the current study, we 

addressed this question by focusing on perceived similarities among exemplars of real 

world-categories. Using a novel Category-Exemplar 1-Back Task, we found that visual 

discrimination performance is highly sensitive to the visual similarity structure that is 

reflected in observers’ subjective reports. Combining this task with fMRI scanning at ultra-

high resolution allowed us to show, in line with our general hypotheses, that activity 

patterns in PrC and alErC predict perceived visual similarities among exemplars with 

higher precision than any other VVS region, including prediction of those aspects of 

similarity structure that are unique to individual observers.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2022. ; https://doi.org/10.1101/2021.01.21.427602doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427602
http://creativecommons.org/licenses/by-nd/4.0/


PERCEIVED SIMILARITY BETWEEN OBJECTS 24 

Research that has aimed to characterize the nature of object representations in human 

PrC with fMRI has shown that the degree of feature overlap between objects is captured 

by activation patterns in this region. Such a relationship has been revealed in multiple 

task contexts, with images of real-world objects and with words denoting such objects; 

moreover, it has been observed for feature overlap at the perceptual as well as the 

semantic level (Clarke and Tyler, 2014; Erez et al., 2016; Bruffaerts et al., 2013; Martin et 

al., 2018). These findings, in combination with work from neurophysiology in non-human 

animals and from computational modeling, have been interpreted to suggest that PrC 

integrates features of objects with complex conjunctive coding into representations of 

whole objects, and that the resulting conjunctive representations allow for differentiation 

of objects even when they are highly similar due to a high degree of feature overlap 

(Bussey & Saksida, 2002; Murray et al., 2007; Cowell et al., 2010). Indeed, it is this type 

of conjunctive coding that has motivated the central notion of the representational-

hierarchical model of VVS organization that PrC, together with alErC (Connor & Knierim, 

2017; Yeung et al., 2017), can be considered the pinnacle of the VVS object-processing 

hierarchy. With a metric that was rooted in participants’ subjective reports of perceived 

visual similarity relationships and that we validated through examination of behavioural 

discrimination performance, our fMRI findings provide direct new evidence for increased 

differentiation of subordinate category exemplars in PrC and alErC, as compared to more 

posterior VVS regions.  

Findings from lesion studies conducted with oddity-discrimination tasks support the idea 

that medial temporal-lobe structures downstream from IT play a critical role in processes 

required for the appreciation of fine-grained visual similarities between complex real-
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world objects that are expressed in perceptual reports (see Bonnen et al., 2021, for 

review ). Numerous studies conducted in humans and in other species have shown that 

performance on such tasks relies on the integrity of PrC when objects with high visual 

feature overlap must be judged (Buckley et al., 2001; Barense et al., 2007; Bartko et al., 

2007; Inhoff et al., 2019; c.f., Stark and Squire, 2000; Levy et al., 2005; Hales et al., 

2015). For example, Barense et al. (2007) compared performance on multiple visual 

oddity tasks between individuals with lesions in the medial temporal lobe that largely 

spared PrC and ErC, versus individuals with more widespread damage in the medial 

temporal lobes that included PrC and ErC. Most notably, individuals in the latter but not in 

the former group showed impairments in identifying the odd-one out item in sets of 

images of real-world objects that shared a high number of overlapping visual features. 

While the results of these prior lesion studies are compatible with the conclusions we 

draw in the current study, they do not allow for characterization of similarity structure of 

neural representations in PrC and alErC, and their direct comparison with representations 

in other medial temporal and posterior VVS regions, as provided here. 

Indeed, the anatomical specificity of our fMRI findings in the medial temporal lobe is 

striking. While activity patterns that reflected the similarity structure among category 

exemplars were present in PrC and alErC, they were absent in medial-temporal regions 

that have previously been implicated in visual discrimination of scenes, specifically 

pmErC and PhC cortex (see Schultz et al., 2015, for review). This specificity is 

noteworthy in light of documented differences in functional connectivity between these 

regions that have been linked to object versus scene processing, with PrC being 

connected to alErC, and PhC being connected to pmErC, respectively (Maass et al., 
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2015; see Schröder et al., 2015 for more broadly distributed differences in functional 

connectivity between ErC subregions and other cortical structures). 

The higher precision we observed for the representation of perceived similarity 

relationships in the medial temporal lobe, as compared to more posterior VVS regions, is 

of particular theoretical interest for the representational-hierarchical model of VVS 

organization (Murray & Bussey, 1999; Bussey & Saksida, 2007; Cowell, 2012; Kent et al., 

2016). Most revealing, in this context, is the comparison between PrC and ErC versus 

LOC, a region that is part of the large swath of cortex that is often referred to as IT in 

neuroimaging research and that has been linked to processing of object shape in many 

prior fMRI studies (e.g., Grill-Spector et al., 2001; Kriegeskorte et al., 2008; Connolly et 

al., 2012; Mur et al., 2013; Proklova et al., 2016; Cichy et al., 2019). While activity 

patterns in LOC predicted some aspects of similarity structure among subordinate 

category exemplars in the current work, this relationship was observed at a coarser 

grain than in PrC and alErC; it only held when perceived visual similarity was low, and 

when performance in behavioural discrimination revealed that objects were easily 

distinguishable. Indeed, complementary pattern classification analyses revealed that 

activity patterns associated with exemplars of high perceived similarity were not 

sufficiently separable in LOC so as to allow for classification as distinct items. By 

contrast, this classification could be successfully performed based on activity patterns in 

PrC and alErC. Indeed, our searchlight analyses showed that these two regions in the 

medial temporal lobe were the only ones in which activity was related to perceived visual 

similarity at a fine-grained level.  
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Our analyses of the relationship between activity patterns and aspects of perceived 

similarity among exemplars that are tied to objective image characteristics, as estimated 

by the computational HMAX model, offer support for the central claim of the 

representational-hierarchical model that the transformation of object representations from 

IT (specifically, LOC) to medial temporal-lobe structures involves further integration. 

Notably, the component of perceived similarity structure that was shared by observers 

showed a statistical relationship to the estimates of the HMAX model, which describes 

objects at the intermediate feature level and which has been linked to LOC 

representations in prior work (Riesenhuber, Poggio, 1999; Cadieu et al., 2007; Serre, 

Olivia, Poggio, 2007; but see Khaligh-Razavi, Kriegeskorte, 2014, Kubilius et al., 2016 for 

limitations as compared to deep convolutional neural network models). In the present 

study, we also found that HMAX estimates of the similarity among the exemplars we 

employed were correlated with activity patterns in LOC, but only at low and medium 

levels of similarity. The fine-grained structure among exemplars that led to the largest 

number of confusion errors in behavioural discrimination on the Category-Exemplar 1-

Back Task during scanning was predominantly observer-specific, and this fine-grained 

observer-specific structure was solely predicted by activity patterns in PrC and alErC. The 

coding of objects in PrC and alErC as fully integrated entities based on complex feature 

conjunctions, as proposed by the representational-hierarchical model, arguably affords 

the flexibility that is required to capture the fine-grained differentiation among exemplars 

that intermediate feature-level descriptions of visual objects cannot provide, and that 

were characterized by a high degree of observer specificity in the current data. 
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Our study was not designed to directly address what factors might drive the variability in 

perceived similarity structure among highly similar exemplars across observers that were 

present in subjective reports, their discrimination performance, and corresponding activity 

patterns in PrC and alErC. Prior evidence from fMRI research on neural representations 

in other VVS regions suggests that object familiarity may play an important role. Charest 

et al. (2014) revealed observer-specific effects in the similarity structure of activity 

patterns in IT that were tied to participants' reports for highly familiar real-world objects 

with unique personal meaning (e.g., images of observers’ own car, their own bicycle). 

Notably, this observer-specific mapping between similarity in activity patterns and reports 

was not present for unfamiliar objects. There is also evidence from behavioural training 

studies indicating that prior experience with categories has an impact on how the 

similarity among its exemplars is perceived. In a recent study by Collins and Behrmann 

(2020), for example, it was shown that  just a few days of repeated exposure can lead to 

increased differentiation among exemplars, and that these changes are most pronounced 

at the level of fine-grained similarity structure when observers have had some prior 

experience with the category in question. This change in similarity structure based on 

training occurred in the absence of any apparent opportunity to gain new sematic 

knowledge about the exemplars in question, suggesting it could reflect an increase in 

perceptual expertise. Indeed in recent behavioural research from our lab we have found 

that the degree of self-reported exposure to real-world object categories, but not 

corresponding semantic knowledge, predicts observers’ perceived visual similarity 

structure among their exemplars, and that this relationship is most notable at the level of 

fine-grained structure (Minos et al, 2021). It is possible that the observer specificity in 

fine-grained differentiation among exemplars that was predicted by activity patterns in 
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PrC and alErC in the current study is tied to similar factors at work, and reflects 

interindividual differences in perceptual expertise across observers and categories. 

Although speculative at present, such an account would be in line with a large body of 

evidence revealing plasticity in object representations in these medial-temporal lobe 

structures (see Banks et al., 2014, for review). This account can be directly tested with 

training paradigms that target specific real-world object categories in future fMRI 

research. Regardless of the outcome of such future research, the current findings 

highlight the critical value of probing the subjective appreciation of visual object 

similarities, and their variability across observers, for a complete understanding of the 

transformation of neural representations from posterior regions to those at the apex of the 

VVS. 

 

Material and Methods 

Participants 

A total of 29 participants completed the perceived similarity inverse multi-dimensional 

scaling arrangement task and fMRI experiment (12 females; age range = 18-35 years old; 

mean age = 24.2 years). All participants were right-handed, fluent in English, and had no 

known history of psychiatric or neurological disorders. Three participants were removed 

due to excessive head motion above the cut-off of 0.8 mm of framewise displacement, 

one participant were removed due to behavioural performance accuracy 2 SD below the 

average on the fMRI task, and two participants were removed due to temporal signal-to-

noise ratio 2 SD below average. Therefore, 23 participants were included in the final 

analyses. All participants gave informed consent, were debriefed, and received monetary 
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compensation upon completion of the experiment. This study was conducted with 

Western’s Human Research Ethics Board approval. 

Stimuli  

In order to investigate high-level object representations, we selected stimuli with varying 

levels of perceived visual similarity from the Migo Normative Database (Migo et al., 

2013). We used 40 greyscale images of objects from 10 categories (Supplementary 

Figure 1A). Each category was made up of four exemplars that all shared the same name 

(e.g., apple, lipstick, stapler).  Based on findings from a pilot study (n = 40), stimuli with 

similar perceived similarity ratings to the normative findings in the database were 

selected. 

Modeling of Perceived Visual Similarity Structure 

In order to obtain observer-specific models of perceived visual similarity structure for our 

stimuli, participants provided reports of perceived similarity between all stimuli on a 

computer outside of the scanner prior to scanning. Participants were seated in front of a 

monitor and completed a modified version of the inverse multi-dimensional scaling task 

(iMDS; Kriegeskorte & Mur, 2012). Specifically, participants were asked to drag-and-drop 

images into a white circle (i.e., arena), and arrange them according to perceived visual 

similarity (Kriegeskorte & Mur, 2012; see Figure 2A). Objects perceived to be more 

visually similar were placed closer together and objects perceived to be less visually 

similar were placed further apart. The iMDS task consisted of two phases. In the first 

phase, participants arranged all 40 stimuli according to perceived visual similarity 

(Supplementary Figure 3A). All unique pairwise distances were converted to dissimilarity 
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percentile and used to compute observer-specific models of the between-category 

similarity space. In the second phase, participants completed 10 category-specific trials in 

which they sorted four exemplars from the same category according to their perceived 

visual similarity. They were instructed to use the entire space within the circle, and make 

sure they compared each stimulus to every other stimulus. A  MATLAB-based toolbox 

was then used to calculate distances between each pair of exemplars, and to convert 

these distances to dissimilarity percentiles (Kriegeskorte & Mur, 2012). These 

dissimilarity percentiles were then used to create observer-specific behaviour-based 

RDMs that represented each observers’ perceived similarity space at the exemplar level. 

The behaviour-based RDMs for the entire range included 6 dissimilarity percentiles for 

each of the 10 categories (i.e., 6x10=60 dissimilarity percentiles) 

These behaviour-based RDMs, which captured the full range of perceived similarity, were 

used to create 3 behaviour-based RDMs to reflect 3 levels of perceived similarity (low, 

medium, high). The 6 pairwise distances (expressed as dissimilarity percentile) per 

category were sorted into the two largest, two medium, and two smallest dissimilarities to 

create behaviour-based RDMs for low, medium, and high perceived visual similarity, 

respectively. These behaviour-based RDMs for each of the levels included 2 dissimilarity 

percentiles for each of the 10 categories (i.e., 2x10=20 dissimilarity percentiles). In order 

to ensure that the different levels of perceived similarity were non-overlapping, any values 

that did not allow for at least 0.1 dissimilarity percentile between each of the successive 

levels (i.e., high-middle, middle-low) was excluded. The range of dissimilarity percentiles 

did not differ significantly between the different levels of perceived similarity (p>.05; 

Supplementary Figure 1C). 
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Modelling of Objective Visual Similarity: HMAX Model 

We obtained estimates of similarities that were derived from a computational model, 

HMAX (Riesenhuber & Poggio, 1999; Cadieu et al., 2007; Serre, Olivia, Poggio, 2007; 

Khaligh-Razavi, Kriegeskorte, 2014), developed to describe objects at their intermediate 

visual feature level, including shape. In this biologically inspired model, simple cell layers, 

akin to V1 cells, detect local orientation using Gabor filters. These orientation signals are 

pooled in complex cell layers to extract global features. In this way, HMAX is designed as 

a 4-layer hierarchical feed-forward structure similar to that described in the Ventral Visual 

Stream. The output layer of HMAX captures an object’s shape over activation patterns 

and has been shown to correspond to activation patterns in IT cortex and LOC (Khaligh-

Razavi, Kriegeskorte, 2014). We used Matlab implementation of HMAX 

(https://maxlab.neuro.georgetown.edu/hmax.html) to extract the activations from the C2 

layer of the model and compute Representational Dissimilarity Matrix (RDM) between 4 

exemplars from the 10 categories used in the current study.  

Category-Exemplar 1-Back Task 

For the main experiment, participants completed a variation of a 1-back task, coined the 

“category-exemplar 1-back” in the 3T scanner. We created this new 1-back task to 

ensure that participants were attending carefully to each individual object, given our 

interest in fine-grained object discrimination. Like in a classic 1-back task, participants 

were shown a stream of individual objects and asked to indicate with a button press when 

the object was an exact repeat of the object previous to it, and no response was required 

when the object was from a different category as the one previous (Figure 2A). Our novel 
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twist was the addition of a second response option, whereby participants were asked to 

indicate with a different button when the object was from the same category as the 

previous one, but a different exemplar. The two response trial types served as catch trials 

to ensure participants’ attention focused on differences between objects across 

consecutive trials, and to assess behavioural performance. These modifications of the 

classic 1-back task were introduced to ensure that participants attended closely to each 

individual object and engaged in object processing at the exemplar level. Specifically, 

successful identification of the repetition of different exemplars from the same category 

could not be based on local low-level features, such as changes in luminance, texture, or 

shape across consecutive trials. Participants used their right index and middle finger to 

respond, which was counterbalanced across participants. Of the three trial types—

exemplar repeat, category repeat, different category—only the no response trials (i.e., 

different category) were used in the fMRI analysis to avoid motor confounds associated 

with button-presses. By extension, none of the trials considered for assessment of 

similarity in activation patterns were immediate neighbours.  

Participants completed a total of eight functional runs that each lasted 4 min (stimulus 

duration = 1.2 s, inter-trial interval = 1 s). Run order was counter-balanced across 

participants. Within each run, each of the 40 exemplars were presented three times as 

no-response trials, and once as a catch trial, for a total of 24 presentations on no-

response trials and 8 catch trials (excluded from fMRI analyses) per exemplar across the 

entire experiment. Prior to scanning, each participant completed a 5 min practice task 

with images from categories not included in the functional scanning experiment.  

fMRI Data Acquisition 
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MRI data were acquired using a 3 T MR system (Siemens). A 32-channel head coil was 

used. Before the fMRI session, a whole head MP-RAGE volume (TE = 2.28 ms , TR = 

2400 ms , TI = 1060 ms, resolution= 0.8 X 0.8 X 0.8 mm isometric) was acquired. This 

was followed by four fMRI runs, each with 300 volumes, which consisted of 42 T2*-

weighted slices with a resolution of 1.7 X 1.7 mm (TE = 30 ms, TR = 1000 ms, slice 

thickness 1.7 mm , FOV 200 mm, parallel imaging with grappa factor 2). T2* weighted 

data were collected at this ultra-high resolution so as to optimize differentiation of BOLD 

signal in anterolateral versus posterior medial entorhinal cortex. The T2* slices were 

acquired in odd-even interleaved fashion in the anterior to posterior direction. 

Subsequently, a T2-weighted image (TE = 564 ms, TR = 3200 ms, resolution 0.8 X 0.8 X 

0.8 mm isometric) was acquired. Finally, participants then completed four more fMRI 

runs. Total duration of MRI acquisition was approximately 60 min.  

Preprocessing and Modeling 

MRI data were converted to brain imaging data structure (BIDS; Gorgolewski et al., 2016) 

and ran through fmriprep-v1.1.8 (Esteban et al., 2018). This preprocessing included: 

motion correction, slice time correction, susceptibility distortion correction, registration 

from EPI to T1w image, and confounds estimated (e.g., tCompCor, aCompCor, 

framewise displacement). Component based noise correction was performed using 

anatomical and temporal CompCor, aCompCor and tCompCor, by adding these 

confound estimates as regressors in SPM12 during first level GLM (Behzadi, Restom, 

Liau, & Liu, 2007). Each participant was co-registered to the participant-specific T1w 

image by fmriprep. First-level analyses were conducted in native space for each 

participant with no spatial smoothing to preserve ultra-high resolution patterns of activity 
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for MVPA. Exemplar-specific multi-voxel activity patterns were estimated in 40 separate 

general linear models using the mean activity of the no-response trials across runs.  

Region of Interest (ROI) Definitions for fMRI Analyses 

Anatomical regions of interest were defined using multiple techniques. Automated 

segmentation was employed to delineate PrC, ErC, and PhC (ASHS; Wisse et al., 2016). 

We manually segmented each ERC obtained from ASHS into anterolateral and 

posteromedial entorhinal cortex following a protocol developed by Olsen and colleagues 

(2017), which is derived from a functional connectivity study (Maass et al., 2016). A 

probabilistic atlas was used to define EVC (Wang et al., 2015) and TP (Fischl, 2012). A 

functional localizer was used to define LOC as the contiguous voxels located along the 

lateral extent of the occipital lobe that responded more strongly to intact objects than 

scrambled objects (p<.01, uncorrected; Proklova et al., 2016).  

In the VVS, we focused on lateral occipital complex and the temporal pole as they have 

previously been linked to object processing (e.g., Grill-Spector, Kourtzi, & Kanwisher, 

2001; Martin et al., 2018), as well as early visual cortex. In the MTL, we included ROIs for 

the posteromedial ErC and parahippocampal cortex, both of which have been linked to 

scene processing (e.g., Maass et al., 2015; Schroder et al., 2015; Schultz et al., 2015; 

Epstein & Baker, 2020).  

Representational Similarity Analyses of fMRI data  

For each ROI, linear correlation distances (Pearson’s r) were calculated between all pairs 

of exemplar-specific multi-voxel patterns using CoSMoMVPA toolbox in Matlab 

(Oosterhof, Connolly, Haxby, 2016) across all voxels. These correlations were used to 
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create participant-specific brain-based RDMs (1-Pearson’s r), which captures the unique 

neural pattern dissimilarities between all exemplars within each category (n=10), within 

each region (n=8).  

Whole-volume RSA was conducted using surface-based searchlight analysis 

(Kriegeskorte et al., 2006; Oosterhof et al., 2011; Martin et al., 2018). Specifically, we 

defined a 100-voxel neighborhood around each surface voxel, and computed a brain-

based RDM within this region, analogous to the ROI-based RSA. This searchlight was 

swept across the entire cortical surface (Kriegeskorte et al., 2006; Oosterhof et al., 2011). 

First, the entire perceived similarity RDM for all within category ratings was compared to 

each searchlight. These brain-behaviour correlations were Fisher transformed and 

mapped to the centre of each searchlight for each participant separately. Participant-

specific similarity maps were then standardized and group-level statistical analysis was 

performed. Threshold-free cluster enhancement (TFCE) was used to correct for multiple 

comparisons with a cluster threshold of p<.05 (Smith and Nichols, 2009).  
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Supplementary Figure 1. (A) 40 images of object stimuli sampled from Migo et al. (2013) and 

employed in current study. Images of objects are from 10 categories with 4 exemplars in each 

category. Dimensions on which exemplars differ include: external shape envelope, texture, and 

internal spatial configuration of parts. (B) Behavioural results from iMDS task obtained off-line 

from all 24 participants in the fMRI study (Mean in thick red line). Perceived similarity ratings 

(expressed as Dissimilarity Percentile) were obtained separately for each category. They are 

displayed for all pairwise comparisons (with numbers indicating specific exemplars as shown in A) 

in arbitrary order along x-axis. Ratings reveal some variability across participants in all categories, 

which is also reflected in intersubject correlations shown in Fig. 2c in Main text. (C) Ratings from 

(B) reordered according to participant’s own rank ordering of perceived similarity. We grouped the 

2 lowest, 2 middle, and 2 highest similarities in observer-specific manner. Shown dissimilarity 

percentiles reflect average values for 2 pairs of ratings in each grouped ranking. Notably, the 

range of dissimilarity percentile values was comparable across the three levels (p > 0.5). 

Displayed rank-ordered data were employed to assess sensitivity of behaviour and fMRI 

responses to participants’ own perceived similarity of objects.  
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Supplementary Figure 2. In a follow-up study, a distinct group of 30 participants completed two 
sessions of the iMDS task for the 10 object categories separated by 7 days +/- 1 day later. (A) 
Intra-subject correlations for perceived similarity ratings across all exemplars and categories. 
Correlations were computed between each participants’ perceived similarity Representational 
Dissimilarity Matrices (RDMs) from Session 1 and from Session 2. The mean within-subject 
correlation across the two sessions was 0.84, indicating high stability of participant’s perceived 
similarity ratings one week apart. (B) Intersubject correlations for perceived similarity ratings 
across all exemplars and categories. Correlations were computed between each participant’s 
RDM Session 1 with the mean RDM (excluding the participant) in Session 2. Mean inter-subject 
correlation was 0.68. Critically, a paired t-test(intra-subject>inter-subject correlation) confirmed 
that intra-subject correlations were significantly higher than inter-subject correlations (p<0.0001). 
This pattern of results indicates that the perceived similarity structure that is unique to the 
individual observer is a stable characteristic. 
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Supplementary Table 1. Behavioural performance on Category-Exemplar 1-Back Task. Each object image 
belonged to one of three trial types: exemplar repeat (Same Exemplar), category repeat (Same Category, 
different exemplar), no repeat (Different Category, different exemplar). Proportion of correct responses 
for each trial type are indicated in green. Same Category trial types are further divided according to level 
of perceived visual similarity, measured using participants ratings on the iMDS object sorting task.  
Behavioural performance reveals sensitivity to perceived similarity in terms of accuracy of responses. 
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Supplementary Figure 3. Relationship between Brain-based RDMs in even and odd runs, within 

and between participants at different levels of perceived similarity.  Correlation of brain-based 

RDMs for even and odd runs at low, medium, and high levels of similarity. Activation patterns in 

all ROIs show significant correlations at all levels of perceived similarity (***P<.001, Bonferroni-

corrected for regions and levels). 
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Supplementary Figure 4. Relationship between Brain-based RDMs in even and odd runs, within 

and between participants. (A) Pairwise pattern dissimilarity percentiles were used to create 

observer-specific brain-based RDMs for even and odd runs. (B) Brain-based RDMs from even 

runs were correlated with (i) observers’ brain-based RDMs for odd runs (black double arrows = 

within subject r) and (ii) other observers’ brain-based RDMs from odd runs (grey arrows = 

between subject r) for comparison. (C) Patterns in all ROIs show stable similarity structure as 

reflected in significant correlations between odd and even run; ***P<.001, Bonferroni-corrected 

based on regions; Error bars represent SEM. (D) Patterns in all ROIs are unique to each 

individual to each individual as reflected in Brain-Brain i-index (i.e., within minus between subject 

correlation; ***P<.001, Bonferroni-corrected based on regions, with testing against a null-

distribution created by randomizing subject-labels; Error bars represent SEM estimated based on 

randomization).  EVC = Early Visual Cortex; LOC = Lateral Occipital Complex; PrC = Perirhinal 

Cortex; alErC = anterolateral entorhinal cortex; pmErC = posteromedial entorhinal cortex; PhC = 

Parahippocampal cortex; TP = Temporal Pole). 
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Beta (own) Beta (average) 
Beta (own) –    

Beta (average) 

T-value P-value T-value P-value T-value P-value 

EVC 4.56 0.007* 5.12 0.0057* 0.65 0.600 

LOC 4.99 0.0105* 7.43 0.00098* 1.55 0.10 

PrC 7.01 0.0024* 3.06 0.0686 4.83 0.008* 

alErC 6.50 0.0202* 3.01 0.0699 4.59 0.007* 

pmErC 0.98 0.59 1.53 0.23 1.09 0.39 

PhC 1.13 0.42 1.13 0.37 1.70 0.25 

TP 1.74 0.12 1.74 0.22 0.95 0.50 

 

Supplementary Table 2. Multiple linear regression: Brain RDM ~ (own RDM + average RDM). 
To determine the contributions of shared perceived similarity versus observer-specific perceived 
similarity to activity patterns in our regions of interest (ROIs), we conducted multiple regression 
analyses for the relationships depicted in Figure 3D using average similarity ratings and 
observer’s own ratings as predictors. Beta-values were tested against 0 in ROI using paired t-
tests with Bonferroni-correction. Beta(own) was significantly higher than 0 in EVC, LOC, PRC, 
and alErC. Beta(average) was significant in EVC and LOC, but not PRC, alErC, nor in the other 
ROIs. Critically, the difference between Beta(own) and Beta(average) was significant only in PrC 
and alErC. The latter pattern of results converges with the results obtained based on calculation 
of the i-index as shown in Figure 7B in the main text.  
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Supplementary Figure 5. Comparison between Inferotemporal (IT) Cortex and Lateral Occipital 
Complex (LOC): Brain-based representational dissimilarity matrices (RDMs) and their relationship 
to perceived visual similarity (A) at all levels of perceived similarity and (B) corresponding i-index; 
and (C) at different levels of perceived similarity and (D) corresponding i-index. These 4 analyses 
from the main experiment were included here to compare results in IT cortex with those in LOC. 
IT cortex is a large piece of cortex that extends across occipital and temporal cortex. This region 
of interest (similar to the one used in Charest et al., 2014) overlaps with regions of interest used 
in the main experiment including: LOC, PhC and TP. We were specifically interested in LOC—the 
object selective portion of larger IT cortex—because our stimuli were objects. The results across 
these four sets of analyses were highly similar between the two regions, with the only noticeable 
exception being LOC activity patterns predicting observer-specific perceived similarity at low 
levels of similarity while IT patterns not predicting any observer-specific similarity at all. 
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Supplementary Figure 6. Temporal Signal-to-Noise Ratio in PrC (M=12.25, SD=2.68) and alErC 

(M=10.80, SD=3.05) in each of the 25 participants (average denoted by bolded red dot). Green 

arrows indicate 2 participants with tSNR in alERC below 2SD of the Mean. These participants 

were excluded from fMRI analyses  
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