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Abstract 

How does long-term training modify the neural control of walking? Here we investigate 

changes in kinematics and muscle synergies of the lower extremities in 10 soccer players and 

10 non-athletes while they walked with eyes open or closed either overground or on a treadmill. 

Electromyography (EMG) was acquired from eight muscles of the right leg and foot switch 

data were recorded to extract temporal gait parameters. Muscle synergies were extracted using 

non-negative matrix factorisation for each participant and condition separately and were then 

grouped using k-means clustering. We found that both the cycle and stance duration were 

longer during treadmill walking compared to overground walking, whereas the swing phase 

was longer during the eyes-open compare to the eyes-closed condition. On average, more 

synergies were expressed in the athlete compared to the non-athlete group and during treadmill 

compared to overground walking. We found that synergy 2 involved in ankle plantarflexion 

was more often activated in athletes than in non-athletes. We did not find statistical group 

differences for the synergy metrics but several differences were observed between conditions: 

peak activation of synergy 5 (VM and VL muscles) increased during overground walking 

compared to treadmill walking. In addition, reduced activation of synergy 3 (TA muscle) and 

synergy 4 was observed during eyes-closed compared to eyes-open walking. These findings 

suggest that during walking long-term training results in greater flexibility of muscle 

coordination by recruiting additional synergies, but we found no evidence that long-term 

training affects the activation patterns of these synergies. 

 

 

Key words: Walking, Electromyography, Muscle synergy, Motor control, Exercise training, 

Gait parameters 
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1. Introduction 

Walking is a daily activity that we perform with little effort or attention, but requires delicate 

control of our complex musculoskeletal system (Aoi et al., 2019; Nielsen, 2003). Despite of 

the many degrees of freedom of the musculoskeletal system and the complexity human gait, 

gait patterns tend to be stereotypical and have close to optimal energy expenditure (Ackermann 

& Van den Bogert, 2010; Clever, Schemschat, Felis, & Mombaur, 2016). This means that out 

of infinitive options, the central nervous system (CNS) selects a smooth and coordinated 

movement trajectory that minimizes joint torques or fatigue. However, what an optimal gait 

trajectory is depends on characteristics of the individual and the surrounding and considerable 

variability can hence be observed across gait cycles, individuals and task conditions 

(Hausdorff, 2005; Kang & Dingwell, 2008; Springer et al., 2006). For example, the 

neuromuscular control of walking is affected by physical health, revealing changes in gait and 

balance across the lifespan (Voelcker-Rehage & Niemann, 2013) and with exercise training 

(Godde & Voelcker-Rehage, 2017).  

 

Research on exercise training has mostly focused on the reduction of injuries through 

reinforcing muscle groups, emphasizing a combination of strength, balance and aerobic 

training (Sherrington et al., 2008). For instance, strength and balance training can reduce fall 

risk during walking (McCrum, Gerards, Karamanidis, Zijlstra, & Meijer, 2017). Also, people 

in the early stage of Parkinson disease show increased gait speed, step and stride length, and 

hip and ankle joint excursion during gait training and also improved weight distribution in the 

sit-to-stand test after completing 24 exercise sessions over 8 weeks (Fisher et al., 2008). 

Furthermore, patients who had experienced stroke improved walking speed, stride length and 

symmetry index after three weeks of backward walking training (Yang, Yen, Wang, Yen, & 

Lieu, 2005). Finally, treadmill training with visual feedback showed the efficiency of training 

program in patients in the late period after stroke: Participants had a great improvement in 

shortening of the stance phase, lengthening of the swing phase, and increasing cycle length in 

the unaffected limb after two weeks treadmill training (Drużbicki, Guzik, Przysada, Kwolek, 

& Brzozowska-Magoń, 2015).  

 

Although the behavioural improvements of exercise training are extensively described, the 

physiological changes underlying these improvements in performance are less well understood. 

Several changes in the central nervous system have been reported. For example, exercise 

training can enhance neurotrophic factors (Perrey, 2013) and increase interhemispheric brain 
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activity at the cortical level (Lepley, Lepley, Onate, & Grooms, 2017). However, it remains 

unclear how these changes in the CNS relate to the improvements observed at the behavioural 

level. Muscle synergy analysis is a well-establish approach to investigate the neural 

coordination of movement (d'Avella & Bizzi, 2005; Torres-Oviedo & Ting, 2007; Tresch & 

Jarc, 2009) and has been used to investigate changes in control strategy resulting from exercise 

training (Safavynia, Torres-Oviedo, & Ting, 2011). Muscle synergies are defined as patterns 

of muscle co-activation that are activated by single neural command signal (Nordin & Dufek, 

2016) and have been quantified using non-negative matrix factorisation of electromyography 

acquired from multiple muscles (Tresch, Cheung, & d'Avella, 2006). During unimpaired gait, 

less than six synergies are sufficient to describe the muscle activities during walking (Allen & 

Neptune, 2012; Chvatal & Ting, 2013; De Groote, Jonkers, & Duysens, 2014; Ivanenko, 

Cappellini, Dominici, Poppele, & Lacquaniti, 2005). Each synergy involves a specific group 

of muscles that is activated during a specific phase of the gait cycle (Ivanenko, Poppele, & 

Lacquaniti, 2006). For example, knee extensor groups provide body support in early stance 

while ankle plantar flexors are more activated in the late stance phase (Allen & Neptune, 2012; 

Ivanenko et al., 2005; A. S. Oliveira, Gizzi, Farina, & Kersting, 2014). 

 

Some evidence indicates that muscle synergies can indeed detect changes in control strategy 

with improvement or decline of performance. For example, when muscle synergies were 

extracted during overground walking and the beam-walking test, experts used more synergies 

during beam-walking, possibly to create greater efficiency in muscle activity by transferring 

the learned muscle activity patterns to related tasks (Sawers, Allen, & Ting, 2015). 

Furthermore, it has been reported that patients use fewer muscle synergies than healthy subjects 

during walking (Clark, Ting, Zajac, & Neptune, 2009; A. S. C. Oliveira, Gizzi, Kersting, & 

Farina, 2012; Pérez-Nombela et al., 2017). The increase in the number of muscle synergies can 

reduce muscle coactivity when performing the same task (Sawers et al., 2015). Furthermore, 

balance investigation between athletes and non-athletes showed that despite using the same 

number of muscle synergy, athletes used a low co-activation strategy of ankle stabilizer 

muscles during balance task (M. Kim, Kim, Kim, & Yoon, 2018). Applying functional 

electrical stimulation training on patients who just could walk showed a general improvement 

in muscle coordination with an increase in the number of synergies (Ferrante et al., 2016). 

These findings suggest that the CNS may change muscle coordination either by increasing the 

number of muscle synergies or reducing co-activation. 
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Here, we investigate differences in muscle synergies during walking in athletes and non-

athletes to examine how the control strategy adapts to different levels of physical fitness. 

Although all individuals have been walking all their life and are thus expert walkers, we may 

still observe different synergies in athletes and non-athletes during perturbated walking. We 

therefore investigate muscle synergies and movement kinematics while participants walked 

overground or on a treadmill with either their eyes open or closed. The aim was to investigate 

how the CNS adapts the gait pattern in these different conditions depending on physical fitness. 

We hypothesized that athletes and non-athletes share the same muscle synergies but that 

athletes may recruit additional muscle synergies to reduce coactivation of muscle groups during 

walking in more challenging conditions. 

 

2. Materials and Methods  

 

2.1. Experimental Setup 

Twenty male participants, ten soccer players (height: 176 ± 5 cm, mass: 72.4 ± 6.8 kg, age: 23 

± 3 years) and ten non-athletes (height: 175 ± 6 cm, mass: 78.0 ± 18.0 kg, age 24 ± 3 years) 

who were students at the University of Mazandaran, volunteered for the experiment. The 

athletes had at least seven years continuous training experience and the non-athletes had no 

exercise training experience during their life. All participants were healthy, right-handed, and 

did not have any injuries that could affect their gait pattern. Participants were invited to the 

Centre of Health Assessment and Monitoring of Physical Education at the University of 

Mazandaran and gave written informed consent prior to beginning the protocol. The procedure 

was approved by Office of Research Ethics at University of Mazandaran. 

 

Participants were asked to wear comfortable walking shoes and walk overground or on a 

treadmill (H/P COSMOS treadmill, Germany). To determine the preferred walking speed, we 

used either the treadmill's monitor or a stopwatch during 10 m overground walking. To help 

participants walk on the treadmill with their eyes closed, a rope was applied in the front and 

back of participants so they could adjust their walking speed when their body touched the rope. 

After finishing treadmill walking participants rested for 5 min. Then overground walking was 

performed. A partner was present during eyes-closed overground walking. The partner walked 

next to the participant while they both held a piece of rope in their hands. Details of walking 

protocol is provided in figure 1. 
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Figure 1│ Procedure of treadmill and overground walking. Participants performed treadmill walking before 

overground walking. The protocol was started with eyes-open condition on each surface. The time duration of 

treadmill and overground walking during each step are distinguished on the top and down of the procedures, 

respectively. The black bound box shows when data was collected. 

 

2.2. Data Acquisition 

During overground walking, lower spinal horizontal rotation was recorded using a 3D inertial 

measurement unit (IMU) consisting of magnetometers, accelerometers and gyroscopes 

(Noraxon MyoMotion system, USA). The sensor was placed on lower thoracic (T12). A 

footswitch was applied to the right leg for the extraction of temporal gait parameters. All 

kinematic data were sampled at 100 Hz. 

 

Surface EMG was recorded from eight muscles of the right leg (dominant leg, assessed by 

kicking a ball): vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), 

semitendinosus (ST), tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis 

(GM), and soleus (S) using a wireless Noraxon myoMuscle system. EMG signals were 

recorded using a bipolar montage and sampled at 1500 Hz. Kinematic and EEG data were 

captured synchronously via Noraxon system (analogue input) using the Noraxon MR3.10 

analysis software.  

 

2.3.Data Preprocessing 

Participants walked on a 10-meter walkway during overground walking. They had to turn at 

the end of walkway and continued their walking for two minutes. We cut data during turning 

and only analysed data during straight line walking. We used the lower spinal horizontal 

rotation data to determine the turning points: The zero-crossings indicated the middle of the 

turning movement and we removed 1.5 s before and after each zero-crossing. The remaining 

data was used for further analysis. We then segmented the gait cycles using footswitch data for 

both overground and treadmill walking. Each cycle was defined by consecutive heel strikes 

and consisted of a stance and swing phase. 
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EMG signals were band-pass filtered at 20-400 Hz (K. M. Steele, Rozumalski, & Schwartz, 

2015) and normalised to unit variance. Each gait cycle was then resampled to 1000 data points 

(0 and 1000 are consecutive heel strikes). In the eyes-closed condition, participants did not 

always show stable gait dynamics and we removed all gait cycles in which the duration of the 

gait, stance or swing phase differed more two standard deviation from the mean. EMG signals 

were then rectified using Hilbert transform to extract the EMG envelopes (Boonstra & 

Breakspear, 2012; Myers et al., 2003) and low-pass filtered at 15 Hz (Ivanenko, Poppele, & 

Lacquaniti, 2004). 

 

2.4. Extraction of Muscle Synergies 

For the extraction of muscle synergies, an equal number of gait cycles was used for each 

participant and condition. The minimum number of accepted gait cycles was 32 cycles, which 

were randomly selected from all accepted gait cycles. These gait cycles were concatenated and 

decomposed using non-negative matrix factorization (NMF). NMF is a linear mode 

decomposition 𝑋 ↦ 𝑊(")𝐶(") that includes the constraints that both extracted activation 

patterns 𝐶(") and muscle weighs 𝑊(") are positive semi-definite, and that 𝑊(") and 𝐶(") 

have rank 𝑚. We used a multiplicative update algorithm to solve the corresponding 

minimisation of the Frobenius norm ‖𝑋 −𝑊(")𝐶(")‖$%  (Lee & Seung, 2001). A set of 1–8 

factors (muscle synergies) was iteratively extracted. The reconstruction accuracy was 

quantified by variance accounted for (VAF): VAF = 1 - SSE/SST, where SSE is the sum of 

squared errors and SST is the total sum of squares, i.e. the quotient of the Frobenius norm of 

the error and the Frobenius norm of the rectified EMG, where the error was defined as the 

difference between the rectified EMG and the product of the muscle weights and temporal 

activation patterns. 

 

The standard procedure to determine the number of muscle synergies to be extracted is to use 

the VAF as a fixed threshold (Tang et al., 2015; Torres-Oviedo, Macpherson, & Ting, 2006; 

Torres-Oviedo & Ting, 2007). Here, we did not use a fixed threshold but varied the threshold 

based on the individual signal-to-noise ratio. That is, the to‐be‐found number of synergies will 

not explain 100% of variance due to noise. Hence, to explain 100% of data variation, spurious 

muscle synergies will be extracted to explain the noise. However, using a fixed threshold 

assumes that noise levels are constant across participants and conditions. Instead, we varied 
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the threshold by assessing which of the extracted synergies are robustly expressed across 

participants and conditions. 

 

To this end, we used k-means clustering to group similar synergies across participants and 

conditions, as muscle synergies were separately extracted for each participant and experimental 

condition (Y. Kim, Bulea, & Damiano, 2016; Saltiel, Wyler-Duda, D'Avella, Tresch, & Bizzi, 

2001). K-means clustering was performed on the muscle weighs 𝑊(") of the extracted 

synergies. To determine the number of clusters to be extracted, we started with one cluster and 

then sequentially increased the number of clusters until all synergies of the same participant 

and condition ended up in different clusters. We repeated this procedure for fixed thresholds 

of 0.7-1 VAF. We expected that the number of clusters would gradually increase with an 

increasing threshold to group the increasing number of muscle synergies that are extracted. 

That is, if genuine muscle synergies are extracted, these synergies will be robustly expressed 

across participants and only a small number of clusters is needed to group them. However, once 

spurious muscle synergies are extracted, these will vary randomly between participants and 

conditions and the number of required clusters to group them will rapidly increase. The optimal 

threshold can then be determined as the point where the number of clusters start to rapidly 

increase. 

 

Once we determined the number of clusters, i.e., the number of muscle synergies that are 

robustly expressed across participants and conditions, we further adjusted the threshold on an 

individual basis. That is, the noise levels may likely vary across participants and conditions, 

and a variable threshold may therefore be more suitable. We therefore sequentially increased 

the threshold for individual participants and reran the clustering algorithm. The additional 

muscle synergies were only kept if the number of clusters needed to group them did not 

increase. 

 

2.5. Module Recruitment Metrics 

We computed three metrics to characterise the temporal activation pattern of each muscle 

synergy (Hayes, Chvatal, French, Ting, & Trumbower, 2014): 1) Module recruitment 

magnitude (Area) was defined as the area under the curve of recruitment coefficient; 2) 

Duration of module recruitment (Duty) was defined as the percentage of gait cycle that was 

above a given threshold; 3) Maximum rate of recruitment coefficient of muscle synergy (Peak). 
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The threshold was set at 15% of maximum recruitment coefficient (Fig. 2). Also, motor module 

composition was quantified as the sum of the active muscles within a module (sum of weight). 

 
FIGURE  2│Schematic of synergy activation metrics: Peak is the maximum point of synergy activation, Duty 

is the duration that synergy activation is greater than the threshold (15% of peak activation), and Area is the area 

under the mean synergy activation curve and above the threshold.   

 

2.6. Statistical Analysis 

A linear mixed model was used to compare gait parameters and synergy variables across groups 

and conditions. In the model we included group (athletes and non-athletes), surface (treadmill 

and over ground), and vision (eyes-open and eyed-closed walking) as fixed effects factors. As 

we allowed participants to walk at their preferred walking speed, we also ran the model 

including walking speed as covariate variable. The Mann-Whitney U test was used to compare 

the number of synergies between groups, surfaces, and vision conditions respectively. Finally, 

a binomial generalized mixed effects model was used to compare the expression of specific 

synergies across groups and conditions. We used Benjamini-Hochberg procedure to adjust p-

values for multiple comparisons (Benjamini & Hochberg, 1995). The level of statistical 

significance was at α = 0.05. 

 

3. Results 

3.1. Temporal Gait Parameters 

Participants walked slower on treadmill (-48%) compared to overground walking (F1, 16.2 = 

188.7, p < 0.001) and walked faster with open eyes (26%) compared to closed eyes (F1, 3.3 = 

77.1, p = 0.04; Fig. 3A). There were no other significant main or interaction effects (p ≥ 0.1). 

Temporal gait parameters were significantly different between treadmill and overground 
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walking (Fig. 3): Both the cycle and stance duration were longer (a 6% and 13% increase, 

respectively) during treadmill walking compared to overground walking (F1, 17.9 = 11.0, p = 

0.04; F1, 29.6 = 9.88, p = 0.04). Conversely, swing duration was shorter (-9%) during closed-

eyes compared to open-eyes walking (F1,19.1 =17.2, p = 0.04). There were no significant main 

effects for group and no interaction effects for any of the temporal gait parameters (Table S1). 

 

 
FIGURE 3│Temporal gait parameters across walking conditions. A) Walking speed during eyes-open and 

eyes-closed walking on treadmill and overground surfaces. Footswitch data was used estimate the average cycle 

duration (B), swing duration (C) and the stance duration (D). Colored dots show data for individual participants, 

the black horizontal lines show the group mean, the dark grey box the SEM and the light grey box the SD.  

 

3.2. Muscle Synergies 

As expected, the explained variances increased with increasing number of synergies: 3 

synergies explained about 87% of the variance and 4 synergies 92% (Fig. 4A). We then varied 

the threshold between 0.7 and 1 and used k-means clustering to group the extracted synergies 

across participants and conditions. With an increasing threshold, we observed that while the 

average number of synergies that were extracted in each participant and condition increased 

gradually, the number of clusters needed to group these synergies showed an abrupt increase 

from 5 clusters to more than 8 clusters when the threshold was increased above 0.8 (Fig. 4B). 

These findings show that 5 synergies are robustly expressed across participants and that 

increasing the threshold above 0.8 results in the extraction of spurious synergies.  
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FIGURE      4│The variance accounted for by each muscle synergy and the number of clusters needed to 

group them across participants and conditions. A) The mean total variance accounted by additional muscle 

synergies across different experimental conditions. B) The average number of synergies extracted for a threshold 

between 0.7 – 1 (red line) and number of clusters needed to group them (blue line). The horizontal line depicts 

the number EMGs that were acquired (8 muscles) and signifies the maximum number of synergies that can be 

extracted. 

 
At the threshold of 0.8, 220 synergies were extracted across participants and conditions (2.8 

synergies on average), which explained on average 85.2% of the variance of the EMG 

envelopes. A fixed threshold may not be optimal in light of potential differences in signal-to-

noise ratio across participants and conditions. We therefore sequentially added additional 

synergies in individual participants and conditions and repeated k-means clustering again after 

each added synergy, only keeping synergies if it did not increase the number of clusters. This 

resulted in another 152 synergies that were added. Hence, a total of 372 synergies were 

extracted across participants and conditions (4.5 synergies on average), explaining 93.7% of 

the variance, which could be grouped using five clusters. Looking at the muscle weights, most 

of the synergies remained largely unchanged (e.g., synergies 1, 4, 5), while synergies 2 and 3 

revealed a sparser muscle activation pattern (Fig. S1). Using the variable threshold, the five 

synergies were observed in most of the participants and conditions, allowing for a better 

statistical comparison across participants and conditions.    
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The five muscle synergies that were extracted using k-means clustering are shown in figure 5.  

The first cluster showing BF and ST muscle activation during late stance providing knee 

flexion during the initial swing phase. The second cluster involves the control of ankle dorsi 

flexion, with a major involvement of PL muscle and some activation of SO muscle during 

beginning of stance phase. The third cluster involves activity of the TA muscle and showed 

two peaks during the stance and swing phase, which can be related to weight bearing during 

stance and the foot clearance during swing phase, respectively. The fourth cluster showed GM 

and SO muscle activation during the stance and early swing phase. The fifth cluster involved 

VM and VL muscles activation during swing phase, providing knee extension important for 

body weight acceptance before heel contact. Visual comparison suggests that the eyes-open 

overground walking seems to have the highest peak activation for all clusters. In contrast, 

activation patterns during eyes-closed treadmill walking appeared more extended and had 

lower peak activation for all clusters.  

 

 
FIGURE 5│ Motor modules extracted from athletes and non-athletes. Activation signals are averaged across 

participants for both groups during eyes-open and eyes-closed treadmill and overground walking. Conditions are 

distinguished by colour: WO, overground walking with open eyes; WC, overground walking with closed eyes; 

TO, treadmill walking with open eyes; TC, treadmill walking with closed eyes. 

 

3.3. Experimental Differences in Muscle Synergies 

The number of synergies that were extracted varied between conditions and groups: 192 

synergies were extracted during treadmill walking (4.8 ± 0.4 on average) while 180 synergies 

extracted during overground walking (4.5 ± 0.6), while 186 synergies were extracted during 
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eyes-open walking (4.6 ± 0.6) and 186 during eyes-closed walking (4.6 ± 0.5). Furthermore, 

193 synergies were extracted from the athlete group (4.8 ± 0.4) and 179 synergies from the 

non-athlete group (4.4 ± 0.6). The number of synergies were significantly higher (6%) during 

treadmill walking than during overground walking (U = 569.5, p = 0.04). Also, athletes showed 

significantly more synergies (7%) than non-athletes (U = 543.5, p = 0.01). Vision did not have 

a significant effect on the number of synergies during walking (U = 787, p = 0.93).  

 

We then compared the expression of specific muscle synergies across groups and participants 

using a binomial generalized mixed effects model. As only synergies 2 and 3 were not recruited 

in all groups and conditions (Fig. S1), we only tested the recruitment of these two synergies. 

The model without walking speed as covariate better fitted the data (had smaller information 

criterion values, see Table S2). We found that synergy 2 was recruited more often in the athlete 

than in the non-athlete group (87.5% vs. 57.5%, b = -1.9, p = 0.008), irrespective of the addition 

of walking speed as covariate. No main effects were observed for synergy 3 (p=0.29). 

 

We characterized each muscle synergy using four metrics (area, duty, peak, and sum of 

weights). We compared these synergy metrics across groups and conditions using a linear 

mixed model that either included walking speed as covariate or not. In the statistical model 

without walking speed as covariate a larger number of significant results were found (20 

significant effects; Table S3) than with walking speed as covariate (5 significant effects; Table 

S4). The effects that were significant when including walking speed were also significant when 

walking speed was not included as covariate, except sum of weight for synergy 4, indicating 

that these results are statistically robust. We therefore reported the result if they were significant 

with and without walking speed as covariate. We did not find significant main effects of group 

for any of these metrics (p > 0.1; Table S4). However, we observed an increased area of synergy 

3 and synergy 4 (22% and 18%, respectively) during eyes-open compared to eyes-closed 

walking. Furthermore, we found increased duty for synergies 5 (26%) during eyes-closed 

compare to eyes-open walking. We also observed higher peak (14%) during overground 

walking compare to treadmill walking for synergy 5.  
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FIGURE 6│Differences of synergy metrics between groups and walking surface in the eyes-open condition. 

Rows show the different synergies and column show the different synergy metrics (area, peak, duty and sum of 

weights). Colored dots show data of individual participants and black horizontal lines show the group mean, the 

dark grey box the SEM and the light grey box the SD. 
 

4. Discussion 

We used muscle synergy analysis to investigate the effect of exercise training on muscle 

coordination during walking in different gait conditions in athletes and non-athletes. K-means 

clustering showed that five muscle synergies were robustly expressed across participants and 

conditions. We found that athletes recruited on average more synergies than non-athletes, that 

is, they more often recruited synergy 2 consisting of the ankle plantar flexors (PL and SO) that 

was activated during early stance phase. We also observed some experimental effects across 

both groups, for example participants recruited additional synergies during treadmill walking 

compared to overground walking. In addition, the area of the activity pattern of synergy 3 and 
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synergy 4 was significantly reduced during the eyes-closed compared to eyes-open condition, 

whereas duty of synergy 5 was significantly increased during the eyes-closed compared to 

eyes-open condition. Further, peak of activation was greater during overground walking 

compared to treadmill walking for synergy 5. These results suggest that exercise training results 

in subtle differences in muscle coordination during gait that can be detected using synergy 

analysis.   

 

Synergy analysis showed that athletes used a greater number of synergies than non-athletes 

(4.85 vs. 4.48). These findings are in line with previous literature suggesting that athletes 

generally recruit more synergies (Sawers et al., 2015) while patients recruit less synergies 

(Tang et al., 2015). Recruiting additional synergies provides greater flexibility of muscle 

coordination and may reduce muscle coactivation, although caution should be exerted when 

interpreting synergy number without comprehensive assessment of other synergy metrics 

(Hayes et al., 2014; Sawers et al., 2015). In addition, when using a fixed threshold to extract 

synergies, it is possible that a change in synergy number is caused by relative changes in the 

VAF of individual synergies. Here we used a variable threshold and k-means clustering to 

determine whether each synergy was expressed in individual participants and conditions. This 

approach also allowed to determine the specific synergy that was additionally recruited. We 

found that athletes more often recruited synergy 2 involving the ankle plantar flexors (PL and 

SO muscles) than non-athletes. Computation modelling reveals that the increased activation of 

the plantar flexors results in a shift from ‘heel-walking’ to ‘toe-walking’ gait (Ong, 

Geijtenbeek, Hicks, & Delp, 2019). In parallel with the previous study, it is likely that soccer 

players with more than 7 years of exercise training have greater plantar flexor strength 

(Fousekis, Tsepis, & Vagenas, 2010) and are therefore more likely to recruit this synergy 

during walking. 

 

In addition to synergy number, we also assessed four synergy metrics. Contrary to our 

expectations, we did no find significant group differences for any of the synergy metrics. For 

example, athletes and non-athletes showed similar sum of weights for all synergies extracted 

during treadmill and overground walking (Table S4). This is in contrast to a previous study that 

showed that athletes had reduced muscle weights during overground and beam walking 

(Sawers et al., 2015). They compared professional trained ballet dancers with novices (no 

dance or gymnastics training) and reported that professional dancers had a higher rate of spatial 

orientation because of their superior orientation and position in the space, which corresponded 
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to training experience and proper coordination (Crotts, Thompson, Nahom, Ryan, & Newton, 

1996). The effect of exercise training on muscle coordination may hence depend on the field 

of sport.  

 

Although we did not observe any difference between group, there were several experimental 

changes across surface or vision condition. Our results showed more extended duty of synergy 

5 (involving the VM and VL muscles) during overground compared to treadmill walking. Knee 

extensors play an important role in early stance of gait cycle by supporting body weight and 

controlling knee extension (Arnold, Anderson, Pandy, & Delp, 2005; Siegel, Kepple, & 

Stanhope, 2006). The strength of these muscles can help individuals with a crouch gait to walk 

in a more upright posture (K. Steele, Damiano, Eek, Unger, & Delp, 2012). There are 

controversial outcomes of knee joint function during walking on treadmill and overground 

surfaces. Extended treadmill walking (more than 6 min) may create a shift from visual to leg-

proprioceptive gait control (Prokop, Schubert, & Berger, 1997). However, it has been reported 

that kinematics of knee during treadmill walking was similar to overground walking (Wass, 

Taylor, & Matsas, 2005). Conversely, VL muscle had shorter duration, later onset, and earlier 

offset when participants walked on a treadmill. Treadmill walking caused immediate changes 

in VL muscle too (Harris-Love, Macko, Whitall, & Forrester, 2004). As stance phase can 

increase during treadmill walking (Chockalingam, Chatterley, Healy, Greenhalgh, & 

Branthwaite, 2012) and participants may generate a more extended duty of VM and VL 

muscles to provide more optimal shock absorption during loading phase when walked on 

treadmill (Siegel et al., 2006). 

 

 

In addition, our results showed that visual information can have an effect on synergy metrics. 

We observed reduced activation (smaller area) of synergy 3 (TA muscle) and synergy 4 (GM 

and SO muscles) during eyes-closed walking. Weakness of TA muscle can dramatically 

decrease foot stability (Gefen, 2001). TA normally active during loading response and pre-

swing phases to prepare the foot for initial contact and decelerate the rate of foot fall during 

swing phase, respectively (Byrne, O’keeffe, Donnelly, & Lyons, 2007). Also, GM and SO 

muscles are crucial to add more energy to the trunk during stance phase (Riley, Della Croce, 

& Kerrigan, 2001; Siegel, Kepple, & Stanhope, 2004) and provide ankle stability during gait 

(Sutherland, Cooper, & Daniel, 1980). Weakness of plantar flexor muscles can dramatically 

decrease foot stability and lead to fall risk (Cattagni, Scaglioni, Laroche, Grémeaux, & Martin, 
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2016). Plantar flexor muscles are strongly required to support weight of body and provide 

stability at the ankle joint during gait (Cattagni et al., 2018). Visual information has a 

fundamental role in the CNS circuits to perform skilled movement, precise visuomotor 

coordination is need for accurate gait (Georgopoulos & Grillner, 1989). Visual information is 

registered and stored in short term-memory as a "body schema" which encompass the body 

position in space and body parts associated with movement (Massion, 1992). It seems when 

participants closed their eyes this ability of visuomotor system dramatically reduced and 

participants may be less able to predict the moment of heel strike, with lower activity of TA, 

GM and SO muscles (ankle stabilizers), during eyes-closed walking to create a safer gait.  

 

In addition to changes in muscle coordination, we also found changes in temporal gait 

parameters. During treadmill walking the cycle and stance duration increased, which confirms 

a previous study that examined the effect of treadmill and overground walking on gait 

kinematics (Malatesta, Canepa, & Fernandez, 2017). Participants may increase cycle and 

stance duration during treadmill walking because they were less familiar with treadmill 

walking (Nagano, Begg, Sparrow, & Taylor, 2013; Watt et al., 2010). Furthermore, a trend of 

shorter swing phase during treadmill compared to overground walking was reported, although 

they found no significant difference in kinematics measurements (Murray, Spurr, Sepic, 

Gardner, & Mollinger, 1985). Interestingly, our results showed a decreased swing duration 

during eyes-closed compare to eyes-open walking. It can help to increase gait stability in 

absence of visual information. The absence of difference in cycle or stance duration during 

different visual conditions, suggest that decreased in swing duration during eyes-closed 

walking results from the decreased in actual swing duration (Layne et al., 2018).  

 

We allowed participants to walk at their preferred walking speed in both conditions, which 

resulted in slower walking speed during treadmill compared to overground walking and during 

eyes-closed compared eyes-open walking. To test for potential confounding effects of walking 

speed on muscle synergies, we included walking speed as covariate in our statistical analyses. 

This indeed reveals that some experimental effects are mediated through a change in walking 

speed (see Table S3 and S4). However, the group effect on the recruitment of synergy 2 was 

unaffected by including walking speed as covariate. Walking speed has been shown to affect 

muscle coordination during gait (Kibushi, Hagio, Moritani, & Kouzaki, 2018) and it may be 

better to control it in future studies, although this may not be easily achieved in an eyes-closed 

condition. Finally, the current study had a fairly limited sample size (n=10 in each group) and 
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the reported effects of exercise training on muscle coordination in gait should therefore be 

replicated in larger samples.  

 

4. Conclusion 

This paper aimed to investigate the effect of long-term exercise training by comparing athlete 

and non-athlete subjects during treadmill and overground walking. Our results indicated that 

synergy analysis is able to detect different neuromuscular strategies in athletes and non-

athletes. Athletes recruit more muscle synergies than non-athletes, in particular they more often 

recruit the plantar flexor synergy. In conclusion, the differences in athletes were observed in 

the coordination of the ankle joint stabilizers that may help to create a more flexible and stable 

gait.  
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