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ABSTRACT 

 Precise temporal coordination between slow oscillations (SO) and sleep 

spindles indexes declarative memory network development. SO-spindle interplay is 

thought to time subcortical-cortical network communication. However, it is currently 

unclear whether these findings in the declarative memory domain also apply in the 

motor memory domain. Here, we compared early adolescents and young adults 

learning juggling, a real-life gross-motor task. We found that improved task proficiency 

after sleep lead to an attenuation of the learning curve, suggesting a dynamic juggling 

learning process. We employed individualized cross-frequency coupling analyses to 

alleviate inter and intra-group variability of oscillatory features. Complementary to our 

earlier findings, we identified a more precise SO-spindle coupling in adults compared 

to early adolescents. Importantly, coupling precision over motor areas predicted 

overnight changes in task proficiency and learning curve, indicating that SO-spindle 

coupling strength is sensitive to the dynamic motor learning process. Our results 

provide first evidence that regionally specific precisely coupled sleep oscillations 

support gross-motor learning in humans. 
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INTRODUCTION 

 Sleep actively supports learning (Diekelmann & Born, 2010). The influential 

active system consolidation theory suggests that long-term consolidation of memories 

during sleep is driven by a precise temporal interplay between sleep spindles and slow 

oscillations (Diekelmann & Born, 2010; Klinzing et al., 2019). Memories acquired 

during wakefulness are reactivated in the hippocampus during sharp-wave ripple 

events in sleep (Wilson & McNaughton, 1994; Zhang et al., 2018). These events are 

nested within thalamo-cortical sleep spindles that mediate synaptic plasticity (Niethard 

et al., 2018; Rosanova & Ulrich, 2005). Sleep spindles in turn are thought to be 

facilitated by the depolarizing phase of cortical slow oscillations (SO) thereby forming 

slow oscillation-spindle complexes during which the subcortical-cortical network 

communication is optimal for information transfer (Chauvette et al., 2012; Clemens et 

al., 2011; Helfrich et al., 2019; Helfrich et al., 2018; Latchoumane et al., 2017; Mölle et 

al., 2011; Ngo et al., 2020; Niethard et al., 2018; Staresina et al., 2015).   

 Several lines of research recently demonstrated that precisely timed SO-spindle 

interaction mediates successful memory consolidation across the lifespan (Hahn et al., 

2020; Helfrich et al., 2018; Mikutta et al., 2019; Mölle et al., 2011; Muehlroth et al., 

2019). In our recent longitudinal work, we found that SO-spindle coordination was not 

only becoming more consistent from childhood to late adolescence but also, that this 

coupling strength increase directly predicted enhancements in declarative memory 

formation across those formative years (Hahn et al., 2020). However, because the 

active system consolidation theory assumes a crucial role of hippocampal memory 

replay for sleep-dependent memory consolidation, most studies, including our own, 

focused on the effect of SO-spindle coupling on hippocampus-dependent declarative 

memory consolidation. Therefore, the role of SO-spindle coordination for motor 

learning or consolidation of procedural information remains poorly understood.  
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 While sleeps beneficial role for motor memory formation has been extensively 

investigated and frequently related to individual oscillatory activity of sleep spindles 

and SO (Barakat et al., 2011; Boutin et al., 2018; Fogel et al., 2017; Huber et al., 2004; 

King et al., 2017; Nishida & Walker, 2007; Pinsard et al., 2019; Tamaki et al., 2013; 

Tamaki et al., 2008; Vahdat et al., 2017; Walker et al., 2002) there is little empirical 

evidence for the involvement of the timed interplay between spindles and SO. In 

rodents, the neuronal firing pattern in the motor cortex was more coherent during 

spindles with close temporal proximity to SOs after engaging in a grasping motor task 

(Silversmith et al., 2020). In humans, stronger SO-spindle coupling related to higher 

accuracy during mirror tracing, a motor adaption task where subjects trace the line of 

a shape while looking through a mirror (Mikutta et al., 2019). Critically, so far research 

focused on laboratory suitable fine-motor sequence learning or motor adaption tasks, 

which has hampered our understanding of memory consolidation for more ecologically 

valid gross-motor abilities that are crucial for our everyday life (for a review see King 

et al. (2017)).  

 Only few studies have investigated the effect of sleep on complex real-life motor 

tasks. Overnight performance benefits for riding an inverse steering bike have been 

shown to be related to spindle activity in adolescents and adults (Bothe et al., 2019; 

Bothe et al., 2020). Similarly, juggling performance was supported by sleep and 

juggling training induced power increments in the spindle and SO frequency range 

during a nap (Morita et al., 2012, 2016). Remarkably, juggling has been found to induce 

lasting structural changes in the hippocampus and mid-temporal areas outside of the 

motor network (Boyke et al., 2008; Draganski et al., 2004), making it a promising 

expedient to probe the active system consolidation framework for gross-motor 

memory. Importantly, this complex gross-motor skill demands accurately executed 

movements that are coordinated by integrating visual, sensory and motor information. 
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Yet, it remains unclear whether learning of these precisely coordinated movements 

demand an equally precise temporal interplay within memory networks during sleep.  

 Previously, we demonstrated that SO and spindles become more tightly coupled 

across brain maturation which predicts declarative memory formation enhancements 

(Hahn et al., 2020). Here we expand on our initial findings by investigating early 

adolescents and young adults learning how to juggle as real-life complex gross-motor 

task. We first sought to complete the picture of SO-spindle coupling strength 

development across brain maturation by comparing age ranges that were not present 

in our initial longitudinal data set. Second, we explicitly tested the assumption that 

precisely coordinated SO-spindle interaction supports learning of coordinated gross-

motor skills.  

By leveraging an individualized cross-frequency coupling approach, we 

demonstrate that adults have a more precise interplay of SO and spindles than early 

adolescents. Importantly, the consistency of the SO-spindle coupling dynamic tracked 

the dynamic learning process of a gross-motor task. 

 

RESULTS 

 Healthy adolescents (n = 28, age: 13.11 ± 0.79 years, mean ± SD) and young 

adults (n = 41, age: 22.24 ± 2.15) performed a complex gross-motor learning task 

(juggling) before and after a full night retention interval as well as before and after a 

retention interval during wakefulness (Figure 1). To assess the impact of sleep on 

juggling performance, we divided the participants into a sleep-first group (i.e. sleep 

retention interval followed by a wake retention interval) and a wake-first group (i.e. 

wake retention interval followed by a sleep retention interval). Participants without prior 

juggling experience trained to juggle for one hour. We measured the amount of 

successful three ball cascades (i.e. three consecutive catches) during performance 
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tests in multiple three-minute (min) blocks (3x3 min for adolescents; 5x3 min for adults) 

before and after the respective retention intervals. Adolescents performed fewer blocks 

than adults to alleviate exhaustion from the extensive juggling training.  

 

Figure 1 

 

Study design  

Adolescents (N = 28; 23 male) and adults (N = 41; 25 male) without prior juggling 

experience were divided into a sleep-first and a wake-first group. Participants in the 

sleep-first group trained to juggle for 1 hour with video instructions in the evening. 

Juggling performance was tested before and after a retention interval containing sleep 

(1), followed by a third juggling test after a retention interval containing wakefulness 

(2). Participants in the wake-first group followed the same protocol but in reverse order 

(i.e. training in the morning, first retention interval containing wakefulness and second 

retention interval containing sleep). Polysomnography was recorded for all participants 
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in the sleep-first group and only for adolescents in the wake-first group. Adolescents 

only performed three juggling blocks per test to avoid a too excessive training-load. 

 

 

Behavioral results: juggling performance and disentangling the learning process  

Adolescents improved their juggling performance over the course of all nine 

blocks (Figure 2A top; F3.957, 94.962 = 6.948, p < 0.001, η2 = 0.23). There was neither an 

overall difference in performance between the sleep-first and the wake-first group (F1, 

24 = 1.002, p = 0.327, η2 = 0.04), nor did they differ over the course of the juggling 

blocks (F3.957, 94.962 = 1.148, p = 0.339, η2 = 0.05). Similar to the adolescents, adults 

improved in performance across all 15 blocks (Figure 2B top; F4.673, 182.241 = 11.967, p 

< 0.001, η2 = 0.24), regardless of group (F4.673, 182.241 = 0.529, p = 0.742, η2 = 0.01). 

Further, there was no overall difference in performance between the sleep-first and 

wake-first groups in adults (F1, 39 = 1.398, p = 0.244, η2 = 0.04). Collectively, these 

results show, that participants do not reach asymptotic level juggling performance (for 

single subject data of good and bad performers see Figure 2AB bottom). In other 

words, the gross-motor skill learning process is still in progress in adolescents and 

adults. Therefore, we wanted to capture the progression of the learning process, rather 

than absolute performance metrics (i.e. mean performance) that would underestimate 

the dynamics of gross-motor learning.  

Since subjects did not asymptotic level performance, but learning was ongoing, 

we parameterized the juggling learning process by estimating the learning curve for 

each performance test using a first-degree polynomial fit to the different blocks (Figure 

2C; Figure 2AB, black lines). We considered the slope of the resulting trend as 

learning curve. The learning process of complex motor skills is thought to consist of a 

fast initial learning stage during skill acquisition and a much slower skill retaining 
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learning stage (Dayan & Cohen, 2011; Doyon & Benali, 2005). In other words, within-

learning session performance gains are rapid at the beginning, but taper off with 

increased motor skill proficiency, resembling a power-low curve. Therefore, we also 

estimated the task proficiency per performance test at the first time point as predicted 

by the model, since the learning curve is expected to be influenced by the individual 

juggling aptitude. Importantly, the estimated task proficiency was comparable to the 

observed values in the corresponding first juggling block (performance test 1: rhos = 

.98, p < 0.001; performance test 2: rhos = .97, p < 0.001). Besides having a more 

accurate picture of juggling performance, this parameterization also allowed us to 

compare performance of adolescents and adults on a similar scale because of the 

different number of juggling blocks. A mixed ANOVA with the factors performance test 

(pre and post retention interval), condition group (sleep-first and wake-first) and age 

group (adolescents and adults) showed a significant interaction between performance 

test and condition group (F1, 65 = 4.868, p = 0.031, η2 = 0.07). This result indicates that 

regardless of age, the juggling learning curve becomes steeper after sleep than after 

wakefulness, thus indicating that sleep impacts motor learning (Figure 2D). No other 

interactions or main effects were significant (for the complete ANOVA report see 

Supplementary Table 1). When analyzing the task proficiency before and after the 

first retention interval, depending on condition and age group, we found a significant 

interaction between condition and age group (Figure 2E; F1, 65 = 5.210, p = 0.026, η2 = 

0.07), showing that the adults sleep-first group had better overall task proficiency than 

the wake-first group, whereas the adolescent sleep-first group was worse than the 

wake-first group. The interaction (performance test x condition group) did not reach 

significance (F1, 65 = 1.882, p = 0.175, η2 = 0.03; also see Supplementary Table 2). 

Collectively, these results suggest that sleep influences learning of juggling as a gross 

motor task.  
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Next, we further dissected the relationship between changes in the learning 

curve and task proficiency after the retention interval. We hypothesized, that a stronger 

increase in task proficiency across sleep would lead to a flatter learning curve based 

on the assumption that motor skill learning involves fast and slow learning stages. 

Indeed, we confirmed a strong negative correlation between the change (post retention 

values – pre retention values) in task proficiency and the change in learning curve after 

the retention interval (rhos = -0.71, p < 0.001). This result indicates that participants 

who consolidate their juggling performance after a retention interval show slower gains 

in performance. Note, that the flattening of the learning curve does not necessarily 

indicate worse juggling learning but rather mark a more progressed learning stage. 

These results indicate a highly dynamic gross-motor skill learning process. Given that 

sleep influences the juggling learning curve, we aimed to determine whether sleep 

oscillation dynamics track the dynamics of gross-motor learning.   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427606
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2 
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Behavioral results and parameterizing juggling performance 

(A) Top: Number of successful three-ball cascades (mean ± standard error of the mean 

[SEM]) of adolescents (circles) for the sleep-first (blue) and wake-first group (green) 

per juggling block. Grand average learning curve (black lines) as computed in (C) are 

superimposed. Dashed lines indicate the timing of the respective retention intervals 

that separate the three performance tests. Note that adolescents improve their juggling 

performance across the blocks. Bottom: Single subject data for well performing 

participants (upper lines) and worse performing participants (lower lines) color coded 

for their respective group affiliation. (B) Same conventions as in (A) but for adults 

(diamonds). Similar to adolescents, adults improve their juggling performance across 

the blocks regardless of group. (C) Schematic representation of the juggling learning 

process parameterization. We used a linear fit across all juggling blocks within a 

performance test to estimate the learning curve (m) and the task proficiency (linear line 

equation solved for x = 1) for each corresponding performance test. (D) Comparison 

of the juggling learning curve (mean ± SEM) between the sleep-first (blue) and the 

wake-first group (green) of adolescents (circles) and adults (diamonds) before and 

after the first retention interval to investigate the influence of sleep. Single subject data 

is plotted in the corresponding group color and age icon. Participants in the sleep-first 

group showed a steeper learning curve than the wake-first group after the first retention 

interval. (E) Same conventions as in (D) but for the task proficiency metric. Adolescents 

in the wake-first group had better overall task proficiency than adolescents in the sleep-

first group. Adults in the sleep-first group displayed better overall task proficiency than 

adults in the wake-first group. (F) Spearman rank-correlation between the overnight 

change in task proficiency (post – pre retention interval) and the overnight change in 

learning curve with linear trend line collapsed over the whole sample. Grey-shaded 
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area indicates 95% confidence intervals of the trend line. Adolescents are denoted as 

red circles and adults as black diamonds. A strong inverse relationship indicated that 

participants with an improved task proficiency show flatter learning curves.  

 

 

Electrophysiological results: inter-individual variability and SO-spindle coupling 

 To determine the nature of the timed coordination between the two cardinal 

sleep oscillations, we adopted the same principled individualized approach we 

developed earlier (Hahn et al., 2020). First, we compared oscillatory power between 

adolescents and adults in the frequency range between 0.1 and 20 Hz during NREM 

(2&3) sleep, using cluster-based permutation tests (Maris & Oostenveld, 2007). 

Spectral power was elevated in adolescents as compared to adults across the whole 

tested frequency range (Figure 3A left for representative electrode Cz; cluster test: p 

< 0.001, d = 1.88). Similar to the previously reported developmental patterns of sleep 

oscillations from childhood to adolescence (Hahn et al., 2020), this difference was 

explained by a spindle frequency peak shift and broadband decrease in the fractal or 

1/f trend of the signal, thus directly replicating and extending our previous findings in a 

separate sample. After estimating the fractal component of the power spectrum by 

means of irregular-resampling auto-spectral analysis (Wen & Liu, 2016), we found that 

adolescents exhibited a higher offset of fractal component on the y-axis than adults 

(Figure 3A middle; cluster test: p < 0.001, d = 1.99). Next, we subtracted the fractal 

component from the power spectrum (Figure 3A left), which revealed clear distinct 

oscillatory peaks in the SO (< 2 Hz) and sleep spindle range (11 – 16 Hz) for both, 

adolescents and adults (Figure 3A right). Importantly, we observed the expected 

spatial amplitude topography with stronger frontal SO and pronounced centro-parietal 

spindles for both age groups (Figure 3B left).  
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Critically, the displayed group averages of the oscillatory residuals (Figure 3A 

right) underestimate the inter-individual variability of the spindle frequency peak 

(Figure 3B right; oscillatory residuals for all subjects at Cz). Even though we found 

the expected systematic spindle frequency increase in a fronto-parietal cluster from 

adolescence to adulthood (Figure 3C; cluster test: p = 0.002, d = -0.87), both 

respective age groups showed a high degree of variability of the inter-individual spindle 

peak.  

Based on these findings, we separated the oscillatory activity from the fractal 

activity for every subject at every electrode position to capture the individual features 

of SO and sleep spindle oscillations. We then used the extracted individual features 

from the oscillatory residuals to adjust SO and spindle detection algorithms (Hahn et 

al., 2020; Helfrich et al., 2018; Mölle et al., 2011; Staresina et al., 2015) to account for 

the spindle frequency peak shift and high inter-individual variability. To ensure the 

simultaneous presence of the two interacting sleep oscillations in the signal, we 

restricted our analyses to NREM3 sleep given the higher co-occurrence rate (Hahn et 

al., 2020) and only considered spindle events that displayed a concomitant detected 

SO within a 2.5 s time window.  

We identified an underlying SO component (2 Hz low-pass filtered trace) in the 

spindle peak locked averages for adolescents and adults on single subject and group 

average basis (Figure 3D), indicating a temporally precise interaction between sleep 

spindles and SO that is clearly discernible in the time domain.  

To further assess the interaction between SO and sleep spindles, we computed 

SO-trough-locked time-frequency representations (Figure 3E). Adolescents and 

adults revealed a shifting temporal pattern in spindle activity (11 – 16 Hz) depending 

on the SO phase. In more detail, spindle activity decreased during the negative peak 

of the SO (‘down-state’) but increased during the positive peak (‘up-state’). This 
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temporal pattern and the underlying SO-component in spindle event detection (Figure 

3D) confirm the coordinated nature of the two major sleep oscillations in adolescents 

and adults.  

Next, we determined the coordinated interplay between SO and spindles in 

more detail by analyzing individualized event-locked cross-frequency interactions 

(Dvorak & Fenton, 2014; Hahn et al., 2020; Helfrich et al., 2019). In brief, we extracted 

the instantaneous phase angle of the SO-component (< 2 Hz) corresponding to the 

positive spindle amplitude peak for all trials at every electrode per subject. We 

assessed the cross frequency coupling based on z-normalized spindle epochs (Figure 

3D) to alleviate power differences that could potentially confound our analyses (Aru et 

al., 2015) and to account for the higher variability in the spindle frequency band than 

in the SO-band (Figure 3B). Based on these adjusted phase values, we derived the 

coupling strength defined as 1 – circular variance. This metric describes the 

consistency of the SO-spindle coupling (i.e. higher coupling strength indicates more 

precise coupling) and has previously been shown to accurately track brain 

development and memory formation (Hahn et al., 2020). As expected, adults had a 

higher coupling strength in a centro-parietal cluster than adolescents (Figure 3F; 

cluster test: p < 0.001, d = 0.88), indicating a more precise interplay between SO and 

spindles during adulthood.   
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Figure 3 

 

Electrophysiological results: Inter-individual variability and SO-spindle coupling 

(A) Left: Z-normalized EEG power spectra (mean ± SEM) for adolescents (red) and 

adults (black) during NREM sleep in the semi-log space. Data is displayed for the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427606
http://creativecommons.org/licenses/by-nc-nd/4.0/


representative electrode Cz unless specified otherwise. Note the overall power 

difference between adolescents and adults due to a broadband shift on the y-axis. 

Straight black line denotes cluster-corrected significant differences. Middle: 1/f fractal 

component that underlies the broadband shift. Right: Oscillatory residual after 

subtracting the fractal component (A, middle) from the power spectrum (A, left). Both 

groups show clear delineated peaks in the SO (< 2 Hz) and spindle range (11 – 16 Hz) 

establishing the presence of the cardinal sleep oscillations in the signal. (B) Left: 

topographical distribution of the 1/f corrected SO and spindle amplitude as extracted 

from the oscillatory residual (A, right). Note that adolescents and adults both display 

the expected topographical distribution of more pronounced frontal SO and centro-

parietal spindles. Right: single subject data of the oscillatory residual for all subjects 

with sleep data color coded by age (darker colors indicate older subjects). SO and 

spindle frequency ranges are indicated by the dashed boxes. Importantly, subjects 

displayed high inter-individual variability in the sleep spindle range and a gradual 

spindle frequency increase by age that is critically underestimated by the group 

average of the oscillatory residuals (A, right). (C) Top: Spindle frequency peak 

development based on the oscillatory residuals. Spindle frequency is faster at all but 

occipital electrodes in adults than in adolescents. T-scores are transformed to z-

scores. Asterisks denote cluster-corrected two-sided p < 0.05. Bottom: Exemplary 

depiction of the spindle frequency (mean ± SEM) for adolescents (red) and adults 

(black) with single subject data points at Cz. (D) Single subject (top) and group 

averages (bottom, mean ± SEM) for adolescents (red) and adults (black) of individually 

detected, for SO co-occurrence-corrected sleep spindles in NREM3. Spindles were 

detected based on the information of the oscillatory residual. Note the underlying SO-

component (grey) in the spindle detection for single subject data and group averages 

indicating a spindle amplitude modulation depending on SO-phase. (E) Grand average 
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time frequency plots (-2 to -1.5s baseline-corrected) of SO-trough-locked segments 

(corrected for spindle co-occurrence) in NREM3 for adolescents (left) and adults 

(right). Schematic SO is plotted superimposed in grey. Note the alternating power 

pattern in the spindle frequency range, showing that SO-phase modulates spindle 

activity in both age groups. (F) Comparison of SO-spindle coupling strength between 

adolescents and adults. Same conventions as in (C). Adults displayed more precise 

coupling than adolescents in a centro-parietal cluster. Exemplary single electrode data 

(bottom) is shown for C4 instead of Cz to visualize the difference.  

 

SO-spindle coupling tracks gross-motor learning 

 After demonstrating that SO-spindle coupling becomes more precise from early 

adolescence to adulthood, we tested the hypothesis, that the dynamic interaction 

between the two sleep oscillations explains the dynamic process of complex gross-

motor learning. When taking the behavioral analyses into account, we did not find any 

evidence for a difference between the two age groups on the impact of sleep on the 

learning curve (Figure 2D). Therefore, we did not differentiate between adolescents 

and adults in our correlational analyses. Further, we only considered adolescents and 

adults of the sleep-first group to ensure a similar level of juggling experience.  

 To investigate whether coupling strength in the night of the first retention 

interval explains overnight changes of task proficiency (post retention interval 1 – pre 

retention interval 1), we computed cluster-corrected correlation analyses. We identified 

a significant central cluster (Figure 4A; mean rho = 0.37, p = 0.017), indicating that 

participants with a more consistent SO-spindle interplay have stronger overnight 

improvements in task proficiency.  

 Given that we observed a strong negative correlation between task proficiency 

at a given time point and the steepness of the subsequent learning curve (cf. Figure 
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2F) as subjects improve but do not reach ceiling level performance, we conversely 

expected a negative correlation between learning curve and coupling. Given this 

dependency, we observed a significant cluster-corrected correlation at C4 (Figure 4B; 

rhos = -0.45, p = 0.039, cluster-corrected), showing that participants with a more 

precise SO-spindle coupling exhibit a flatter learning curve overnight. This observation 

is in line with a trade-off between proficiency and learning curve, which exhibits an 

upper boundary (100% task proficiency). In other words, individuals with high 

performance exhibit a smaller gain through additional training when approaching full 

task proficiency. 

To rule out age as a confounding factor that could drive the relationship between 

coupling strength, learning curve and task proficiency in the mixed sample, we used 

partial correlations to confirm their independence of age differences (at electrode C4; 

task proficiency: p.rho = 0.42, p = 0.006; learning curve: p.rho = -0.47, p = 0.002). 

Collectively, these results indicate the regionally specific SO-spindle coupling 

over central EEG sensors encompassing sensorimotor areas precisely indexes 

learning of a challenging motor task.  

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427606
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 

 

SO-spindle coupling dynamic tracks dynamics of gross-motor skill learning 

(A) Cluster-corrected correlations between individual coupling strength and overnight 

task proficiency change (post – pre retention) for adolescents (red, circle) and adults 

(black, diamond) of the sleep-first group (left, data at C4). Asterisks indicate cluster-

corrected two-sided p < 0.05. Grey-shaded area indicates 95% confidence intervals of 

the trend line. Participants with a more precise SO-spindle coordination show improved 

task proficiency after sleep. Note that the change in task proficiency was inversely 

related to the change in learning curve (cf. Figure 2F), indicating that a stronger 

improvement in task proficiency related to a flattening of the learning curve. Further 
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note that the significant cluster formed over electrodes close to motor areas. (B) 

Cluster-corrected correlations between individual coupling strength and overnight 

learning curve change. Same conventions as in (A). Participants with more precise 

SO-spindle coupling over C4 showed attenuated learning curves after sleep. 

 

DISCUSSION 

 By comparing adolescents and adults learning a complex juggling task, we 

critically advance our previous work about the intricate interplay of learning and 

memory formation, brain maturation and coupled sleep oscillations: First, we 

demonstrated that SO-spindle interplay precision is not only enhanced from childhood 

to late adolescence but also progressively improves from early adolescence to young 

adulthood (Figure 3F). Second and more importantly, we provide first evidence that 

the consistency of SO-spindle coordination is a promising model to track real-life gross-

motor skill learning in addition to its key role in declarative learning (Figure 4). Notably, 

this relationship between coupling and learning occurred in a regional specific manner 

and was pronounced over frontal areas for declarative and over motor regions for 

procedural learning (Hahn et al., 2020). Collectively, our results suggest that precise 

SO-spindle coupling supports gross-motor memory formation by integrating 

information from subcortical memory structures to cortical networks.   

 How do SO-spindle interactions subserve motor memory formation? Motor 

learning is a process relying on complex spatial and temporal scales in the human 

brain. To acquire motor skills the brain integrates information from extracortical 

structures with cortical structures via cortico-striato-thalamo-cortico loops and cortico-

cerebello-thalamo-cortico circuits (Dayan & Cohen, 2011; Doyon & Benali, 2005; 

Doyon et al., 2018; Pinsard et al., 2019). However, growing evidence also advocates 

for hippocampal recruitment for motor learning, especially in the context of sleep-
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dependent memory consolidation (Albouy et al., 2013; Boyke et al., 2008; Draganski 

et al., 2004; Pinsard et al., 2019; Sawangjit et al., 2018; Schapiro et al., 2019). 

Hippocampal memory reactivation during sleep is one cornerstone of the active 

systems consolidation theory, where coordinated SO-spindle activity route subcortical 

information to the cortex for long-term storage (Diekelmann & Born, 2010; Helfrich et 

al., 2019; Klinzing et al., 2019; Ngo et al., 2020). Quantitative markers of spindle and 

SO activity but not the quality of their interaction have been frequently related to motor 

memory in the past (Barakat et al., 2011; Bothe et al., 2019; Bothe et al., 2020; Huber 

et al., 2004; Morita et al., 2012; Nishida & Walker, 2007; Tamaki et al., 2008). Our 

results now complement the active systems consolidation theories’ mechanistic 

assumption of interacting oscillations by demonstrating that a precise SO-spindle 

interplay subserves gross-motor skill learning (Figure 4). Of note, we did not derive 

direct hippocampal activity in the present study given spatial resolution of scalp EEG-

recordings. Nonetheless, as demonstrated recently, coupled spindles precisely 

capture cortico-hippocampal network communication as well as hippocampal ripple 

expression (Helfrich et al., 2019). Thus, higher SO-spindle coupling strength 

supporting gross-motor learning in our study points towards a more efficient 

information exchange between hippocampus and cortical areas.  

Remarkably, hippocampal engagement is especially crucial at the earlier 

learning stages. Recently, it has been found that untrained motor sequences exhibit 

hippocampal activation that subsides for more consolidated sequences. This change 

was further accompanied by increased motor cortex activation, suggesting a 

transformative function of sleep for motor memory (Pinsard et al., 2019). In other 

words, hippocampal disengagement likely indexes the transition from the fast learning 

stage to the slower learning stage with more proficient motor skill (Dayan & Cohen, 

2011; Doyon & Benali, 2005). The dynamics of the two interacting learning stages of 
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motor skill acquisition are likely reflected by the inverse relationship between task 

proficiency increases and learning curve attenuation (Figure 2F). Given that our 

subjects did not reach asymptotic performance level (Figure 2AB) and that SO-spindle 

coupling tracks gross-motor skill learning dynamics as it relates to both, learning curve 

attenuation and task proficiency increments, it is plausible that SO-coupling strength 

represents the extent of hippocampal support for integrating information to motor 

cortices during complex motor skill learning.  

Interestingly, SO and spindles are not only implicated in hippocampal-

neocortical network communication but are also indicative for activity and information 

exchange in subcortical areas that are more traditionally related to the shift from fast 

to slow motor learning stages. For example, striatal network reactivation during sleep 

was found to be synchronized to sleep spindles, which predicted motor memory 

consolidation (Fogel et al., 2017). In primates, coherence between M1 and cerebellum 

in the SO and spindle frequency range suggested that coupled oscillatory activity 

conveys information through cortico-thalamo-cerebellar networks (Xu et al., 2020). 

One testable hypothesis for future research is whether SO-spindle coupling represents 

a more general gateway for the brain to exchange subcortical and cortical information 

and not just hippocampal-neocortical communication.  

 Critically, we found that the consistency of the SO-spindle interplay identified at 

electrodes overlapping with motor areas such as M1 was predictive for the gross-motor 

learning process (Figure 4). This finding corroborates the idea that SO-spindle 

coupling supports the information flow between task-relevant subcortical and cortical 

areas. Recent evidence in the rodent model demonstrated that neural firing patterns in 

M1 during spindles became more coherent after performing a grasping motor task. The 

extent of neural firing precision was further mediated by a function of temporal 

proximity of spindles to SOs (Silversmith et al., 2020). Through this synchronizing 
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process and their Ca2+ influx propagating property, coupled spindles are likely to 

induce neural plasticity that benefits motor learning (Niethard et al., 2018).  

 How relevant is sleep for real-life gross-motor memory consolidation? We found 

that sleep impacts the learning curve but did not affect task proficiency in comparison 

to a wake retention interval (Figure 2DE). Two accounts might explain the absence of 

a sleep effect on task proficiency. (1) Sleep rather stabilizes than improves gross-motor 

memory, which is in line with previous gross-motor adaption studies (Bothe et al., 2019; 

Bothe et al., 2020). (2) Pre-sleep performance is critical for sleep to improve motor 

skills (Wilhelm et al., 2012). Participants commonly reach asymptotic pre-sleep 

performance levels in finger tapping tasks, which is most frequently used to probe 

sleep effects on motor memory. Here we found that using a complex juggling task, 

participants do not reach asymptotic ceiling performance levels in such a short time. 

Indeed, the learning progression for the sleep-first and wake-first groups followed a 

similar trend (Figure 2AB), suggesting that more training and not in particular sleep 

drove performance gains. Nonetheless, SO-spindle coupling predicted learning 

dynamics on a single subject level advocating for a supportive function of sleep for 

gross-motor memory. In summary, this set of findings suggests that strong coupling 

indexes individuals with highly efficient subcortical-cortical network communication. 

 This subcortical-cortical network communication is likely to be refined 

throughout brain development, since we discovered elevated coupling strength in 

adults compared to early adolescents (Figure 3F). This result compliments our earlier 

findings of enhanced coupling precision from childhood to adolescence (Hahn et al., 

2020) and the recently demonstrated lower coupling strength in pre-school children 

(Joechner et al., 2020). We speculate that, similar to other spindle features, the 

trajectory of SO-coupling strength is likely to reach a plateau during adulthood (Nicolas 

et al., 2001; Purcell et al., 2017). Importantly, we identified similar methodological 
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challenges to assess valid cross-frequency coupling estimates in the current cross-

sectional study to the previous longitudinal study. Age severely influences fractal 

dynamics in the brain (Figure 3A) and the defining features of sleep oscillations 

(Figure 3BC). Remarkably, inter-individual oscillatory variability was pronounced even 

in the adult age group (Figure 3B), highlighting the critical need to employ 

individualized cross-frequency coupling analyses to avoid its pitfalls (Aru et al., 2015; 

Muehlroth & Werkle-Bergner, 2020). 

 Taken together, our results provide a mechanistic understanding of how the 

brain forms real-life gross-motor memory during sleep. As sleep has been shown to 

support fine-motor memory consolidation in individuals after stroke (Gudberg & 

Johansen-Berg, 2015; Siengsuhon & Boyd, 2008), SO-spindle coupling integrity could 

be a valuable, easy to assess predictive index for rehabilitation success.  
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SUPPLEMENTARY MATERIAL 

Table S1 related to Figure 2D 

Effect df F-statistic p-value Effect size (η2) 

Performance test 1 1.812 0.183 0.027 

Condition group 1 0.082 0.775 0.001 

Age group 1 0.992 0.323 0.015 

Condition group * Age 

group 

1 0.238 0.627 0.004 

Performance test * 

Condition group 

1 4.868 0.031 0.070 

Performance test * Age 

group 

1 0.026 0.873 < 0.001 

Performance test * 

Condition group * Age 

group 

1 0.093 0.761  0.001 

Error 65    
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Table S2 related to Figure 2E 

Effect df F-statistic p-value Effect size (η2) 

Performance test 1 0.153 0.697 0.002 

Condition group 1 0.001 0.972 < 0.001 

Age group 1 2.338 0.131 0.035 

Condition group * Age 

group 

1 5.210 0.026 0.074 

Performance test * 

Condition group 

1 1.882 0.175 0.028 

Performance test * Age 

group 

1 0.009 0.925 < 0.001 

Performance test * 

Condition group * Age 

group 

1 0.026 0.873 < 0.001 

Error 65    
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MATERIAL AND METHODS 

 

Participants 

 We recruited 29 adolescents (mean ± SD age, 13.17 ± 0.85 years; 5 female, 24 

male) from a local boarding school and 41 young adults (mean ± SD age, 22.24 ± 2.15 

years; 16 female, 25 male) from the student population of the University of Salzburg. 

All participants were healthy, right-handed and without prior juggling experience. 

However, we excluded one adolescent for all analyses post-hoc for violating the prior 

Key Resources Table 

Reagent 
type 
(species) 
or 
resource 

Designation Source or reference Identifiers 
Additional 
information 

software, 
algorithm 

Brain Vision 
Analyzer 2.2 

Brain Products GmbH 
https://www.brainproducts.com 

RRID:SCR
_002356  

software, 
algorithm 

CircStat 2012 Berens (2009) 
https://philippberens.wordpress.com/code/circsta
ts/ 

RRID:SCR
_016651  

software, 
algorithm 

EEGLAB 
13_4_4b 

Delorme and Makeig (2004) 
https://sccn.ucsd.edu/eeglab/index.php 

RRID:SCR
_007292  

software, 
algorithm 

FieldTrip 
20161016 

Oostenveld et al. (2011) 
http://www.fieldtriptoolbox.org/ 

RRID:SCR
_004849 

 

software, 
algorithm 

IRASA Wen and Liu (2016) 
https://purr.purdue.edu/publications/1987/1 

 
 

software, 
algorithm 

MATLAB 
2017a 

MathWorks Inc. RRID: 
SCR_001
622 

 

software, 
algorithm 

RStudio    RStudio Team RRID:SCR
_000432 

 

software, 
algorithm 

Somnolyzer 
24 × 7 

  Koninklijke Philips N.V. 
  https://www.philips.co.in 

 
 

other 

“Jonglieren 
und 
Bewegungskü
nste” 

  Sobota & Hollauf (2013) 
  Austrian ministry of Sports 
  

 
Juggling 
video 
instructions 
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juggling experience criteria. Two adolescents did not participate in the third 

performance test. We randomly divided adolescents and adults into a sleep-first 

(adolescents: N = 17, 12.94 ± 0.75 years; 3 females, 14 males; adults: N = 25, 21.95 

± 2.42 years; 8 females, 17 males) and a wake-first group (adolescents: N = 11, 13.36 

± 0.81 years; 2 females, 9 males; adults: N = 16, 22.69 ± 1.62 years; 8 females, 8 

males). See experimental design for more detailed information about the groups. We 

recorded polysomnography (PSG) during full night sleep for all participants except 

adults in the wake-first group. Therefore, comparison of electrophysiological data 

between adults and adolescents was based on the adult sleep-first group and both 

adolescent groups. To ensure similar juggling learning experience, we only included 

adults and adolescents in the sleep-first group when analyzing the relationship 

between electrophysiological measures and behavioral performance. All participants 

and the legal custodians of the adolescents provided written informed consent before 

participating in the study. The study protocol was conducted in accordance with the 

Declaration of Helsinki and approved by the ethics committee of the University of 

Salzburg (EK-GZ:16/2014). Adults received monetary compensation or student credit 

for their participation. Adolescents received a set of juggling balls. 

 

Experimental design 

 Adults in the sleep-first group visited the sleep laboratory on three occasions 

(Figure 1). At the first day subjects slept in the sleep lab with full night PSG for 

adaptation purposes. On the second visit, subjects learned and practiced juggling by 

video instructions in the evening (8.45 pm - 9.45 pm). Juggling performance was 

assessed three times in total. The first performance test was conducted after the 

training session (10.00 pm – 10.18pm). The second performance test (7.30 am – 7.48 

am) took place after the first retention interval containing a full night of sleep with 
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polysomnography (11 pm – 7 am). The third and last performance test was executed 

after the second retention interval (9.00 pm – 9.18 pm) containing wakefulness. Adults 

in the wake-first group followed a similar protocol but with reversed order of the 

retention intervals (i.e. first retention interval containing wakefulness and the second 

interval containing sleep). Therefore, participants performed the juggling training 

(10.15 am – 11.15 am) and the first performance test (11.30 am – 11.48 am) in the 

morning, the second performance test after wakefulness (9.00 pm – 9.18 pm) and the 

third performance test after sleep (11.00 am – 11.18 am). We did not record 

polysomnography in the wake-first group because participants slept at home. To 

objectively assess attentiveness, all participants completed a psychomotor vigilance 

task (Dinges & Powell, 1985) before the performance tests. Actigraphy (Cambridge 

Neurotechnology Actiwatch, Cambridge, UK) and a sleep log (Saletu et al., 1987) 

verified compliance with a regular sleep schedule throughout the study.  

Adolescents went through a study protocol comparable to the adults. However, 

we adjusted the protocol to adhere to the schedule of the boarding school and to 

control the training load. First, we recorded ambulatory PSG for both groups in their 

habitual sleep environment at the boarding school and second, we reduced the number 

of juggling blocks during the performance tests (for details see gross-motor task) 

because the study regime was already exhausting for our adult participants and we 

wanted to avoid a too excessive training load. The sleep-first group performed the 

juggling training (6.30 pm – 7.30 pm) and performance test in the evening (7.45 pm – 

7.58 pm) followed by a retention interval containing sleep (21.00 pm – 6.00 am). The 

second performance test was conducted after sleep (7.30 am – 7.43 am) and the third 

performance test after wakefulness (7.30 pm – 7.43 pm). The wake-first group learned 

to juggle (7.30 am – 8.30 am) with a subsequent performance test (8.45 am – 8.58 am) 

in the morning. The second performance test was executed after wakefulness in the 
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evening (7.30 pm – 7.43 pm) and the third performance test was completed after sleep 

(7.30 am – 7.43 am).  

 

Gross-motor task 

 To investigate the involvement of slow oscillation-spindle coupling in acquiring 

a real-life gross motor skill, we implemented a juggling paradigm, which has been 

shown to induce neural plasticity (Boyke et al., 2008; Draganski et al., 2004) and to be 

sensitive for sleep-dependent memory consolidation (Morita et al., 2012, 2016). Adults 

and adolescents completed the same juggling training, which was based on short video 

clips from the “Juggling and Movement Arts” DVD (“Jonglieren und 

Bewegungskünste”; Sobota & Hollauf, 2013) containing step-by-step instructions from 

the correct stance to a full five-ball cascade (i.e. five continuous catches). We used 14 

video clips demonstrating the exercises followed by a practice opportunity for the 

participants. The training session lasted approximately one hour with a short break 

after half an hour. During the performance tests, participants were instructed to juggle 

as accurately and continuously as possible. Adults juggled for five blocks á three 

minutes, which was always separated by a 30 second break. To alleviate the physical 

strain, adolescents only juggled for three blocks á three minutes during the 

performance tests. Training and performance tests were videotaped to evaluate the 

juggling performance.  

 

Parameterizing juggling performance 

 We evaluated the juggling performance by counting consecutive catches based 

on the video material. We used the number of three ball cascades (i.e. three catches 

in a row, Figure 2AB) as index for juggling performance by dividing the number of 

consecutive catches by three. We opted for three ball cascades as a performance 
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index because we considered three consecutive catches as the criteria for the motor 

task to qualify as juggling (Boyke et al., 2008; Draganski et al., 2004). Because juggling 

is a complex motor task where it is unlikely to reach ceiling level performance, we were 

interested in the progression of the learning process and how it is influenced by task 

proficiency. Therefore, we calculated a first degree polynomial fit using the least-

squares method to parameterize the learning curve (m, slope) per performance test 

block (Figure 2AB, black lines & Figure 2CD), using the formula:  

𝑚 =  
∑ (𝑥𝑖 − �̅�) ∗ (𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)²𝑛
𝑖=1

 

Next, we calculated the intercept c according to the following formula: 

𝑐 =  𝑌 ̅ − 𝑚 ∗ �̅� 

Finally, task proficiency (y1, Figure 2E) was estimated at the first time point of each 

performance test as 

𝑦1 = 𝑚 + 𝑐 

 

Polysomnography and sleep staging 

 We recorded PSG with two systems. We conducted the ambulatory sleep 

recordings of the adolescents with a portable amplifier system (Alphatrace, Becker 

Meditec, Karlsruhe, Germany) with a sampling rate of 512 Hz. For in lab recordings of 

the adult participants, we utilized a 32-channel Neuroscan amplifier system (Scan 4.3.3 

Software, Neuroscan Inc., Charlotte, NC) with a sampling rate of 500 Hz. Electrode 

placement was identical between the two recording systems and in accordance with 

the 10-20 system. Signals were recorded with gold cup electrodes placed at F3, Fz, 

F4, C3, Cz, C4, P3, Pz, P4, O1 and O2 on the scalp, as well as at A1 and A2 placed 

at the mastoids. To allow for sleep staging and to control for muscle artifacts, we 

recorded an electromyogram (EMG, bipolar electrodes at the musculus mentalis), a 
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horizontal electrooculogram (EOG, above the right outer canthus and below the left 

outer canthus) and a vertical EOG (above and below the left eye). We used Cz as 

online reference and AFz as ground electrode. For sleep staging, we re-referenced the 

signal offline against contralateral mastoids. Sleep was semi-automatically staged in 

30 s epochs using the Somnolyzer 24x7 algorithm (Koninklijke Philips N.V.; Eindhoven, 

The Netherlands) and subsequently controlled by an expert scorer according to 

standard sleep staging criteria (Iber et al., 2007). For all other data analyses, we 

demeaned and re-referenced the EEG signal to a common average.  

 

Individualized cross-frequency coupling 

 To assess the precise interplay between SO and spindles, we used the same 

individualized cross-frequency coupling pipeline we developed earlier in order to 

account for network changes induced by aging, that are known to cause spurious 

coupling estimates (Aru et al., 2015; Cole & Voytek, 2017; Hahn et al., 2020; Scheffer-

Teixeira & Tort, 2016). In brief, our approach was based on the following principles: (1) 

establishing the presence of sleep oscillations, (2) individually detecting transient 

oscillatory events, (3) alleviating power differences and (4) ensuring co-occurrence of 

SO (phase providing signal) and sleep spindles (amplitude providing signal). 

 

Establishing sleep oscillations 

 First, we z-normalized the EEG-signal in the time domain to mitigate prominent 

power differences and computed averaged power spectra from 0.1 to 30 Hz using a 

Fast Fourier Transform (FFT) routine with a Hanning window on 15 s of continuous 

NREM sleep (i.e. NREM2 and NREM3, Figure 3A left) with a 1 s sliding window. Data 

are presented in the semi-log space. Next, we sought to isolate the oscillatory activity 

in the normalized data by means of irregular auto-spectral analysis (IRASA, (Wen & 
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Liu, 2016)). We first derived the 1/f fractal component (Figure 3A middle) from 15 s 

NREM sleep data in 1 s sliding steps and subsequently subtracted it from the power 

spectrum (Figure 3A left) to obtain an unbiased estimate of the oscillatory activity for 

every subject on every electrode (Figure 3A right & Figure 3B). To separate the 1/f 

component from the power spectrum, we used the same parameters as specified 

previously (Hahn et al., 2020). In short, the signal is stretched and compressed by the 

same non-integer factor (e.g. stretching by a factor of 1.1 and compressing by a factor 

of 0.9). We repeated the resampling with factors from 1.1 to 1.9 in 0.05 steps. This pair 

wise stretching and compressing systematically causes frequency peak shifts in the 

regular oscillatory activity but leaves the more random 1/f background activity 

unaffected. Because the oscillatory activity becomes faster by a similar factor as it 

becomes slower, the oscillatory activity is averaged out by median averaging across 

all pair wise resampled segments thus extracting the 1/f component. We then detected 

individual SO (< 2 Hz) and spindle peak frequencies (10 – 17 Hz, Figure 3C) and the 

corresponding 1/f corrected amplitude (Figure 3B left) in the oscillatory residual 

(Figure 3A right). We considered the highest peak within the specified SO and spindle 

frequency ranges above as the most representative oscillatory event in each electrode. 

We then utilized the individual frequency peaks to inform the algorithms for discrete 

SO and spindle event detection. 

 

Individually detecting transient oscillatory events 

 We employed widely used spindle and SO detection algorithms (Helfrich et al., 

2018; Mölle et al., 2011; Staresina et al., 2015) and adjusted them according to the 1/f 

corrected SO and spindle features for a fully individualized event detection (Hahn et 

al., 2020).  
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We detected spindle events (Figure 3D) by band-pass filtering the continuous signal 

± 2 Hz around the individual spindle peak per electrode. After filtering, we computed 

the instantaneous amplitude via a Hilbert transform. Next, we smoothed the signal with 

a running average in a 200 ms window. A sleep spindle was detected, when the signal 

exceeded the 75-percentile amplitude criterion for a time span of 0.5 to 3 s. We 

segmented the raw data ± 2.5 s centered on the positive spindle peak. 

We detected SO events (Figure 3E inset) by first high-pass filtering the continuous 

EEG signal at 0.16 Hz and then low-pass filtering at 2 Hz. Based on the filtered signal, 

we detected the zero-crossings that fulfilled the time criterion (length 0.8 – 2 s). The 

signal between two consecutive zero-crossings was considered a valid SO if its 

amplitude exceeded the 75-percentile threshold. We then segmented the raw data ± 

2.5 s centered on the negative peak.  

 

Alleviating power differences 

 Power differences in the signal can systematically impact cross-frequency 

coupling measures by changing the signal-to-noise ratio, which in turn influences the 

precision of the phase estimation of the signal (Aru et al., 2015; Scheffer-Teixeira & 

Tort, 2016). Because power decreases are apparent across the lifespan (Campbell & 

Feinberg, 2009, 2016; Hahn et al., 2020; Helfrich et al., 2018), we z-normalized all 

detected SO and spindle events in the time domain to alleviate this possible confound 

before calculating phase-amplitude coupling measures (Figure 3DE).  

 

Ensuring co-occurrence of SO and sleep spindles  

 Cross-frequency coupling renders meaningful information of network 

communication only when the suspected interacting oscillations are present in the 

signal. Therefore, we only analyzed SO and sleep spindle epochs during which they 
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co-occurred in a 2.5s time window (± ~2 SO cycles around the spindle peak). 

Furthermore, we restricted all our coupling analyses to sleep stage NREM3 because 

of general higher co-occurrence of SO and spindles than in NREM2 (Hahn et al., 2020). 

 

Event-locked cross-frequency coupling 

 To parameterize the timed coordination between sleep spindles and SO (Figure 

3F), we computed event-locked cross-frequency coupling analyses (Dvorak & Fenton, 

2014; Hahn et al., 2020; Helfrich et al., 2019; Helfrich et al., 2018; Staresina et al., 

2015) based on individualized and normalized spindle peak-locked segments. In short, 

we used a low-pass filter of 2 Hz to extract the underlying SO-component (Figure 3D) 

from the EEG-signal and read out the phase angle corresponding with the sleep 

spindle peak after applying a Hilbert transform. We then calculated the coupling 

strength, which is defined as 1 – circular variance using the CircStat Toolbox function 

circ_r (Berens, 2009) to assess the consistency of the SO sleep spindle interplay.  

 

Time frequency analyses 

 We computed event-locked time-frequency representations based on -2 to 2s 

epochs centered on the negative SO peak (Figure 3E). We used a 500 ms Hanning 

window in 50 ms steps to analyze the frequency power from 5 to 30 Hz in steps of 0.5 

Hz. We subsequently baseline corrected the time-frequency representations by z-

scoring the data based on the means and standard deviations of a bootstrapped 

distribution (10000 iterations) for the -2 to -1.5 s time interval of all trials (Flinker et al., 

2015; Helfrich et al., 2018). 
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Statistical analyses 

To compare juggling performance between the sleep-first and wake-first group 

and to assess the learning progression, we computed mixed ANOVAS with the 

between factor condition group (sleep-first, wake-first) and the repeated measure 

factor juggling blocks. Because number of juggling blocks differed between 

adolescents (9, Figure 2A) and adults (15, Figure 2B) we analyzed the juggling 

performance separately per age group. Influence of sleep on learning curve (Figure 

2D) and task proficiency (Figure 2E) was assessed by a mixed ANOVA with the 

between factors condition group (sleep-first, wake-first) and age group (adolescents, 

adults) and the repeated factor performance test (pre retention interval 1, post retention 

interval 1). To correct for multiple comparisons we clustered the data in the frequency 

(Figure 3A) and space domain (Figure 3CF), using cluster-based random permutation 

testing (Monte-Carlo method, cluster alpha 0.05, max size criterion, 1000 iterations, 

critical alpha level 0.05 two-sided; Maris & Oostenveld, 2007). For correlational 

analyses we utilized spearman rank correlations (rhos; Figure 2F & Figure 4AB) as 

well as cluster-corrected rank correlations by transforming the correlation coefficients 

to t-values (p < 0.05) and clustering in the space domain (Figure 4AB). We report 

partial eta squared (η2), Cohen’s d (d) and averaged spearman correlation coefficients 

(mean rho) as effect sizes. Cluster effect sizes are estimated by first calculating 

Cohen’s d for every data point in the significant cluster and subsequently averaging 

across the obtained values. 

 

Data analyses 

 We used functions from the Fieldtrip toolbox (Oostenveld et al., 2011), EEGlab 

toolbox (Delorme & Makeig, 2004), CircStat toolbox (Berens, 2009) and custom written 

code implemented in MatLab 2015a (Mathworks Inc.) for data analyses. Irregular auto-
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spectral analysis (IRASA (Wen & Liu, 2016)) was conducted using code obtained from 

the original research paper.  

 

DATA AVAILABILITY 

Data necessary to replicate the main conclusions of the paper will be provided. 
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