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ABSTRACT 1 

 Previously, we demonstrated that precise temporal coordination between slow 2 

oscillations (SO) and sleep spindles indexes declarative memory network development 3 

(Hahn et al., 2020). However, it is unclear whether these findings in the declarative 4 

memory domain also apply in the motor memory domain. Here, we compared 5 

adolescents and adults learning juggling, a real-life gross-motor task. We found that 6 

improved task proficiency after sleep lead to an attenuation of the learning curve, 7 

suggesting a dynamic juggling learning process. We employed individualized cross-8 

frequency coupling analyses to reduce inter and intra-group variability of oscillatory 9 

features. Advancing our previous findings, we identified a more precise SO-spindle 10 

coupling in adults compared to adolescents. Importantly, coupling precision over motor 11 

areas predicted overnight changes in task proficiency and learning curve, indicating 12 

that SO-spindle coupling is sensitive to the dynamic motor learning process. Our 13 

results provide first evidence that regionally specific precisely coupled sleep 14 

oscillations support gross-motor learning. 15 

 16 

 17 

 18 
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INTRODUCTION 25 

 Sleep actively supports learning (Diekelmann & Born, 2010). The influential 26 

active system consolidation theory suggests that long-term consolidation of memories 27 

during sleep is driven by a precise temporal interplay between sleep spindles and slow 28 

oscillations (Diekelmann & Born, 2010; Klinzing et al., 2019). Memories acquired 29 

during wakefulness are reactivated in the hippocampus during sharp-wave ripple 30 

events in sleep (Wilson & McNaughton, 1994; Zhang et al., 2018). These events are 31 

nested within thalamo-cortical sleep spindles that mediate synaptic plasticity (Niethard 32 

et al., 2018; Rosanova & Ulrich, 2005). Sleep spindles in turn are thought to be 33 

facilitated by the depolarizing phase of cortical slow oscillations (SO) thereby forming 34 

slow oscillation-spindle complexes during which the subcortical-cortical network 35 

communication is optimal for information transfer (Chauvette et al., 2012; Clemens et 36 

al., 2011; Helfrich et al., 2019; Helfrich et al., 2018; Latchoumane et al., 2017; Molle et 37 

al., 2011; Ngo et al., 2020; Niethard et al., 2018; Schreiner et al., 2021; Staresina et 38 

al., 2015).  39 

 Several lines of research recently demonstrated that precisely timed SO-spindle 40 

interaction mediates successful memory consolidation across the lifespan (Hahn et al., 41 

2020; Helfrich et al., 2018; Mikutta et al., 2019; Molle et al., 2011; Muehlroth et al., 42 

2019). In our recent longitudinal work, we found that SO-spindle coordination was not 43 

only becoming more consistent from childhood to late adolescence but also directly 44 

predicted enhancements in declarative memory formation across those formative 45 

years (Hahn et al., 2020). However, because the active system consolidation theory 46 

assumes a crucial role of hippocampal memory replay for sleep-dependent memory 47 

consolidation, most studies, including our own, focused on the effect of SO-spindle 48 

coupling on hippocampus-dependent declarative memory consolidation. Therefore, 49 
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the role of SO-spindle coordination for motor learning or consolidation of procedural 50 

information remains poorly understood.  51 

 While sleep’s beneficial role for motor memory formation has been extensively 52 

investigated and frequently related to individual oscillatory activity of sleep spindles 53 

and SO (Barakat et al., 2011; Boutin et al., 2018; Fogel et al., 2017; Huber et al., 2004; 54 

King et al., 2017; Nishida & Walker, 2007; Pinsard et al., 2019; Tamaki et al., 2013; 55 

Tamaki et al., 2008; Vahdat et al., 2017; Walker et al., 2002), there is little empirical 56 

evidence for the involvement of the timed interplay between spindles and SO. In 57 

rodents, the neuronal firing pattern in the motor cortex was more coherent during 58 

spindles with close temporal proximity to SOs after engaging in a grasping motor task 59 

(Silversmith et al., 2020). In humans, stronger SO-spindle coupling related to higher 60 

accuracy during mirror tracing, a motor adaption task where subjects trace the line of 61 

a shape while looking through a mirror (Mikutta et al., 2019). So far, research focused 62 

on laboratory suitable fine-motor sequence learning or motor adaption tasks, which 63 

has hampered our understanding of memory consolidation for more ecologically valid 64 

gross-motor abilities that are crucial for our everyday life (for a review see King et al. 65 

(2017)).  66 

 Only few studies have investigated the effect of sleep on complex real-life motor 67 

tasks. Overnight performance benefits for riding an inverse steering bike have been 68 

shown to be related to spindle activity in adolescents and adults (Bothe et al., 2019; 69 

Bothe et al., 2020). Similarly, juggling performance was supported by sleep and 70 

juggling training induced power increments in the spindle and SO frequency range 71 

during a nap (Morita et al., 2012, 2016). Remarkably, juggling has been found to induce 72 

lasting structural changes in the hippocampus and mid-temporal areas outside of the 73 

motor network (Boyke et al., 2008; Draganski et al., 2004), making it a promising 74 

expedient to probe the active system consolidation framework for gross-motor 75 
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memory. Importantly, this complex gross-motor skill demands accurately executed 76 

movements that are coordinated by integrating visual, sensory and motor information. 77 

Yet, it remains unclear whether learning of these precisely coordinated movements 78 

demand an equally precise temporal interplay within memory networks during sleep.  79 

 Previously, we demonstrated that SO and spindles become more tightly coupled 80 

across brain maturation which predicts declarative memory formation enhancements 81 

(Hahn et al., 2020). Here we expand on our initial findings by investigating early 82 

adolescents and young adults learning how to juggle as real-life complex gross-motor 83 

task. We first sought to complete the picture of SO-spindle coupling strength 84 

development across brain maturation by comparing age ranges that were not present 85 

in our initial longitudinal data set. Second, we explicitly tested the assumption that 86 

precisely coordinated SO-spindle interaction supports learning of coordinated gross-87 

motor skills.  88 

By leveraging an individualized cross-frequency coupling approach, we 89 

demonstrate that adults have a more precise interplay of SO and spindles than early 90 

adolescents. Importantly, the consistency of the SO-spindle coupling dynamic tracked 91 

the dynamic learning process of a gross-motor task. 92 

 93 

RESULTS 94 

 Healthy adolescents (n = 28, age: 13.11 ± 0.79 years, mean ± SD) and young 95 

adults (n = 41, age: 22.24 ± 2.15) performed a complex gross-motor learning task 96 

(juggling) before and after a full night retention interval as well as before and after a 97 

retention interval during wakefulness (Figure 1). To assess the impact of sleep on 98 

juggling performance, we divided the participants into a sleep-first group (i.e. sleep 99 

retention interval followed by a wake retention interval) and a wake-first group (i.e. 100 
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wake retention interval followed by a sleep retention interval). Polysomnography (PSG) 101 

was recorded during an adaptation night and during the respective sleep retention 102 

interval (i.e. learning night) except for the adult wake-first group (for sleep architecture 103 

descriptive parameters of the adaptation night and learning night as well as for 104 

adolescents and adults see Supplementary file – table 1 & 2). Participants without 105 

prior juggling experience trained to juggle for one hour. We measured the amount of 106 

successful three ball cascades (i.e. three consecutive catches) during performance 107 

tests in multiple three-minute (min) blocks (3x3 min for adolescents; 5x3 min for adults) 108 

before and after the respective retention intervals. Adolescents performed fewer blocks 109 

than adults to alleviate exhaustion from the extensive juggling training.  110 

 111 

Figure 1 112 

 113 

Study design 114 
Adolescents (N = 28; 23 male) and adults (N = 41; 25 male) without prior juggling experience 115 
were divided into a sleep-first and a wake-first group. Participants in the sleep-first group 116 
trained to juggle for 1 hour with video instructions in the evening. Juggling performance was 117 
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tested before and after a retention interval containing sleep (1), followed by a third juggling test 118 
after a retention interval containing wakefulness (2). Participants in the wake-first group 119 
followed the same protocol but in reverse order (i.e. training in the morning, first retention 120 
interval containing wakefulness and second retention interval containing sleep). 121 
Polysomnography during an adaptation night and a learning night at the respective sleep 122 
retention interval. Psychomotor vigilance tasks were conducted before each performance test. 123 
Adolescents only performed three juggling blocks per test to avoid a too excessive training-124 
load. 125 

 126 

Behavioral results: juggling performance and disentangling the learning process  127 

Adolescents improved their juggling performance over the course of all nine 128 

blocks (Figure 2A top; F3.957, 94.962 = 6.948, p < 0.001, η2 = 0.23). There was neither an 129 

overall difference in performance between the sleep-first and the wake-first group (F1, 130 

24 = 1.002, p = 0.327, η2 = 0.04), nor did they differ over the course of the juggling 131 

blocks (F3.957, 94.962 = 1.148, p = 0.339, η2 = 0.05). Similar to the adolescents, adults 132 

improved in performance across all 15 blocks (Figure 2B top; F4.673, 182.241 = 11.967, p 133 

< 0.001, η2 = 0.24), regardless of group (F4.673, 182.241 = 0.529, p = 0.742, η2 = 0.01). 134 

Further, there was no overall difference in performance between the sleep-first and 135 

wake-first groups in adults (F1, 39 = 1.398, p = 0.244, η2 = 0.04). Collectively, these 136 

results show, that participants do not reach asymptotic level juggling performance (for 137 

single subject data of good and bad performers see Figure 2 – figure supplement 138 

1AB). In other words, the gross-motor skill learning process is still in progress in 139 

adolescents and adults. Therefore, we wanted to capture the progression of the 140 

learning process, rather than absolute performance metrics (i.e. mean performance) 141 

that would underestimate the dynamics of gross-motor learning.  142 

Since subjects did not asymptotic level performance, but learning was ongoing, 143 

we parameterized the juggling learning process by estimating the learning curve for 144 

each performance test using a first-degree polynomial fit to the different blocks (Figure 145 

2C; Figure 2AB, black lines). We considered the slope of the resulting trend as 146 
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learning curve. The learning process of complex motor skills is thought to consist of a 147 

fast initial learning stage during skill acquisition and a much slower skill retaining 148 

learning stage (Dayan & Cohen, 2011; Doyon & Benali, 2005). In other words, within-149 

learning session performance gains are rapid at the beginning, but taper off with 150 

increased motor skill proficiency, resembling a power-law curve. Therefore, we also 151 

estimated the task proficiency per performance test at the first time point as predicted 152 

by the model, since the learning curve is expected to be influenced by the individual 153 

juggling aptitude. Importantly, the estimated task proficiency was comparable to the 154 

observed values in the corresponding first juggling block (performance test 1: rhos = 155 

.98, p < 0.001; performance test 2: rhos = .97, p < 0.001). Besides having a more 156 

accurate picture of juggling performance, this parameterization also allowed us to 157 

compare performance of adolescents and adults on a similar scale because of the 158 

different number of juggling blocks. A mixed ANOVA with the factors performance test 159 

(pre and post retention interval), condition group (sleep-first and wake-first) and age 160 

group (adolescents and adults) showed a significant interaction between performance 161 

test and condition group (F1, 65 = 4.868, p = 0.031, η2 = 0.07). This result indicates that 162 

regardless of age, the juggling learning curve becomes steeper after sleep than after 163 

wakefulness, thus indicating that sleep impacts motor learning (Figure 2D). No other 164 

interactions or main effects were significant (for the complete ANOVA report see 165 

Supplementary file - table 3). When analyzing the task proficiency before and after 166 

the first retention interval, depending on condition and age group, we found a 167 

significant interaction between condition and age group (Figure 2E; F1, 65 = 5.210, p = 168 

0.026, η2 = 0.07), showing that the adult sleep-first group had better overall task 169 

proficiency than the wake-first group, whereas the adolescent sleep-first group was 170 

worse than the wake-first group. The interaction (performance test x condition group) 171 

did not reach significance (F1, 65 = 1.882, p = 0.175, η2 = 0.03; also see Supplementary 172 
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file - table 4). Collectively, these results suggest that sleep influences learning of 173 

juggling as a gross motor task. Figure 2A and 2B indicate that performance tests in 174 

the morning might be characterized by a steeper learning curve than the evening tests. 175 

We confirmed this observation using a linear mixed model (Supplementary file – table 176 

5AB). While this finding might also indicate a circadian influence on learning in our 177 

task, we did not find evidence for an effect on circadian sensitive psychomotor vigilance 178 

task reaction time. Neither when comparing sleep first and wake first groups (Figure 2 179 

– figure supplement 1C), nor when specifically probing evening and morning 180 

performance tests (Supplementary file – table 5EF). 181 

Next, we further dissected the relationship between changes in the learning 182 

curve and task proficiency after the retention interval. We hypothesized, that a stronger 183 

increase in task proficiency across sleep would lead to a flatter learning curve based 184 

on the assumption that motor skill learning involves fast and slow learning stages. 185 

Indeed, we confirmed a strong negative correlation between the change (post retention 186 

values – pre retention values) in task proficiency and the change in learning curve after 187 

the retention interval (Figure 2F; rhos = -0.71, p < 0.001), which also remained strong 188 

after outlier removal (Figure 2 – figure supplement 1D). This result indicates that 189 

participants who consolidate their juggling performance after a retention interval show 190 

slower gains in performance. Note, that the flattening of the learning curve does not 191 

necessarily indicate worse learning but rather mark a more progressed learning stage. 192 

These results demonstrate a highly dynamic gross-motor skill learning process. Given 193 

that sleep influences the juggling learning curve, we aimed to determine whether sleep 194 

oscillation dynamics track the dynamics of gross-motor learning.   195 
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Figure 2 196 

 197 

Behavioral results and parameterizing juggling performance 198 
(A) Number of successful three-ball cascades (mean ± standard error of the mean [SEM]) of 199 
adolescents (circles) for the sleep-first (blue) and wake-first group (green) per juggling block. 200 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.01.21.427606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427606
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Grand average learning curve (black lines) as computed in (C) are superimposed. Dashed 201 
lines indicate the timing of the respective retention intervals that separate the three 202 
performance tests. Note that adolescents improve their juggling performance across the 203 
blocks. (B) Same conventions as in (A) but for adults (diamonds). Similar to adolescents, adults 204 
improve their juggling performance across the blocks regardless of group. (C) Schematic 205 
representation of the juggling learning process parameterization. We used a linear fit across 206 
all juggling blocks within a performance test to estimate the learning curve (m) and the task 207 
proficiency (linear line equation solved for x = 1) for each corresponding performance test. (D) 208 
Comparison of the juggling learning curve (mean ± SEM) between the sleep-first (blue) and 209 
the wake-first group (green) of adolescents (circles) and adults (diamonds) before and after 210 
the first retention interval to investigate the influence of sleep. Single subject data is plotted in 211 
the corresponding group color and age icon. Participants in the sleep-first group showed a 212 
steeper learning curve than the wake-first group after the first retention interval. (E) Same 213 
conventions as in (D) but for the task proficiency metric. Adolescents in the wake-first group 214 
had better overall task proficiency than adolescents in the sleep-first group. Adults in the sleep-215 
first group displayed better overall task proficiency than adults in the wake-first group. (F) 216 
Spearman rank-correlation between the overnight change in task proficiency (post – pre 217 
retention interval) and the overnight change in learning curve with robust linear trend line 218 
collapsed over the whole sample. Grey-shaded area indicates 95% confidence intervals of the 219 
trend line. Adolescents are denoted as red circles and adults as black diamonds. A strong 220 
inverse relationship indicated that participants with an improved task proficiency show flatter 221 
learning curves.  222 

 223 

Electrophysiological results: inter-individual variability and SO-spindle coupling 224 

 To determine the nature of the timed coordination between the two cardinal 225 

sleep oscillations, we adopted the same principled individualized approach we 226 

developed earlier (Hahn et al., 2020). First, we compared oscillatory power between 227 

adolescents and adults in the frequency range between 0.1 and 20 Hz during NREM 228 

(2&3) sleep, using cluster-based permutation tests (Maris & Oostenveld, 2007). 229 

Spectral power was elevated in adolescents as compared to adults across the whole 230 

tested frequency range (Figure 3 – figure supplement 1A left for representative 231 

electrode Cz; cluster test: p < 0.001, d = 1.88). Similar to the previously reported 232 

developmental patterns of sleep oscillations from childhood to adolescence (Hahn et 233 

al., 2020), this difference was explained by a spindle frequency peak shift and 234 

broadband decrease in the fractal or 1/f trend of the signal, thus directly replicating and 235 

extending our previous findings in a separate sample. After estimating the fractal 236 
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component of the power spectrum by means of irregular-resampling auto-spectral 237 

analysis (Wen & Liu, 2016), we found that adolescents exhibited a higher offset of 238 

fractal component on the y-axis than adults (Figure 3 – figure supplement 1A middle; 239 

cluster test: p < 0.001, d = 1.99). Next, we subtracted the fractal component from the 240 

power spectrum, which revealed clear distinct oscillatory peaks in the SO (< 2 Hz) and 241 

sleep spindle range (11 – 16 Hz) for both, adolescents and adults (Figure 3 – figure 242 

supplement 1A right). Importantly, we observed the expected spatial amplitude 243 

topography with stronger frontal SO and pronounced centro-parietal spindles for both 244 

age groups (Figure 3A left).  245 

Critically, the displayed group averages of the oscillatory residuals (Figure 3 – 246 

figure supplement 1A right) underestimate the inter-individual variability of the 247 

spindle frequency peak (Figure 3A right; oscillatory residuals for all subjects at Cz). 248 

Even though we found the expected systematic spindle frequency increase in a fronto-249 

parietal cluster from adolescence to adulthood (Figure 3 – figure supplement 1B; 250 

cluster test: p = 0.002, d = -0.87), both respective age groups showed a high degree 251 

of variability of the inter-individual spindle peak.  252 

Based on these findings, we separated the oscillatory activity from the fractal 253 

activity for every subject at every electrode position to capture the individual features 254 

of SO and sleep spindle oscillations. We then used the extracted individual features 255 

from the oscillatory residuals to adjust SO and spindle detection algorithms (Hahn et 256 

al., 2020; Helfrich et al., 2018; Molle et al., 2011; Staresina et al., 2015) to account for 257 

the spindle frequency peak shift and high inter-individual variability. To ensure the 258 

simultaneous presence of the two interacting sleep oscillations in the signal, we 259 

followed a conservative approach and restricted our analyses to NREM3 sleep given 260 

the low co-occurrence rate in NREM2 sleep (Figure 3 – figure supplement 1CD) 261 

which can cause spurious coupling estimates (Hahn et al., 2020). Further, we only 262 
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considered spindle events that displayed a concomitant detected SO within a 2.5 s 263 

time window.  264 

We identified an underlying SO component (2 Hz low-pass filtered trace) in the 265 

spindle peak locked averages for adolescents and adults on single subject and group 266 

average basis (Figure 3 – figure supplement 1E), indicating a temporally precise 267 

interaction between sleep spindles and SO that is clearly discernible in the time 268 

domain.  269 

To further assess the interaction between SO and sleep spindles, we computed 270 

SO-trough-locked time-frequency representations (Figure 3 – figure supplement 1F). 271 

Adolescents and adults revealed a shifting temporal pattern in spindle activity (11 – 16 272 

Hz) depending on the SO phase. In more detail, spindle activity decreased during the 273 

negative peak of the SO (‘down-state’) but increased during the positive peak (‘up-274 

state’). This temporal pattern and the underlying SO-component in spindle event 275 

detection (Figure 3 – figure supplement 1E) confirm the coordinated nature of the 276 

two major sleep oscillations in adolescents and adults.  277 

Next, we determined the coordinated interplay between SO and spindles in 278 

more detail by analyzing individualized event-locked cross-frequency interactions 279 

(Dvorak & Fenton, 2014; Hahn et al., 2020; Helfrich et al., 2019). In brief, we extracted 280 

the instantaneous phase angle of the SO-component (< 2 Hz) corresponding to the 281 

positive spindle amplitude peak for all trials at every electrode per subject. We 282 

assessed the cross frequency coupling based on z-normalized spindle epochs (Figure 283 

3B) to alleviate potential power differences due to age (Figure 3 – figure supplement 284 

1A) or different EEG-amplifier systems that could potentially confound our analyses 285 

(Aru et al., 2015). Importantly, we found no amplitude differences around the spindle 286 

peak (point of SO-phase readout) between adolescents and adults using cluster-based 287 

random permutation testing (Figure 3B), indicating an unbiased analytical signal. This 288 
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was also the case for the SO-filtered (< 2 Hz) signal (Figure 3B, inset). Critically, the 289 

significant differences in amplitude from -1.4 to -0.8 s (p = 0.023, d = -0.73) and 0.4 to 290 

1.5 s (p < 0.001, d = 1.1) are not caused by age related differences in power or different 291 

EEG-systems but instead by the increased coupling strength (i.e. higher coupling 292 

precision of spindles to SOs) in adults giving rise to a more pronounced SO-wave 293 

shape when averaging across spindle peak locked epochs. Further, we specifically 294 

focused our analyses on spindle events to account for the higher variability in the 295 

spindle frequency band than in the SO-band (Figure 3A). Based on these adjusted 296 

phase values, we derived the coupling strength defined as 1 – circular variance. This 297 

metric describes the consistency of the SO-spindle coupling (i.e. higher coupling 298 

strength indicates more precise coupling) and has previously been shown to accurately 299 

track brain development and memory formation (Hahn et al., 2020). As expected, 300 

adults had a higher coupling strength in a centro-parietal cluster than adolescents 301 

(Figure 3C; cluster test: p < 0.001, d = 0.88), indicating a more precise interplay 302 

between SO and spindles during adulthood. 303 
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SO-spindle coupling tracks gross-motor learning 304 

After demonstrating that SO-spindle coupling becomes more precise from early 305 

adolescence to adulthood, we tested the hypothesis, that the dynamic interaction 306 

between the two sleep oscillations explains the dynamic process of complex gross-307 

motor learning. When taking the behavioral analyses into account, we did not find any 308 

evidence for a difference between the two age groups on the impact of sleep on the 309 

learning curve (Figure 2D). Therefore, we did not differentiate between adolescents 310 

and adults in our correlational analyses. Furthermore, given that we only recorded 311 

polysomnography for the adults in the sleep first group and that adolescents in the 312 

wake first group showed enhanced task proficiency at the time point of the sleep 313 

retention interval due to additional training (Figure 3 – figure supplement 2A), we 314 

only considered adolescents and adults of the sleep-first group to ensure a similar level 315 

of juggling experience (for summary statistics of sleep architecture and SO and spindle 316 

events of subjects that entered the correlational analyses see Supplementary file – 317 

table 6). Notably, we found no differences in electrophysiological parameters (i.e. 318 

coupling strength, event detection) between the adolescents of the wake first and sleep 319 

first group (Figure 3 – figure supplement 2B & Supplementary file – table 7).  To 320 

investigate whether coupling strength in the night of the first retention interval explains 321 

overnight changes of task proficiency (post retention interval 1 – pre retention interval 322 

1), we computed cluster-corrected correlation analyses. We identified a significant 323 

central cluster (Figure 3D; mean rho = 0.37, p = 0.017), indicating that participants 324 

with a more consistent SO-spindle interplay have stronger overnight improvements in 325 

task proficiency.  326 

 Given that we observed a strong negative correlation between task proficiency 327 

at a given time point and the steepness of the subsequent learning curve (cf. Figure 328 

2F) as subjects improve but do not reach ceiling level performance, we conversely 329 
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expected a negative correlation between learning curve and coupling. Given this 330 

dependency, we observed a significant cluster-corrected correlation at C4 (Figure 3E; 331 

rhos = -0.45, p = 0.039, cluster-corrected), showing that participants with a more 332 

precise SO-spindle coupling exhibit a flatter learning curve overnight. This observation 333 

is in line with a trade-off between proficiency and learning curve, which exhibits an 334 

upper boundary (100% task proficiency). In other words, individuals with high 335 

performance exhibit a smaller gain through additional training when approaching full 336 

task proficiency. 337 

 Critically, when computing the correlational analyses separately for adolescents 338 

and adults, we identified highly similar effects at electrode C4 for task proficiency 339 

(Figure 3 – figure supplement 2C) and learning curve (Figure 3 – figure supplement 340 

2D) in each group. These complementary results demonstrate that coupling strength 341 

predicts gross-motor learning dynamics in both, adolescents as well as adults, and 342 

further shows that this effect is not solely driven by one group. Furthermore, our results 343 

remained consistent when including coupled spindle events in NREM2 (Figure 3 – 344 

figure supplement 2E) and after outlier removal (Figure 3 – figure supplement 345 

2FG). 346 

To rule out age as a confounding factor that could drive the relationship between 347 

coupling strength, learning curve and task proficiency in the mixed sample, we used 348 

cluster-corrected partial correlations to confirm their independence of age differences 349 

(task proficiency: mean rho = 0.40, p = 0.017; learning curve: rhos = -0.47, p = 0.049). 350 

Additionally, given that we found that juggling performance could underlie a circadian 351 

modulation we controlled for individual differences in alertness between subjects due 352 

to having just slept. We partialed out the mean PVT reaction time before the juggling 353 

performance test after sleep from the original analyses and found that our results 354 

remained unchanged (task proficiency: mean rho = 0.37, p = 0.025; learning curve: 355 
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rhos = -0.49, p = 0.040). For a summary of the reported cluster-corrected partial 356 

correlations as well as analyses controlling for differences in sleep architecture see 357 

Figure 3 – figure supplement 3. Further, we also confirmed that our correlations are 358 

not influenced by individual differences in SO and spindle event parameters (Figure 3 359 

– figure supplement 4).  360 

Finally, we investigated whether subjects with high coupling strength have a 361 

gross-motor learning advantage (i.e. trait-effect) or a learning induced enhancement of 362 

coupling strength is indicative for improved overnight memory change (i.e. state-363 

effect). First, we correlated SO-spindle coupling strength obtained from the adaptation 364 

night with the coupling strength in the learning night. We found that overall, coupling 365 

strength is highly correlated between the two measurements (mean rho across all 366 

channels = 0.55, Figure 3 – figure supplement 2H), supporting the notion that 367 

coupling strength remains rather stable within the individual (i.e. trait). Second, we 368 

calculated the difference in coupling strength between the learning night and the 369 

adaptation night to investigate a possible state-effect. We found no significant cluster-370 

corrected correlations between coupling strength change and task proficiency- as well 371 

as learning curve change (Figure 3 – figure supplement 2I). 372 

Collectively, these results indicate the regionally specific SO-spindle coupling 373 

over central EEG sensors encompassing sensorimotor areas precisely indexes 374 

learning of a challenging motor task.  375 

 376 

 377 

 378 

 379 

 380 
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Figure 3 381 

 382 

Inter-individual variability, SO-spindle coupling development, and neural 383 

correlates of gross-motor learning dynamics  384 
(A) Left: topographical distribution of the 1/f corrected SO and spindle amplitude as extracted 385 
from the oscillatory residual (Figure 3 – figure supplement 1A, right). Note that adolescents 386 
and adults both display the expected topographical distribution of more pronounced frontal SO 387 
and centro-parietal spindles. Right: single subject data of the oscillatory residual for all subjects 388 
with sleep data color coded by age (darker colors indicate older subjects). SO and spindle 389 
frequency ranges are indicated by the dashed boxes. Importantly, subjects displayed high 390 
inter-individual variability in the sleep spindle range and a gradual spindle frequency increase 391 
by age that is critically underestimated by the group average of the oscillatory residuals (Figure 392 
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3 – figure supplement 1A, right). (B) Spindle peak locked epoch (NREM3, co-occurrence 393 
corrected) grand averages (mean ± SEM) for adolescents (red) and adults (black). Inset 394 
depicts the corresponding SO-filtered (2 Hz lowpass) signal. Grey-shaded areas indicate 395 
significant clusters. Note, we found no difference in amplitude after normalization. Significant 396 
differences are due to more precise SO-spindle coupling in adults. (C) Top: comparison of SO-397 
spindle coupling strength between adolescents and adults. Adults displayed more precise 398 
coupling than adolescents in a centro-parietal cluster. T-scores are transformed to z-scores. 399 
Asterisks denote cluster-corrected two-sided p < 0.05. Bottom: Exemplary depiction of coupling 400 
strength (mean ± SEM) for adolescents (red) and adults (black) with single subject data points. 401 
Exemplary single electrode data (bottom) is shown for C4 instead of Cz to visualize the 402 
difference. (D) Cluster-corrected correlations between individual coupling strength and 403 
overnight task proficiency change (post – pre retention) for adolescents (red, circle) and adults 404 
(black, diamond) of the sleep-first group (left, data at C4). Asterisks indicate cluster-corrected 405 
two-sided p < 0.05. Grey-shaded area indicates 95% confidence intervals of the trend line. 406 
Participants with a more precise SO-spindle coordination show improved task proficiency after 407 
sleep. Note that the change in task proficiency was inversely related to the change in learning 408 
curve (cf. Figure 2D), indicating that a stronger improvement in task proficiency related to a 409 
flattening of the learning curve. Further note that the significant cluster formed over electrodes 410 
close to motor areas. (E) Cluster-corrected correlations between individual coupling strength 411 
and overnight learning curve change. Same conventions as in (D). Participants with more 412 
precise SO-spindle coupling over C4 showed attenuated learning curves after sleep. 413 

 414 

 415 

 416 
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DISCUSSION 427 

 By comparing adolescents and adults learning a complex juggling task, we 428 

critically advance our previous work about the intricate interplay of learning and 429 

memory formation, brain maturation and coupled sleep oscillations: First, we 430 

demonstrated that SO-spindle interplay precision is not only enhanced from childhood 431 

to late adolescence but also progressively improves from early adolescence to young 432 

adulthood (Figure 3F). Second and more importantly, we provide first evidence that 433 

the consistency of SO-spindle coordination is a promising model to track real-life gross-434 

motor skill learning in addition to its key role in declarative learning (Figure 3DE). 435 

Notably, this relationship between coupling and learning occurred in a regional specific 436 

manner and was pronounced over frontal areas for declarative and over motor regions 437 

for procedural learning (Hahn et al., 2020). Collectively, our results suggest that precise 438 

SO-spindle coupling supports gross-motor memory formation by integrating 439 

information from subcortical memory structures to cortical networks.   440 

 How do SO-spindle interactions subserve motor memory formation? Motor 441 

learning is a process relying on complex spatial and temporal scales in the human 442 

brain. To acquire motor skills the brain integrates information from extracortical 443 

structures with cortical structures via cortico-striato-thalamo-cortico loops and cortico-444 

cerebello-thalamo-cortico circuits (Dayan & Cohen, 2011; Doyon & Benali, 2005; 445 

Doyon et al., 2018; Pinsard et al., 2019). However, growing evidence also advocates 446 

for hippocampal recruitment for motor learning, especially in the context of sleep-447 

dependent memory consolidation (Albouy et al., 2013; Boyke et al., 2008; Draganski 448 

et al., 2004; Pinsard et al., 2019; Sawangjit et al., 2018; Schapiro et al., 2019). 449 

Hippocampal memory reactivation during sleep is one cornerstone of the active 450 

systems consolidation theory, where coordinated SO-spindle activity route subcortical 451 
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information to the cortex for long-term storage (Diekelmann & Born, 2010; Helfrich et 452 

al., 2019; Klinzing et al., 2019; Ngo et al., 2020). Quantitative markers of spindle and 453 

SO activity but not the quality of their interaction have been frequently related to motor 454 

memory in the past (Barakat et al., 2011; Bothe et al., 2019; Bothe et al., 2020; Huber 455 

et al., 2004; Morita et al., 2012; Nishida & Walker, 2007; Tamaki et al., 2008). Our 456 

results now complement the active systems consolidation theories’ mechanistic 457 

assumption of interacting oscillations by demonstrating that a precise SO-spindle 458 

interplay subserves gross-motor skill learning (Figure 3DE). Of note, we did not derive 459 

direct hippocampal activity in the present study given spatial resolution of scalp EEG-460 

recordings. Nonetheless, as demonstrated recently, coupled spindles precisely 461 

capture cortico-hippocampal network communication as well as hippocampal ripple 462 

expression (Helfrich et al., 2019). Thus, higher SO-spindle coupling strength 463 

supporting gross-motor learning in our study points towards a more efficient 464 

information exchange between hippocampus and cortical areas.  465 

Remarkably, hippocampal engagement is especially crucial at the earlier 466 

learning stages. Recently, it has been found that untrained motor sequences exhibit 467 

hippocampal activation that subsides for more consolidated sequences. This change 468 

was further accompanied by increased motor cortex activation, suggesting a 469 

transformative function of sleep for motor memory (Pinsard et al., 2019). In other 470 

words, hippocampal disengagement likely indexes the transition from the fast learning 471 

stage to the slower learning stage with more proficient motor skill (Dayan & Cohen, 472 

2011; Doyon & Benali, 2005). The dynamics of the two interacting learning stages of 473 

motor skill acquisition are likely reflected by the inverse relationship between task 474 

proficiency increases and learning curve attenuation (Figure 2F). Given that our 475 

subjects did not reach asymptotic performance level (Figure 2AB) and that SO-spindle 476 

coupling tracks gross-motor skill learning dynamics as it relates to both, learning curve 477 
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attenuation and task proficiency increments, it is plausible that SO-coupling strength 478 

represents the extent of hippocampal support for integrating information to motor 479 

cortices during complex motor skill learning.  480 

Interestingly, SO and spindles are not only implicated in hippocampal-481 

neocortical network communication but are also indicative for activity and information 482 

exchange in subcortical areas that are more traditionally related to the shift from fast 483 

to slow motor learning stages. For example, striatal network reactivation during sleep 484 

was found to be synchronized to sleep spindles, which predicted motor memory 485 

consolidation (Fogel et al., 2017). In primates, coherence between M1 and cerebellum 486 

in the SO and spindle frequency range suggested that coupled oscillatory activity 487 

conveys information through cortico-thalamo-cerebellar networks (Xu et al., 2020). 488 

One testable hypothesis for future research is whether SO-spindle coupling represents 489 

a more general gateway for the brain to exchange subcortical and cortical information 490 

and not just hippocampal-neocortical communication.  491 

 Critically, we found that the consistency of the SO-spindle interplay identified at 492 

electrodes overlapping with motor areas such as M1 was predictive for the gross-motor 493 

learning process (Figure 3DE). This finding corroborates the idea that SO-spindle 494 

coupling supports the information flow between task-relevant subcortical and cortical 495 

areas. Recent evidence in the rodent model demonstrated that neural firing patterns in 496 

M1 during spindles became more coherent after performing a grasping motor task. The 497 

extent of neural firing precision was further mediated by a function of temporal 498 

proximity of spindles to SOs (Silversmith et al., 2020). Through this synchronizing 499 

process and their Ca2+ influx propagating property, coupled spindles are likely to 500 

induce neural plasticity that benefits motor learning (Niethard et al., 2018).  501 

 How relevant is sleep for real-life gross-motor memory consolidation? We found 502 

that sleep impacts the learning curve but did not affect task proficiency in comparison 503 
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to a wake retention interval (Figure 2DE). Two accounts might explain the absence of 504 

a sleep effect on task proficiency. (1) Sleep rather stabilizes than improves gross-motor 505 

memory, which is in line with previous gross-motor adaption studies (Bothe et al., 2019; 506 

Bothe et al., 2020). (2) Pre-sleep performance is critical for sleep to improve motor 507 

skills (Wilhelm et al., 2012). Participants commonly reach asymptotic pre-sleep 508 

performance levels in finger tapping tasks, which is most frequently used to probe 509 

sleep effects on motor memory. Here we found that using a complex juggling task, 510 

participants do not reach asymptotic ceiling performance levels in such a short time. 511 

Indeed, the learning progression for the sleep-first and wake-first groups followed a 512 

similar trend (Figure 2AB), suggesting that more training and not in particular sleep 513 

drove performance gains. We note that juggling performance in our study could have 514 

been influenced by the timing of when learning is optimal in the circadian cycle. 515 

However, we did not find evidence for a circadian modulation of cognitive engagement 516 

based on objective reaction time data (Figure 2 – figure supplement 1C). 517 

Nonetheless, we cannot fully disentangle circadian and sleep effects with our study 518 

design, which should be considered a limitation to our findings. Importantly, SO-spindle 519 

coupling still predicted learning dynamics on a single subject level advocating for a 520 

supportive function of sleep for gross-motor memory. Moreover, we found that SO-521 

spindle coupling strength remains remarkably stable between two nights, which also 522 

explains why a learning-induced change in coupling strength did not relate to behavior 523 

(Figure 3 – figure supplement 2I). Thus, our results primarily suggest that strength 524 

of SO-spindle coupling correlates with the ability to learn (trait), but does not solely 525 

convey the recently learned information. This set of findings is in line with recent ideas 526 

that strong coupling indexes individuals with highly efficient subcortical-cortical network 527 

communication (Helfrich et al., 2021). 528 
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 This subcortical-cortical network communication is likely to be refined 529 

throughout brain development, since we discovered elevated coupling strength in 530 

adults compared to early adolescents (Figure 3C). This result compliments our earlier 531 

findings of enhanced coupling precision from childhood to adolescence (Hahn et al., 532 

2020) and the recently demonstrated lower coupling strength in pre-school children 533 

(Joechner et al., 2021). We speculate that, similar to other spindle features, the 534 

trajectory of SO-coupling strength is likely to reach a plateau during adulthood (Nicolas 535 

et al., 2001; Purcell et al., 2017). Importantly, we identified similar methodological 536 

challenges to assess valid cross-frequency coupling estimates in the current cross-537 

sectional study to the previous longitudinal study. Age severely influences fractal 538 

dynamics in the brain (Figure 3 – figure supplement 1A) and the defining features of 539 

sleep oscillations (Figure 3B & Figure 3 – figure supplement 1B). Remarkably, inter-540 

individual oscillatory variability was pronounced even in the adult age group (Figure 541 

3A), highlighting the critical need to employ individualized cross-frequency coupling 542 

analyses to avoid its pitfalls (Aru et al., 2015; Muehlroth & Werkle-Bergner, 2020). 543 

 Taken together, our results provide a mechanistic understanding of how the 544 

brain forms real-life gross-motor memory during sleep. As sleep has been shown to 545 

support fine-motor memory consolidation in individuals after stroke (Gudberg & 546 

Johansen-Berg, 2015; Siengsuhon & Boyd, 2008), SO-spindle coupling integrity could 547 

be a valuable, easy to assess predictive index for rehabilitation success.   548 
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MATERIAL AND METHODS 573 

 

Participants 574 

 We recruited 29 adolescents (mean ± SD age, 13.17 ± 0.85 years; 5 female, 24 575 

male) from a local boarding school and 41 young adults (mean ± SD age, 22.24 ± 2.15 576 

years; 16 female, 25 male) from the student population of the University of Salzburg. 577 

All participants were healthy, right-handed and without prior juggling experience. 578 

However, we excluded one adolescent for all analyses post-hoc for violating the prior 579 

Key Resources Table 

Reagent 
type 
(species) 
or 
resource 

Designation Source or reference Identifiers 
Additional 
information 

software, 
algorithm 

Brain Vision 
Analyzer 2.2 

Brain Products GmbH 
https://www.brainproducts.com 

RRID:SCR
_002356  

software, 
algorithm 

CircStat 2012 Berens (2009) 
https://philippberens.wordpress.com/code/circsta
ts/ 

RRID:SCR
_016651  

software, 
algorithm 

EEGLAB 
13_4_4b 

Delorme and Makeig (2004) 
https://sccn.ucsd.edu/eeglab/index.php 

RRID:SCR
_007292  

software, 
algorithm 

FieldTrip 
20161016 

Oostenveld et al. (2011) 
http://www.fieldtriptoolbox.org/ 

RRID:SCR
_004849 

 

software, 
algorithm 

IRASA Wen and Liu (2016) 
https://purr.purdue.edu/publications/1987/1 

 
 

software, 
algorithm 

MATLAB 
2017a 

MathWorks Inc. RRID: 
SCR_001
622 

 

software, 
algorithm 

RStudio    RStudio Team RRID:SCR
_000432 

 

software, 
algorithm 

Somnolyzer 
24 × 7 

  Koninklijke Philips N.V. 
  https://www.philips.co.in 

 
 

other 

“Jonglieren 
und 
Bewegungskü
nste” 

  Sobota & Hollauf (2013) 
  Austrian ministry of Sports 
  

 
Juggling 
video 
instructions 
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juggling experience criteria. Two adolescents did not participate in the third 580 

performance test. We randomly divided adolescents and adults into a sleep-first 581 

(adolescents: N = 17, 12.94 ± 0.75 years; 3 females, 14 males; adults: N = 25, 21.95 582 

± 2.42 years; 8 females, 17 males) and a wake-first group (adolescents: N = 11, 13.36 583 

± 0.81 years; 2 females, 9 males; adults: N = 16, 22.69 ± 1.62 years; 8 females, 8 584 

males). See experimental design for more detailed information about the groups. We 585 

recorded polysomnography (PSG) during full night sleep for all participants except 586 

adults in the wake-first group. Therefore, comparison of electrophysiological data 587 

between adults and adolescents was based on the adult sleep-first group and both 588 

adolescent groups. To ensure similar juggling learning experience, we only included 589 

adults and adolescents in the sleep-first group when analyzing the relationship 590 

between electrophysiological measures and behavioral performance. All participants 591 

and the legal custodians of the adolescents provided written informed consent before 592 

participating in the study. The study protocol was conducted in accordance with the 593 

Declaration of Helsinki and approved by the ethics committee of the University of 594 

Salzburg (EK-GZ:16/2014). Adults received monetary compensation or student credit 595 

for their participation. Adolescents received a set of juggling balls. 596 

 597 

Experimental design 598 

 Adults in the sleep-first group visited the sleep laboratory on three occasions 599 

(Figure 1). At the first day subjects slept in the sleep lab with full night PSG for 600 

adaptation purposes. On the second visit, subjects learned and practiced juggling by 601 

video instructions in the evening (8.45 pm - 9.45 pm). Juggling performance was 602 

assessed three times in total. The first performance test was conducted after the 603 

training session (10.00 pm – 10.18pm). The second performance test (7.30 am – 7.48 604 

am) took place after the first retention interval containing a full night of sleep with 605 
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polysomnography (11 pm – 7 am). The third and last performance test was executed 606 

after the second retention interval (9.00 pm – 9.18 pm) containing wakefulness. Adults 607 

in the wake-first group followed a similar protocol but with reversed order of the 608 

retention intervals (i.e. first retention interval containing wakefulness and the second 609 

interval containing sleep). Therefore, participants performed the juggling training 610 

(10.15 am – 11.15 am) and the first performance test (11.30 am – 11.48 am) in the 611 

morning, the second performance test after wakefulness (9.00 pm – 9.18 pm) and the 612 

third performance test after sleep (11.00 am – 11.18 am). We did not record 613 

polysomnography in the wake-first group because participants slept at home. To 614 

objectively assess attentiveness and potential circadian influences, all participants 615 

completed a psychomotor vigilance task (Dinges & Powell, 1985) before the 616 

performance tests. Actigraphy (Cambridge Neurotechnology Actiwatch, Cambridge, 617 

UK) and a sleep log (Saletu et al., 1987) verified compliance with a regular sleep 618 

schedule throughout the study.  619 

Adolescents went through a study protocol comparable to the adults. However, 620 

we adjusted the protocol to adhere to the schedule of the boarding school and to 621 

control the training load. First, we recorded ambulatory PSG for both groups in their 622 

habitual sleep environment at the boarding school and second, we reduced the number 623 

of juggling blocks during the performance tests (for details see gross-motor task) 624 

because the study regime was already exhausting for our adult participants and we 625 

wanted to avoid a too excessive training load. The sleep-first group performed the 626 

juggling training (6.30 pm – 7.30 pm) and performance test in the evening (7.45 pm – 627 

7.58 pm) followed by a retention interval containing sleep (21.00 pm – 6.00 am). The 628 

second performance test was conducted after sleep (7.30 am – 7.43 am) and the third 629 

performance test after wakefulness (7.30 pm – 7.43 pm). The wake-first group learned 630 

to juggle (7.30 am – 8.30 am) with a subsequent performance test (8.45 am – 8.58 am) 631 
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in the morning. The second performance test was executed after wakefulness in the 632 

evening (7.30 pm – 7.43 pm) and the third performance test was completed after sleep 633 

(7.30 am – 7.43 am).  634 

 635 

Gross-motor task 636 

 To investigate the involvement of slow oscillation-spindle coupling in acquiring 637 

a real-life gross motor skill, we implemented a juggling paradigm, which has been 638 

shown to induce neural plasticity (Boyke et al., 2008; Draganski et al., 2004) and to be 639 

sensitive for sleep-dependent memory consolidation (Morita et al., 2012, 2016). Adults 640 

and adolescents completed the same juggling training, which was based on short video 641 

clips from the “Juggling and Movement Arts” DVD (“Jonglieren und 642 

Bewegungskünste”; Sobota & Hollauf, 2013) containing step-by-step instructions from 643 

the correct stance to a full five-ball cascade (i.e. five continuous catches). We used 14 644 

video clips demonstrating the exercises followed by a practice opportunity for the 645 

participants. The training session lasted approximately one hour with a short break 646 

after half an hour. During the performance tests, participants were instructed to juggle 647 

as accurately and continuously as possible. Adults juggled for five blocks á three 648 

minutes, which was always separated by a 30 second break. To alleviate the physical 649 

strain, adolescents only juggled for three blocks á three minutes during the 650 

performance tests. Training and performance tests were videotaped to evaluate the 651 

juggling performance.  652 

 653 

Parameterizing juggling performance 654 

 We evaluated the juggling performance by counting consecutive catches based 655 

on the video material. We used the number of three ball cascades (i.e. three catches 656 

in a row, Figure 2AB) as index for juggling performance by dividing the number of 657 
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consecutive catches by three. We opted for three ball cascades as a performance 658 

index because we considered three consecutive catches as the criteria for the motor 659 

task to qualify as juggling (Boyke et al., 2008; Draganski et al., 2004). Because juggling 660 

is a complex motor task where it is unlikely to reach ceiling level performance, we were 661 

interested in the progression of the learning process and how it is influenced by task 662 

proficiency. Therefore, we calculated a first degree polynomial fit using the least-663 

squares method to parameterize the learning curve (m, slope) per performance test 664 

block (Figure 2AB, black lines & Figure 2CD), using the formula:  665 

𝑚 =  
∑ (𝑥𝑖 − �̅�) ∗ (𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)²𝑛
𝑖=1

 666 

Next, we calculated the intercept c according to the following formula: 667 

𝑐 =  𝑌 ̅ − 𝑚 ∗ �̅� 668 

Finally, task proficiency (y1, Figure 2E) was estimated at the first time point of each 669 

performance test as 670 

𝑦1 = 𝑚 + 𝑐 671 

 672 

Polysomnography and sleep staging 673 

 We recorded PSG with two systems. We conducted the ambulatory sleep 674 

recordings of the adolescents with a portable amplifier system (Alphatrace, Becker 675 

Meditec, Karlsruhe, Germany) with a sampling rate of 512 Hz. For in lab recordings of 676 

the adult participants, we utilized a 32-channel Neuroscan amplifier system (Scan 4.3.3 677 

Software, Neuroscan Inc., Charlotte, NC) with a sampling rate of 500 Hz. Electrode 678 

placement was identical between the two recording systems and in accordance with 679 

the 10-20 system. Signals were recorded with gold cup electrodes placed at F3, Fz, 680 

F4, C3, Cz, C4, P3, Pz, P4, O1 and O2 on the scalp, as well as at A1 and A2 placed 681 

at the mastoids. To allow for sleep staging and to control for muscle artifacts, we 682 
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recorded an electromyogram (EMG, bipolar electrodes at the musculus mentalis), a 683 

horizontal electrooculogram (EOG, above the right outer canthus and below the left 684 

outer canthus) and a vertical EOG (above and below the left eye). We used Cz as 685 

online reference and AFz as ground electrode. For sleep staging, we re-referenced the 686 

signal offline against contralateral mastoids. Sleep was semi-automatically staged in 687 

30 s epochs using the Somnolyzer 24x7 algorithm (Koninklijke Philips N.V.; Eindhoven, 688 

The Netherlands) and subsequently controlled by an expert scorer according to 689 

standard sleep staging criteria (Iber et al., 2007). For all other data analyses, we 690 

demeaned and re-referenced the EEG signal to a common average.  691 

 692 

Individualized cross-frequency coupling 693 

 To assess the precise interplay between SO and spindles, we used the same 694 

individualized cross-frequency coupling pipeline we developed earlier in order to 695 

account for network changes induced by aging, that are known to cause spurious 696 

coupling estimates (Aru et al., 2015; Cole & Voytek, 2017; Hahn et al., 2020; Scheffer-697 

Teixeira & Tort, 2016). In brief, our approach was based on the following principles: (1) 698 

establishing the presence of sleep oscillations, (2) individually detecting transient 699 

oscillatory events, (3) alleviating power differences and (4) ensuring co-occurrence of 700 

SO (phase providing signal) and sleep spindles (amplitude providing signal). 701 

 702 

Establishing sleep oscillations 703 

 First, we z-normalized the EEG-signal in the time domain to mitigate prominent 704 

power differences and computed averaged power spectra from 0.1 to 30 Hz using a 705 

Fast Fourier Transform (FFT) routine with a Hanning window on 15 s of continuous 706 

NREM sleep (i.e. NREM2 and NREM3, Figure 3 – figure supplement 1A, left) with 707 

a 1 s sliding window. Data are presented in the semi-log space. Next, we sought to 708 
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isolate the oscillatory activity in the normalized data by means of irregular auto-spectral 709 

analysis (IRASA, (Wen & Liu, 2016)). We first derived the 1/f fractal component (Figure 710 

3 – figure supplement 1A middle) from 15 s NREM sleep data in 1 s sliding steps 711 

and subsequently subtracted it from the power spectrum (Figure 3 – figure 712 

supplement 1A left) to obtain an unbiased estimate of the oscillatory activity for every 713 

subject on every electrode (Figure 3 – figure supplement 1A right & Figure 3A). To 714 

separate the 1/f component from the power spectrum, we used the same parameters 715 

as specified previously (Hahn et al., 2020). In short, the signal is stretched and 716 

compressed by the same non-integer factor (e.g. stretching by a factor of 1.1 and 717 

compressing by a factor of 0.9). We repeated the resampling with factors from 1.1 to 718 

1.9 in 0.05 steps. This pair wise stretching and compressing systematically causes 719 

frequency peak shifts in the regular oscillatory activity but leaves the more random 1/f 720 

background activity unaffected. Because the oscillatory activity becomes faster by a 721 

similar factor as it becomes slower, the oscillatory activity is averaged out by median 722 

averaging across all pair wise resampled segments thus extracting the 1/f component. 723 

We then detected individual SO (< 2 Hz) and spindle peak frequencies (10 – 17 Hz, 724 

Figure 3 – figure supplement 1B) and the corresponding 1/f corrected amplitude 725 

(Figure 3A left) in the oscillatory residual (Figure 3 – figure supplement 1A right). 726 

We considered the highest peak within the specified SO and spindle frequency ranges 727 

above as the most representative oscillatory event in each electrode. We then utilized 728 

the individual frequency peaks to inform the algorithms for discrete SO and spindle 729 

event detection. 730 

 731 

Individually detecting transient oscillatory events 732 

 We employed widely used spindle and SO detection algorithms (Helfrich et al., 733 

2018; Molle et al., 2011; Staresina et al., 2015) and adjusted them according to the 1/f 734 
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corrected SO and spindle features for a fully individualized event detection (Hahn et 735 

al., 2020).  736 

We detected spindle events (Figure 3B & Figure 3 – figure supplement 1E) 737 

by band-pass filtering the continuous signal ± 2 Hz around the individual spindle peak 738 

per electrode. After filtering, we computed the instantaneous amplitude via a Hilbert 739 

transform. Next, we smoothed the signal with a running average in a 200 ms window. 740 

A sleep spindle was detected, when the signal exceeded the 75-percentile amplitude 741 

criterion for a time span of 0.5 to 3 s. We segmented the raw data ± 2.5 s centered on 742 

the positive spindle peak. 743 

We detected SO events (Figure 3 – figure supplement 1F) by first high-pass 744 

filtering the continuous EEG signal at 0.16 Hz and then low-pass filtering at 2 Hz. 745 

Based on the filtered signal, we detected the zero-crossings that fulfilled the time 746 

criterion (length 0.8 – 2 s). The signal between two consecutive zero-crossings was 747 

considered a valid SO if its amplitude exceeded the 75-percentile threshold. We then 748 

segmented the raw data ± 2.5 s centered on the negative peak.  749 

 750 

Alleviating power differences 751 

 Power differences in the signal can systematically impact cross-frequency 752 

coupling measures by changing the signal-to-noise ratio, which in turn influences the 753 

precision of the phase estimation of the signal (Aru et al., 2015; Scheffer-Teixeira & 754 

Tort, 2016). Because power decreases are apparent across the lifespan (Campbell & 755 

Feinberg, 2009, 2016; Hahn et al., 2020; Helfrich et al., 2018), we z-normalized all 756 

detected SO and spindle events in the time domain to alleviate this possible confound 757 

before calculating phase-amplitude coupling measures (Figure 3B).  758 

 759 

 760 
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Ensuring co-occurrence of SO and sleep spindles  761 

 Cross-frequency coupling renders meaningful information of network 762 

communication only when the suspected interacting oscillations are present in the 763 

signal. Therefore, we only analyzed SO and sleep spindle epochs during which they 764 

co-occurred in a 2.5s time window (± ~2 SO cycles around the spindle peak). 765 

Furthermore, we restricted all our coupling analyses to sleep stage NREM3 because 766 

of general lower co-occurrence of SO and spindles in NREM2 (Figure 3 – figure 767 

supplement 1CD), which can cause spurious coupling estimates (Hahn et al., 2020). 768 

 769 

Event-locked cross-frequency coupling 770 

 To parameterize the timed coordination between sleep spindles and SO (Figure 771 

3C), we computed event-locked cross-frequency coupling analyses (Dvorak & Fenton, 772 

2014; Hahn et al., 2020; Helfrich et al., 2019; Helfrich et al., 2018; Staresina et al., 773 

2015) based on individualized and normalized spindle peak-locked segments. In short, 774 

we used a low-pass filter of 2 Hz to extract the underlying SO-component (Figure 3D) 775 

from the EEG-signal and read out the phase angle corresponding with the sleep 776 

spindle peak after applying a Hilbert transform. We then calculated the coupling 777 

strength, which is defined as 1 – circular variance using the CircStat Toolbox function 778 

circ_r (Berens, 2009) to assess the consistency of the SO sleep spindle interplay.  779 

 780 

Time frequency analyses 781 

 We computed event-locked time-frequency representations based on -2 to 2s 782 

epochs centered on the negative SO peak (Figure 3 – figure supplement 1F). We 783 

used a 500 ms Hanning window in 50 ms steps to analyze the frequency power from 784 

5 to 30 Hz in steps of 0.5 Hz. We subsequently baseline corrected the time-frequency 785 

representations by z-scoring the data based on the means and standard deviations of 786 
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a bootstrapped distribution (10000 iterations) for the -2 to -1.5 s time interval of all trials 787 

(Flinker et al., 2015; Helfrich et al., 2018). 788 

 789 

Statistical analyses 790 

To compare juggling performance between the sleep-first and wake-first group 791 

and to assess the learning progression, we computed mixed ANOVAS with the 792 

between factor condition group (sleep-first, wake-first) and the repeated measure 793 

factor juggling blocks. Because number of juggling blocks differed between 794 

adolescents (9, Figure 2A) and adults (15, Figure 2B) we analyzed the juggling 795 

performance separately per age group. Influence of sleep on learning curve (Figure 796 

2D) and task proficiency (Figure 2E) was assessed by a mixed ANOVA with the 797 

between factors condition group (sleep-first, wake-first) and age group (adolescents, 798 

adults) and the repeated factor performance test (pre retention interval 1, post retention 799 

interval 1). To correct for multiple comparisons we clustered the data in the frequency 800 

(Figure 3 – figure supplement 1A), time (Figure 3B) and space domain (Figure 3C 801 

& Figure 3 – figure supplement 1B), using cluster-based random permutation testing 802 

(Monte-Carlo method, cluster alpha 0.05, max size criterion, 1000 iterations, critical 803 

alpha level 0.05 two-sided; Maris & Oostenveld, 2007). Given our sparse sampling of 804 

only 11 scalp electrodes, we set the minimum number of neighborhood electrodes 805 

required to be included in the clustering algorithm to zero. For correlational analyses 806 

we utilized spearman rank correlations (rhos; Figure 2F & Figure 3DE) to mitigate the 807 

impact of possible outliers as well as cluster-corrected spearman rank correlations by 808 

transforming the correlation coefficients to t-values (p < 0.05) and clustering in the 809 

space domain (Figure 3DE). Linear trend lines were calculated using robust 810 

regression. To control for possible confounding factors we computed cluster-corrected 811 

partial rank correlations (Figure 3 – figure supplement 3 and 4). We report partial eta 812 
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squared (η2), Cohen’s d (d) and averaged spearman correlation coefficients (mean 813 

rho) as effect sizes. Cluster effect sizes are estimated by first calculating Cohen’s d for 814 

every data point in the significant cluster and subsequently averaging across the 815 

obtained values. 816 

 817 

Data analyses 818 

 We used functions from the Fieldtrip toolbox (Oostenveld et al., 2011), EEGlab 819 

toolbox (Delorme & Makeig, 2004), CircStat toolbox (Berens, 2009) and custom written 820 

code implemented in MatLab 2015a (Mathworks Inc.) for data analyses. Irregular auto-821 

spectral analysis (IRASA (Wen & Liu, 2016)) was conducted using code obtained from 822 

the original research paper.  823 

 

DATA AVAILABILITY 824 

The behavioral and electrophysiological preprocessed data and scripts to replicate the 825 

main conclusions and figures of the paper are available at 826 

https://datadryad.org/stash/share/177ueSz3dyTr3-827 

x6pRaUbZncoOZXNndr_SThSNNkx0A (doi:10.5061/dryad.qfttdz0gh).   828 
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SUPPLEMENTARY FIGURES 829 

 830 

Figure 2 – figure supplement 1831 

 832 
(A) Single subject data of successful three-ball cascades per juggling block for well performing 833 
adolescents (upper lines) and worse performing adolescents (lower lines) color coded for their 834 
respective group affiliation. (B) Same conventions as in (A) but for adults. (C) Reaction time 835 
(mean ± SEM) for the sleep first (blue) and wake first groups (green, collapsed across 836 
adolescents and adults) in the psychomotor vigilance tasks conducted before the juggling 837 
performance test pre and post the first retention interval. We found no significant difference 838 
between the groups (F(1,67) = 1.87, p = 0.18, partial eta² = 0.03) nor between the performance 839 
tests (F(1,67) = 1.06, p = 0.31, partial eta² = 0.02). Critically, we found no significant interaction 840 
(F(1,67) = 0.35, p = 0.55, partial eta² = 0.01) indicating that participants’ cognitive engagement 841 
did not differ in the juggling performance tests due to the preceding sleep or wake intervals. 842 
(D) Spearman rank-correlation between the overnight change in task proficiency (post – pre 843 
retention interval) and the overnight change in learning curve with robust linear trend line 844 
collapsed over the whole sample after outlier removal.  The strong inverse relationship 845 
between task proficiency and learning curve originally observed in Figure 2F persisted. Grey-846 
shaded area indicates 95% confidence intervals of the trend line. Adolescents are denoted as 847 
red circles and adults as black diamonds. 848 
  849 
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Figure 3 – figure supplement 1850 

 851 
(A) Left: Z-normalized EEG power spectra (mean ± SEM) for adolescents (red) and adults 852 
(black) during NREM sleep in semi-log space. Data is displayed for the representative 853 
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electrode Cz unless specified otherwise. Note the overall power difference between 854 
adolescents and adults due to a broadband shift on the y-axis. Straight black line denotes 855 
cluster-corrected significant differences. Middle: 1/f fractal component that underlies the 856 
broadband shift. Right: Oscillatory residual after subtracting the fractal component (A, middle) 857 
from the power spectrum (A, left). Both groups show clear delineated peaks in the SO (< 2 Hz) 858 
and spindle range (11 – 16 Hz) establishing the presence of the cardinal sleep oscillations in 859 
the signal. (B) Top: Spindle frequency peak development based on the oscillatory residuals. 860 
Spindle frequency is faster at all but occipital electrodes in adults than in adolescents. T-scores 861 
are transformed to z-scores. Asterisks denote cluster-corrected two-sided p < 0.05. Bottom: 862 
Exemplary depiction of the spindle frequency (mean ± SEM) for adolescents (red) and adults 863 
(black) with single subject data points at Cz. (C) SO-spindle co-occurrence rate (mean ± SEM) 864 
for adolescents (red) and adults (black) during NREM2 and NREM3 sleep. Event co-865 
occurrence is higher in NREM3 (F(1, 51) = 1209.09, p < 0.001, partial eta² = 0.96) as well as 866 

in adults (F(1, 51) = 11.35, p = 0.001, partial eta² = 0.18). (D) Histogram of co-occurring SO-867 
spindle events in NREM2 (blue) and NREM3 (purple) collapsed across all subjects and 868 
electrodes. Note the low co-occurring event count in NREM2 sleep. (E) Single subject (top) 869 
and group averages (bottom, mean ± SEM) for adolescents (red) and adults (black) of 870 
individually detected, for SO co-occurrence-corrected sleep spindles in NREM3. Spindles were 871 
detected based on the information of the oscillatory residual. Note the underlying SO-872 
component (grey) in the spindle detection for single subject data and group averages indicating 873 
a spindle amplitude modulation depending on SO-phase. (F) Grand average time frequency 874 
plots (-2 to -1.5s baseline-corrected) of SO-trough-locked segments (corrected for spindle co-875 
occurrence) in NREM3 for adolescents (left) and adults (right). Schematic SO is plotted 876 
superimposed in grey. Note the alternating power pattern in the spindle frequency range, 877 
showing that SO-phase modulates spindle activity in both age groups. 878 
  879 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.01.21.427606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427606
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

Figure 3 – figure supplement 2880 

 881 
(A) Comparison of task proficiency between sleep first and wake first group after the sleep 882 
retention interval (mean ± SEM). Adolescents in the wake first group had higher task 883 
proficiency given the additional juggling performance test, which also reflects additional 884 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.01.21.427606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427606
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

training (t(23) = -2.24, p = 0.034). (B) Comparison of SO-spindle coupling strength in the 885 
adolescent sleep first (blue) and wake first (green) group using cluster-based random 886 
permutation testing (Monte-Carlo method, cluster alpha 0.05, max size criterion, 1000 887 
iterations, critical alpha level 0.05, two-sided). Left: exemplary depiction of coupling strength 888 
at electrode C4 (mean ± SEM). Right: z-transformed t-values plotted for all electrodes obtained 889 
from the cluster test. No significant clusters emerged. (C) Left: cluster-corrected correlations 890 
between individual coupling strength and overnight task proficiency change (post – pre 891 
retention) for adolescents of the sleep-first group with spearman correlation at C4, uncorrected. 892 
Asterisks indicate cluster-corrected two-sided p < 0.05. Grey-shaded area indicates 95% 893 
confidence intervals of the robust trend line. Participants with a more precise SO-spindle 894 
coordination show improved task proficiency after sleep. Right: cluster-corrected correlation of 895 
coupling strength and overnight task proficiency change for adults. Independently, adolescents 896 
and adults with higher coupling strength have better task proficiency after sleep. (D) Left: 897 
cluster-corrected correlation of coupling strength and overnight learning curve change for 898 
adolescents. Same conventions as in (C). Higher coupling strength related to a flatter learning 899 
curve after sleep. Right: Cluster-corrected correlation of coupling strength and overnight 900 
learning curve change for adults. Higher coupling strength related to a flatter learning curve 901 
after sleep in both age groups. (E) Cluster-corrected correlations for coupling strength of co-902 
occurrence corrected events in NREM2 and NREM3 sleep with overnight task proficiency 903 
change (top) and overnight learning curve change (bottom). Asterisks indicate cluster-904 
corrected two-sided p < 0.05. Similar to our original analyses (Figure 3DE) we found significant 905 
cluster-corrected correlations at C4. (F) Cluster-corrected correlations between individual 906 
coupling strength and overnight task proficiency change (post – pre retention) after outlier 907 
removal with spearman correlation at C4, uncorrected. Similar to our original analyses we 908 
found a significant central cluster (mean rho = 0.35, p = 0.029, cluster-corrected) after outlier 909 
removal. (G) Same conventions as in (F) but for overnight learning curve change. Similar to 910 
our original analyses we found a significant correlation at C4 (rho = -0.44, p = 0.047, cluster-911 
corrected). (H) Topographical plot of spearman rank correlations of coupling strength in the 912 
adaptation night and learning night across all subjects. Overall coupling strength was highly 913 
correlated between the two measurements (mean rho across all channels = 0.55), supporting 914 
the notion that coupling strength remains rather stable within the individual (i.e. trait). (I) To 915 
investigate a possible state-effect for coupling strength and motor learning, we calculated the 916 
difference in coupling strength between the two nights (learning night – adaptation night) and 917 
correlated these values with the overnight change in task proficiency and learning curve. We 918 
identified no significant correlations with a learning induced coupling strength change. Neither 919 
for task proficiency (top) nor learning curve change (bottom).  920 
  921 
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Figure 3 – figure supplement 3922 

 923 
Summary of cluster-corrected partial correlations (Monte-Carlo method, cluster alpha 0.05, 924 
max size criterion, 1000 iterations, critical alpha level 0.05, two-sided) of coupling strength with 925 
task proficiency (left) and learning curve (right) controlling for possible confounding factors. 926 
Asterisks indicate location of the detected cluster. The pattern of initial results remained highly 927 
stable. 928 
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Figure 3 – figure supplement 4929 

 930 
(A) Summary of cluster-corrected partial correlations of coupling strength with task proficiency 931 
(left) and learning curve (right) controlling SO/spindle descriptive measures at critical electrode 932 
C4. Asterisks indicate location of the detected cluster. The pattern of initial results remained 933 
highly stable. (B) Spearman correlation between resampled coupling strength (N = 200, 100 934 
iterations) and original observation of coupling strength for adolescents (red circles) and adults 935 
(black diamonds), indicating that coupling strength is not influenced by spindle event number 936 
if at least 200 events are present. Grey-shaded area indicates 95% confidence intervals of the 937 
robust trend line.  938 
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SUPPLEMENTARY FILE 939 

 940 

Table 1 related to Figure 1. Sleep architecture (mean ± standard deviation) for the adaptation 941 
and learning night collapsed across both age groups. Nights were compared using paired t-tests 942 
 943 

All Adaptation night Learning night p-value 

Time in bed (min) 507.292 ± 29.981 507.453 ± 29.280 0.929 

Total sleep time (min) 471.283 ± 40.029 483.915 ± 29.737 0.001 

Sleep onset latency to NREM2 (min) 23.387 ± 19.042 19.585 ± 14.034 0.089 

Sleep efficiency (%) 92.935 ± 5.095 95.524 ± 2.802 <0.001 

NREM1 (min) 41.849 ± 30.899 34.877 ± 24.615 0.004 

NREM1 (%) 9.240 ± 7.279 7.442 ± 5.564 0.001 

NREM2 (min) 153.698 ± 49.949 156.972 ± 54.46 0.386 

NREM2 (%) 33.100 ± 11.622 32.936 ± 12.429 0.826 

NREM3 (min) 212.717 ± 98.675 220.802 ± 99.815 0.086 

NREM3 (%) 44.163 ± 18.537 44.829 ± 18.604 0.452 

REM (min) 63.019 ± 21.108 71.264 ± 24.536 0.007 

REM (%) 13.498 ± 4.587 14.793 ± 5.168 0.033 

Wake after sleep onset (min) 17.377 ± 16.294 8.689 ± 6.708 <0.001 

 944 

Table 2 related to Figure 1. Summary of sleep architecture and SO/spindle event descriptive 945 
measures (at electrode C4) of adolescents and adults across the whole sample (mean ± standard 946 
deviation) in the learning night. Independent t-tests were used for comparisons 947 
 948 

All Adolescents Adults p-value 

Time in bed (min) 531.679 ± 18.773 480.708 ± 2.445 <0.001 

Total sleep time (min) 506.589 ± 20.402 458.438 ± 13.550 <0.001 

Sleep onset latency to NREM2 (min) 18.821 ± 15.632 20.813 ± 12.381 0.617 

Sleep efficiency (%) 95.520 ± 2.843 95.434 ± 2.834 0.914 

NREM1 (min) 17.839 ± 8.592 55.167 ± 22.27 <0.001 

NREM1 (%) 3.522 ± 1.686 12.100 ± 5.012 <0.001 

NREM2 (min) 124.821 ± 49.137 196.104 ± 30.804 <0.001 

NREM2 (%) 24.728 ± 9.985 42.817 ± 6.783 <0.001 

NREM3 (min) 297.482 ± 65.336 130.792 ± 43.521 <0.001 

NREM3 (%) 58.660 ± 12.476 28.444 ± 9.230 <0.001 

REM (min) 66.446 ± 27.011 76.375 ± 21.037 0.151 

REM (%) 13.090 ± 5.265 16.640 ± 4.502 0.013 

Wake after sleep onset (min) 7.661 ± 6.285 10.125 ± 7.108 0.191 

SO (N)  3499.107 ± 340.288 1855.280 ± 632.753 <0.001 

SO density (N/NREM3 epoch) 6.141 ± 1.347 7.215 ± 1.997 0.025 

Spindle number (N) 3506.571 ± 742.618 1439.080 ± 580.892 <0.001 

Spindle density (N/NREM3 epoch) 5.935 ± 0.603 5.383 ± 1.159 0.032 

Event co-occurrence (N) 1623.357 ± 295.338 753.720 ± 299.714 <0.001 

Event co-occurrence (%) 47.359 ± 8.030 53.745 ± 11.424 0.021 

Coupling strength 0.071 ± 0.038 0.133 ± 0.0510 <0.001 

 949 

 950 

 951 

 952 

 953 
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Table 3 related to Figure 2D. Mixed ANOVA Output comparing juggling learning curves pre- and 954 
post retention interval 1 between the condition groups and age groups 955 

 956 
Effect df F-statistic p-value Effect size (η2) 

Performance test (pre-, post retention) 1 1.812 0.183 0.027 

Condition group (sleep first, wake first) 1 0.082 0.775 0.001 

Age group (adolescents, adults) 1 0.992 0.323 0.015 

Condition group*Age group 1 0.238 0.627 0.004 

Performance test*Condition group 1 4.868 0.031 0.070 

Performance test*Age group 1 0.026 0.873 < 0.001 

Performance test*Condition group*Age group 1 0.093 0.761  0.001 

Error 65    

 957 

Table 4 related to Figure 2E. Mixed ANOVA Output comparing juggling task proficiency pre- and 958 
post retention interval 1 between the condition groups and age groups 959 

 960 
Effect df F-statistic p-value Effect size (η2) 

Performance test (pre-, post retention) 1 0.153 0.697 0.002 

Condition group (sleep first, wake first) 1 0.001 0.972 < 0.001 

Age group (adolescents, adults) 1 2.338 0.131 0.035 

Condition group*Age group 1 5.210 0.026 0.074 

Performance test*Condition group 1 1.882 0.175 0.028 

Performance test*Age group 1 0.009 0.925 < 0.001 

Performance test*Condition group*Age group 1 0.026 0.873 < 0.001 

Error 65    

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 
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Table 5 related to Figure 2. Summary of linear mixed models for predicting learning curve, PVT 983 
mean reaction time and task proficiency separately across all performance tests and for the first 984 
performance test only using the structure  ~Age group + Time of day + (1|Subjects) 985 
 986 

 Modeled Parameter Beta T-
statistic 

df p-value Lower-95 
CI 

Upper-95 
CI 

Random 
effects 
(SD)  

(A) Learning 
curve (all 
performance 
tests) 

Intercept 2.922 6.832 202 < 0.001 2.079 3.766 1.169 

 Age group 
adult 

-0.991 -2.043 202 0.042 -1.948 -0.035  

 Time of day 
evening 

-1.129 -2.885 202 0.004 -1.901 -0.357  

          

(B) Learning 
curve (first 
performance 
test) 

Intercept 2.553 4.544 66 < 0.001 1.431 3.675 1.648 

 Age group 
adult 

-0.540 -0.945 66 0.348 -1.681 0.601  

 Time of day 
evening 

-1.294 -2.251 66 0.028 -2.442 -0.146  

          

(C) Task 
proficiency 
(all 
performance 
tests) 

Intercept 14.747 5.407 202 < 0.001 9.369 20.124 12.788 

 Age group 
adult 

8.082 2.371 202 0.019 1.36 14.804  

 Time of day 
evening 

2.7467 1.999 202 0.047 0.037 5.456  

          

(D) Task 
proficiency 
(first 
performance 
test) 

Intercept 12.804 3.791 66 < 0.001 6.060 19.547 9.905 

 Age group 
adult 

6.285 1.830 66 0.072 -0.571 13.141  

 Time of day 
evening 

3.470 1.004 66 0.318 -3.428 10.369  

          

(E) PVT mean 
reaction 
time (all 
performance 
tests) 

Intercept 326.29 43.481 202 < 0.001 311.5 341.09 32.550 

 Age group 
adult 

-23.762 -2.585 202 0.010 -41.886 -5.639  

 Time of day 
evening 

-1.107 -0.238 202 0.812 -10.29 8.077  

          

(F) PVT mean 
reaction 
time (first 
performance 
test) 

Intercept 311.37 31.469 66 < 0.001 291.61 331.12 29.015 

 Age group 
adult 

-14.209 -1.413 66 0.163 -34.294 5.876  

 Time of day 
evening 

9.622 0.951 66 0.345 -10.586 29.831  

 987 
Table note: linear mixed model we computed with age group (adolescents, adults) and time of day (i.e. 988 
performance test in the morning or evening) as fixed effects and subjects as random effects with the 989 
fitlme.m matlab function using maximum likelihood estimation. We used reference dummy coding, where 990 
the coefficient of the first category is set to 0 (i.e. fixed effect of age group is referenced to adolescents 991 
whereas the Time of day fixed effect is referenced to performance tests in the morning). 992 
 993 
 994 
 995 
 996 

 997 

 998 
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Table 6 related to Figure 3DE, Figure 3 – figure supplement 3 & 4. Summary of sleep 999 
architecture and SO/spindle event descriptive measures (at electrode C4) of adolescents and adults in 1000 
the sleep first group (mean ± standard deviation) in the learning night. Independent t-tests were used for 1001 
comparisons 1002 
 1003 

Sleep first Adolescents Adults p-value 

Time in bed (min) 530.118 ± 17.407 480.708 ± 2.445 <0.001 

Total sleep time (min) 502.059 ± 19.204 458.438 ± 13.550 <0.001 

Sleep onset latency to NREM2 (min) 21.794 ± 17.474 20.813 ± 12.381 0.834 

Sleep efficiency (%) 94.771 ± 3.128 95.434 ± 2.834 0.484 

NREM1 (min) 16.088 ± 9.805 55.167 ± 22.27 <0.001 

NREM1 (%) 3.206 ± 1.930 12.100 ± 5.012 <0.001 

NREM2 (min) 115.647 ± 54.532 196.104 ± 30.804 <0.001 

NREM2 (%) 23.137 ± 11.053 42.817 ± 6.783 <0.001 

NREM3 (min) 296.147 ± 71.121 130.792 ± 43.521 <0.001 

NREM3 (%) 58.942 ± 13.758 28.444 ± 9.230 <0.001 

REM (min) 74.176 ± 25.138 76.375 ± 21.037 0.763 

REM (%) 14.712 ± 4.891 16.640 ± 4.502 0.200 

Wake after sleep onset (min) 8.294 ± 7.782 10.125 ± 7.108 0.439 

SO (N)  3498.118 ± 318.304 1855.280 ± 632.753 <0.001 

SO density (N/NREM3 epoch) 6.226 ± 1.508 7.215 ± 1.997 0.091 

Spindle number (N) 3477.294 ± 819.27 1439.080 ± 580.892 <0.001 

Spindle density (N/NREM3 epoch) 5.915 ± 0.669 5.383 ± 1.159 0.096 

Event co-occurrence (N) 1617.941 ± 337.016 753.720 ± 299.714 <0.001 

Event co-occurrence (%) 47.709 ± 8.546 53.745 ± 11.424 0.071 

Coupling strength 0.067 ± 0.039 0.133 ± 0.0510 <0.001 

 1004 
Table 7 related to Figure 3 – figure supplement 2AB. Summary of sleep architecture and 1005 
SO/spindle event descriptive measures (at electrode C4) of adolescents in the sleep first and wake first 1006 
group (mean ± standard deviation). Independent t-tests were used for comparisons 1007 
 1008 

Adolescents Sleep first Wake first p-value 

Time in bed (min) 530.118 ± 17.407 534.091 ± 21.359 0.594 

Total sleep time (min) 502.059 ± 19.204 513.591 ± 21.095 0.147 

Sleep onset latency to NREM2 (min) 21.794 ± 17.474 14.227 ± 11.531 0.217 

Sleep efficiency (%) 94.771 ± 3.128 96.677 ± 1.937 0.083 

NREM1 (min) 16.088 ± 9.805 20.545 ± 5.677 0.185 

NREM1 (%) 3.206 ± 1.930 4.009 ± 1.136 0.225 

NREM2 (min) 115.647 ± 54.532 139.000 ± 37.374 0.226 

NREM2 (%) 23.137 ± 11.053 27.187 ± 7.921 0.303 

NREM3 (min) 296.147 ± 71.121 299.545 ± 58.524 0.896 

NREM3 (%) 58.942 ± 13.758 58.224 ± 10.818 0.885 

REM (min) 74.176 ± 25.138 54.500 ± 26.462 0.058 

REM (%) 14.712 ± 4.891 10.583 ± 5.018 0.040 

Wake after sleep onset (min) 8.294 ± 7.782 6.682 ± 2.831 0.518 

SO (N)  3498.118 ± 318.304 3500.636 ± 387.991 0.985 

SO density (N/NREM3 epoch) 6.226 ± 1.508 6.010 ± 1.109 0.687 

Spindle number (N) 3477.294 ± 819.27 3551.818 ± 641.377 0.801 

Spindle density (N/NREM3 epoch) 5.915 ± 0.669 5.965 ± 0.512 0.835 

Event co-occurrence (N) 1617.941 ± 337.016 1631.727 ± 231.629 0.907 

Event co-occurrence (%) 47.709 ± 8.546 46.818 ± 7.531 0.780 

Coupling strength 0.067 ± 0.039 0.077 ± 0.037 0.515 

1009 
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