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Abstract

Molecular data analysis is invaluable in understanding the overall
behavior of a rapidly spreading virus population when epidemiological
surveillance is problematic. It is also particularly beneficial in describing
subgroups within the population, often identified as clades within a phylo-
genetic tree, that represent individuals connected via direct transmission
or transmission via differing risk factors in viral spread. However, trans-
mission patterns or viral dynamics within these smaller groups should not
be expected to exhibit homogeneous behavior over time. As such, stan-
dard phylogenetic approaches that identify clusters based on summary
statistics (e.g., median genetic distance over the clade) would not be ex-
pected to capture dynamic clusters of transmission. For this purpose,
we have developed DYNAMITE (DYNAMic Identification of Transmis-
sion Epicenters), a cluster identification algorithm based on a branch-wise
(rather than traditional clade-wise) search for cluster criteria, allowing
partial clades to be recognized as clusters. Using simulated viral outbreaks
with varying cluster types and dynamics, we show that DYNAMITE is
consistently more sensitive than existing tools in detecting both static and
dynamic transmission clusters. DYNAMITE has been implemented in R
and released as open source at: github.com/ProsperiLab/DYNAMITE.

Introduction

Infectious disease epidemics are by nature dynamic, varying in size of the in-
fected population, typically characterized by early explosive growth followed by
either a decline that leads to extinction or an endemic steady state. Variation in
infectious disease population dynamics can also be attributed to outside forces,
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such as public health interventions that would act to dampen the effects of
disease spread. It has long been recognized that some individuals, or high-risk
groups, in a population may transmit a pathogen more effectively than others be-
cause of specific biological, geographical, behavioral, or other ”super-spreading”
factors (e.g., [3, 12, 1]), thereby complicating predictions of epidemic growth or
decline. Super-spreading individuals usually share common risk factors (e.g.,
health worker occupation) that can be identified and traced through traditional
epidemiological surveillance techniques. Gathering such data, however, is often
difficult, especially during the early stages of an epidemic when transmission
routes might still be under validation, for example, or when resources limit con-
tact tracing efforts. Molecular surveillance methods offer a rapid approach to
identification of transmission clusters associated with these risk groups through
linkage of sampled individuals based on pathogen genetic sequence data.

Numerous tools exist to identify transmission clusters using pathogen se-
quence data (e.g., reviewed in [7]). These tools are based on the assumption
that direct transmission events can be observed in the sequence data when a
maximum genetic distance threshold is set –i.e., patients with minimal sequence
evolution are likely to have experienced less time between infection and thus
fewer potential intermediate players. Multiple individuals can be connected to
form a network, or cluster, of highly genetically similar samples. Network, or
distance-based, tools such as HIV-TRACE [5] can also provide visualization of
patients’ characteristics within clusters. Alternatively, phylogeny-based meth-
ods rely on the phylogenetic relationships among sequence data, (e.g., [8, 2, 10].
Minimal genetic distances define putative direct transmission events, similar
to distance-based methods such as HIV-TRACE; however, distances are de-
fined according to the branch lengths separating individual leaves within the
tree (patristic distances) and clusters are typically required to be monophyletic
clades (with the exception of PhyClip[2]) with a well-supported ancestral node.
Support can be provided, for example, in the form of bootstrapping performed
during tree reconstruction (e.g., at least 90% of bootstrappped trees)[4]. Over-
all, there has been good concordance among phylogeny- and distance-based
methods in identification of clusters [13]. Yet, both methods rely on summary
statistics of genetic distances (e.g., mean or median patristic distance within a
putative cluster), assuming a relatively normal distribution of branch lengths
within the clade and ignoring skewed variation as a result of the dynamic nature
of transmission. For example, in a scenario of declining transmissions mediated
by intervention targeting a particular risk group, the early spread within the
cluster may be masked, or overwhelmed, by subsequent longer genetic distances
separating delayed transmission if this pattern of transmission has occurred for
a longer period of time than the period of growth. While there is a need to
rapidly, and accurately, identify epicenters of transmission growth, relatively
low-contributing transmission among groups of individuals in response to al-
ready implemented mitigation efforts are also of importance to future planning.
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Methods

Cluster identification

Distinctly from other phylogeny-based clustering tools (e.g., Phylopart [8]),
which consider only external leaves, DYNAMITE employs a branch-wise al-
gorithm, which analyzes branch lengths among internal nodes, aiding in the
identification of rapidly growing transmission clusters. Similar to Phylopart,
an outlying fraction of the distribution of median patristic distances for each
subtree within the full tree is considered as a cut-off, or threshold, represent-
ing the maximum genetic distance separating two nodes (internal or external)
within the tree [8]. Whereas phylogeny-based tools such as Phylopart use this
threshold to classify well-supported clades as clusters using summary statistics
(e.g., median patristic distance within the clade), DYNAMITE’s branch-wise
algorithm proceeds from the most recent common ancestor of the clade, ac-
cepting or rejecting subsequent branches (internal or external) within the tree
according to the cut-off, allowing for partial clades to be categorized as trans-
mission clusters. This is beneficial for two reasons: 1) a transmission cluster
may be well-supported but harbor few highly divergent branches as a result of
intense positive selection, false positive support, or the accumulation of sequenc-
ing errors, for example [2]; 2) a rapidly, or exponentially growing, cluster, whose
branching pattern is characterized by shorter branches nearer the most recent
common ancestor and long external branches, which would result in an overall
larger median branch length. The algorithm works as follows (see Figure 1 for
a graphical scheme): for each well-supported clade within the tree (provided by
user according to support method of choice, such as bootstrapping), we begin
at the ancestral node (considered level L0) and remove each branch (bj) in level

Li=1 for which bj is greater than the branch length cutoff (b̂l) identified as de-
scribed above. For each branch bj(i+1) in subsequent level Li+1, mean branch

length (b̄lj(i+1)) = mean(blj(i+1) ⊂ Li+1, bli...n ⊂ Li...n). If b̄lj(i+1) > b̂l, the
node and corresponding subtree, or clade, is pruned. This is repeated for all
subsequent levels until all external branches within the clade have been accepted
or rejected. As downstream analyses require strictly bifurcating trees, parent
nodes contributing to only one child in the cluster are cross-referenced against
the original tree, and the corresponding child node is added back to the cluster.

Simulation of transmission clusters

Simulation of epidemic outbreaks was performed using the nosoi [6] agent-based
stochastic simulation platform. Seven distinct sub-populations [B-H] were al-
lowed to emerge from the background population (A) with a probability of
initial infection of 7.5E− 04 after at least two background individuals had been
infected at the start of the simulation. Following initiation, transmission was
isolated to the sub-population (i.e., probability of zero of infecting an individ-
ual in another group), with the exception of subgroup H, which was the sole
contributor to infection in the eighth sub-population, I (probability of infection
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Figure 1: Schematic of DYNAMITE’s branchwise cluster-picking algorithm.
Levels correspond to the generations of children nodes (b-o) descending from
the original parental node (a), with nodes representing individual viral sequences
derived from patient samples (h-o) or ancestral to patient samples (a-g). Edges,
or branches, represent the relationship among nodes, with initial (black) val-
ues representing the genetic difference between immediately connected nodes.
Updated (blue) values represent the mean of all branch lengths thus far on the
reverse path to the most recent common ancestor (a), with each level evaluated
separately, as described in the Methods. Edges (and downstream nodes) that
result in an updated mean branch length ¿ pre-specified branch length cutoff
(b̂l) are removed (e.g., (g,(n,o))).

1.5E − 02). The number of contacts for groups A-E and H-I were picked from
a normal distribution with group-specific means and standard deviation of one
(Table 1). The number of contacts for E and F, however, were derived from the
following function:

(N0 ∗K ∗ exp(rh))/((K −N0) + N0 ∗ exp(rh)), (1)

where N0 is the initial number of contacts, K is the maximum, and r is the
rate of change dependent on the current number of actively infected hosts in the
simulation (h). Sub-population F, with a positive r was considered to be growing
at a more rapid rate than remaining sub-populations, whereas G, with a negative
r was considered to be decaying (Table 1). The probability of transmission
(when a contact occurs) was provided in the form of a threshold function: before
a certain amount of time since initial infection, the host does not transmit (mean
incubation time of 5 days (sd=2)), and after that time, the individual will
transmit with a certain (constant) probability (Table 1). I.e., this function is
dependent on the time since the host’s infection. Probability of transmission was
also dependent on subgroup, resulting in a range of basic reproductive numbers
(R0) for each subgroup differing according to number of contacts, probability of
transmission, or both. For example, The R0 for subgroups C and D were both
5.5, but these two groups differed in transmission-related parameters. This
was designed to test whether branching patterns would differ depending on
the individual parameters comprising R0, thus influencing cluster identification.
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Table 1: Simulation information for each subgroup.

Subgroup Mean
N(contacts)

Contact parameters Mean
P (transmission)

Mean
R0

A 16 0.015 2.2
B 4 0.1 3.5
C 4 0.15 5.5
D 6 0.1 5.5
E 4 0.2 7.2
F N0=2, K=10, r=0.0005 0.15 2.7
G N0=6, K=10, r=-0.05 0.15 8
H 4 0.15 5.5
I 4 0.15 5.5

Each of a total of 1,000 simulations was run for 365 days or until a total of
10,000 hosts were infected. One representative clade within the full phylogenetic
transmission tree for each subgroup (including the background population) was
chosen at random from the corresponding internal nodes that contained between
5 and 30 external taxa, representing true clusters of direct transmission (e.g.,
Figure 2). A random sample for a total of 3X the length of the simulation
of the remaining population was combined with the true clusters. Hosts not
included within this sample were pruned from the full tree to obtain the final
1,000 simulated trees used for transmission cluster identification. A molecular
clock, or constant evolutionary rate across all branches of the tree, was assumed,
allowing branches separating noes within the tree to be scaled in both time and
genetic distance.

Evaluation of performance

A range of branch length thresholds from 1-20% was used to evaluate the ability
of DYNAMITE’s branch-wise algorithm to identify the various types of trans-
mission clusters described above, as well as the that of the more traditional
clade-wise algorithm of Phylopart [8]. Node groups or clades classified as trans-
mission clusters by the branch-wise or clade-wise algorithm, respectively, were
considered true clusters if at least 70% of the true taxa were contained within
the identified cluster.

Results

After simulating clusters of differing starting transmission potential and trans-
mission dynamics over time, performance of DYNAMITE’s branch-wise algo-
rithm was compared to the standard clade-wise approach of Phylopart [8], as
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Figure 2: Example tree connecting randomly sampled infected individuals from
the background (red) population and individuals linked via direct transmission
through varying transmission dynamics (A-G). Individuals from subgroups H
and I described in the Methods section did not emerge in this (second) simulated
epidemic.

well as for individual cluster subgroups (A-F). The overall ability of the branch-
wise algorithm to identify clusters was measured in terms of the fraction of true
positive clusters identified (TPR) and fraction of all clusters identified that were
not true positive (FPR) (Figure 3). Whereas the clade-wise algorithm begins to
plateau at a median ratio of TPR to FPR of approximately two, the branch-wise
algorithm continues to climb, reaching a median TPR/FPR of four at the same
final branch length threshold of 20%.

As true positive clusters were identified according to the percentage of true
taxa, the possibility of merging several phylogenetically close clusters into one
single cluster grows with increasing branch-length thresholds. A comparison of
the percentage of true clusters merged into a single cluster was made between the
two algorithms, but the frequency of this occurrence was low for both (Figure
3).

Subgroup A is characterized by an R0 ( 2.2) of that of the background, or
majority, population, and thus represents a contact-traced subgroup with the
same risk for transmission as the majority of infected individuals. The ability
to detect direct transmission clusters is especially critical in the early part of an
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epidemic when the risk factors for spread are as-of-yet unidentified. The branch-
wise algorithm outperforms the clade-wise one in the detection of subgroup A
alone (Figure 4), with a consistently one-fold greater TPR/FPR past the 5%
branch length cutoff. However, peak TPR/FPR for both algorithms are lower
for subgroup A (Figure 3) than overall (Figure 4, suggesting a bias toward
smaller genetic distances that would be characteristic of, for example, higher
transmission rates.

0

2

4

6

8

10

0

10

20

30

40

50

60

70

80

90

100

0.
00

0.
05

0.
10

0.
15

0.
20

Threshold

T
P

R
/F

P
R

%
 M

erged

branchwise

cladewise

branchwise

cladewise

Figure 3: Rate of detection of true transmission clusters using the clade-wise
(i.e., Phylopart) and branch-wise algorithms. True positive rate (TPR) is ex-
pressed as the percentage of true clusters identified using each algorithm. False
positive rate (FPR) is expressed as the percentage of all clusters identified that
are not considered to be true clusters. The median ratio (TPR/FPR) and 95th
percentile ranges are represented by solid line and surrounding shaded areas
(y-axis, left). Bars represent the percentage of identified clusters that were
identified as a single cluster (y-axis, right).

Indeed, the majority of higher-R0 clusters were readily detected by both al-
gorithms (red, Figure 5). Due to the stochastic nature of the simulation used for
epidemic growth, it was possible for more than one of the same subgroup (B-I)
to emerge during a single simulation. As only one of each subgroup present
was chosen to represent an epidemiologically linked, or true, transmission clus-
ter, any remaining subgroups were still present but at the sample sampling
frequency as the background population ( 2-5%). These clades still represent
high-risk groups, though not related in the tree via direct transmission. As many
as 50% of identified clusters during a simulation belonged to this category, with
the clade-wise algorithm identifying more than the branch-wise (blue, Figure
5). This is a key find, as it demonstrates that sampling of every individual
involved in a high-risk transmission group is not necessary for the identification
and characterization of these groups for which additional clinical data would
aid in improving more targeted interventions.

Whereas the majority of static high-transmission clusters were identified by
the clade-wise algorithm (Figure 5, the ability to detect the rapidly growing
cluster (F) with a median TPR comparable to the branch-wise algorithm was
limited to the highest threshold (20%), and the cluster characterized by declining
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Figure 4: Rate of detection of true transmission clusters belonging to the back-
ground (R0 2.2) population using the clade-wise (i.e., Phylopart) and branch-
wise algorithms. True positive rate (TPR) is expressed as the percentage of true
clusters identified using each algorithm. False positive rate (FPR) is expressed
as the percentage of all clusters identified that are not considered to be true.
Median TPR/FPR and 95th percentile ranges are represented by solid line and
surrounding shaded areas (y-axis, left)

transmission potential (G) was only detected at a median TPR of approximately
30% at the highest threshold. This scenario is problematic as the FPR increases
more rapidly after a threshold of 10%, resulting in a high-risk, low-reward trade-
off between the identification of dynamic clusters and false positive clusters.
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Figure 5: Rate of detection of true transmission clusters belonging to varying
elevated R0 subpopulations using the clade-wise (i.e., Phylopart) and branch-
wise algorithms. Each point represents a single simulation. True positive rate
(TPR) is expressed as the percentage of true clusters identified using each algo-
rithm. Negated true positive rate (NTPR) is expressed as the percentage of all
clusters identified that are not considered to be true (i.e., truly connected via
direct transmission) but still high risk groups.

Understanding the temporal dynamics of a cluster over time, such as the
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distribution of individuals with specific risk factors, as well other temporal char-
acteristics, such as timespan and origin, critically depend on good coverage over
the time period of the existence of the cluster. As DYNAMITE’s branch-wise
algorithm relies heavily on the early branches within a clade, we sought to de-
termine if the step necessary to force bifurcation whereby children nodes are
added to non-bifurcating parents was sufficient to extract this necessary infor-
mation from the identified cluster (Figure 6). Indeed, the median proportion of
true taxa identified by the branch-wise algorithm for a threshold ¿ 5% was one,
rivaling that of the clade-wise algorithm.
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Figure 6: Proportion of nodes belonging to varying elevated R0 transmission
clusters identified using the cladewise (i.e., Phylopart) and branchwise algo-
rithms. The proportion of phylogenetic nodes (internal and external) identified
is expressed as a percentage of the total nodes belonging to the true transmission
cluster.

The DYNAMITE code, implemented in R v¿3.6 [9] is available from github
(github.com/ProsperiLab/DYNAMITE), as are the R scripts used for simulation
and benchmarking, and resulting simulated trees. For a single tree with 362 tips
(Figure 2), the DYNAMITE branch-wise algorithm completed in 5.571 seconds
in R v4.0 on a MacBook Air (2 GHz Intel Core i7, 8GB). DYNAMITE thus
provides a scalable approach to identifying dynamic clusters for large outbreaks.

Discussion

When compared to its phylogenetic ancestor, Phylopart [8], DYNAMITE’s
branch-wise algorithm identified with greater accuracy not only direct transmis-
sion clusters belonging to the background population (equivalent transmission
rates) and high-risk populations (higher transmission rates), but also dynamic
clusters characterized by growth or decline. The branch-wise algorithm uses
the initial Phylopart step of relying on patristic distances, or branch lengths
separating external leaves, within the entire tree to determine the threshold
criterion for cluster identification and proceeds to find well-supported nodes.
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Diverging from Phylopart and other other phylogeny-based approaches, each
subsequent branch (internal or external) stemming from a well-supported node
is considered a separate entity that is either accepted or rejected based on its
relationship to the determined cutoff value. The concept of rejecting unusually
long branches within a putative cluster has also been introduced recently in
PhyClip [2], as highly divergent branches in well-supported clades can occur as
a result of intense positive selection, false positive support, or simply the accu-
mulation of neglected sequencing errors, for example. However, PhyClip, like
Phylopart, relies solely on patristic distances, rather than examining internal
branches individually. DYNAMITE’s branch-wise approach enables the iden-
tification of clusters for which the branch length distribution within the clade
is highly skewed as a result of dynamic transmission patterns. These trans-
mission patterns can include rapid growth or even decline, which was simulated
according to an exponentially increasing or decreasing number of contacts for an
infected individual in this study, though testing of additional dynamic patterns
in the future might be warranted. This ability renders DYNAMITE partic-
ularly useful for upcoming SARS-CoV-2 epidemiological analysis; as vaccines
become increasingly available, monitoring the impact of vaccination on trans-
mission among particular risk groups will be necessary to determine further
dissemination strategies in the upcoming year.

In addition to dynamic clusters, high-risk clusters were defined in this study
as groups of individuals with elevated initial secondary infection rates, or basic
reproductive number (R0), and represent subgroups within the population asso-
ciated with phenotypic factors that put the individuals at higher risk of infection.
High-risk clusters not connected by direct transmission, whether static or dy-
namic, were detected at frequencies of nearly 75% by the branch-wise algorithm.
Additional analyses to determine at what sampling fraction these subgroup can
be identified are certainly warranted, as contact tracing is not always available
for epidemiological analysis, and so high-risk populations are not always fully
present in the phylogenetic tree. If unknown high-risk populations sampled at
a slightly higher frequency than the background population can be detected
and ruled out as non-contact-traced individuals, their associated clusters can be
used to identify groups for further study on targeted intervention.

While we do not describe a way to discriminate high-risk clusters from di-
rect transmission clusters, or dynamic from static clusters, or even a way to
characterize cluster dynamics, approaches to do just this are under develop-
ment and promise a way to better understand the inherently dynamic nature
of transmission among individuals in real-world epidemics. A further limitation
to DYNAMITE, like other phylogeny-based approaches, is the seemingly arbi-
trary threshold for cluster identification. Whereas in the current study, 10% of
the whole-tree patristic distance distribution was sufficient to detect 100% of
clusters with a low false positive rate, this may differ from dataset to dataset,
depending on, for example, the expected number of clusters and sampling of
the population. The maximum genetic distance separating direct transmission
events is well-characterized for HIV based on the level of viral diversity reached
within the host during infection [5]. This value (0.15 substitutions/site) and
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others can be used as a cutoff for most genetic clustering approaches; however,
the intra-host diversity or similar information on direct transmission is not al-
ways known for emerging epidemics. For this reason, we encourage testing a
range of thresholds surrounding 10% for comparison. But because DYNAMITE
is not dependent on a pre-specified genetic distance cutoff, it can be applied
to virtually any viral outbreak for which the virus is measurably evolving [11].
Similar to HIV-TRACE, DYNAMITE can also use metadata information sup-
plied in the form of a taxa-identified table to pair with cluster data so that
indexing is not required and cluster-related risk factors can be assessed more
readily. DYNAMITE is thus a flexible tool applicable to all measurably evolving
viruses that can be used to identify otherwise missed dynamic clusters which
may be useful in public health intervention.
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