
CloudBrain: Online neural computation in the
cloud
Leon Bonde Larsen 1,∗, Rasmus Karnøe Stagsted 1, Beck Strohmer 1 and
Anders Lyhne Christensen 1

1SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern
Denmark
Correspondence*:
Leon Bonde Larsen
lelar@mmmi.sdu.dk

ABSTRACT1

Neuromorphic computing currently relies heavily on complicated hardware design to implement2
asynchronous, parallel and very large-scale brain simulations. This dependency slows down3
the migration of biological insights into technology. It typically takes several years from idea to4
finished hardware and once developed the hardware is not broadly available to the community. In5
this contribution, we present the CloudBrain research platform, an alternative based on modern6
cloud computing and event stream processing technology. Typical neuromorphic design goals,7
such as small form factor and low power consumption, are traded for 1) no constraints on the8
model elements, 2) access to all events and parameters during and after the simulation, 3) online9
reconfiguration of the network, and 4) real-time simulation. We explain principles for how neuron,10
synapse and network models can be implemented and we demonstrate that our implementation11
can be used to control a physical robot in real-time. CloudBrain is open source and can run on12
commodity hardware or in the cloud, thus providing the community a new platform with a different13
set of features supporting research into, for example, neuron models, structural plasticity and14
three-factor learning.15

Keywords: Neuromorphic, Cloud, Robotics, Bio-inspired, Event-based, Stream-processing, Structural plasticity16

1 INTRODUCTION

In traditional artificial neural networks (ANNs), the activation of neurons is represented as a scalar and17
information is propagated through the network in discrete steps. While this model can be computed18
efficiently on standard CPUs and GPUs, it is a very simplistic abstraction of biological neural networks.19
Biological neurons primarily communicate asynchronously through action potentials or spikes (Sterling20
and Laughlin, 2015). The timing of spikes can encode crucial information, for example in the auditory21
system where temporal information is used to infer direction of a sound source (Carr and Konishi, 1990;22
Haessig et al., 2020). Spiking neural networks (SNN) are a class of ANNs in which the temporal aspects of23
inter-neuron communication are explicitly considered: neurons asynchronously produce and communicate24
via discrete events (spikes), and SNNs thus allow encoding of information in the timing of the events.25

Different spiking models have been described in literature ranging from the relatively simple integrate-and-26
fire model (Keat et al., 2001; Jolivet et al., 2004; Paninski et al., 2004) to the more complex Hodgkin-Huxley27
model (Hodgkin and Huxley, 1952). To improve biological fidelity there is, however, still a need for28
experimenting with new models. For example biological neurons can be non-spiking (Sterling and Laughlin,29

1

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

2015) and there could be advantages of combining spiking and non-spiking models (Woźniak et al., 2020).30
Integrating non-spiking neurons in SNNs can be a biologically plausible way to interface analogue sensors31
and can provide more control over network behaviour (Strohmer et al., 2020).32

Current implementations of learning, both in ANNs and SNNs, are based almost exclusively on adapting33
parameters in the synapses connecting the neurons. Such synaptic learning also plays a crucial role in34
biological learning, but in ensemble with for example structural adaptations of the network and influence35
from different neuromodulators providing reward signals or adapting neuron behaviour (Sterling and36
Laughlin, 2015; Price et al., 2017). In a neuromorphic engineering context, structural plasticity has been37
shown to improve facilitation of the hardware (Qi et al., 2018), increase success of learning a task in38
reinforcement learning (Spüler et al., 2015), and in unsupervised classification tasks (Roy and Basu,39
2017). Online adaptation of network structure is, however, not directly supported in current neuromorphic40
hardware, thus restricting research to pure simulations.41

In this paper, we present the CloudBrain platform for simulating SNNs. CloudBrain utilises modern42
cloud technology to create an infrastructure capable of executing SNNs in a computer cluster. This gives43
several advantages: 1) There are practically no constraints on the model elements. If the concept can be44
described in code it will also run in the cluster. 2) It allows access to all events and parameters both online45
and offline, making it easier to monitor, develop and test solutions. 3) The structure of the network can be46
reconfigured online allowing model elements to affect connectivity. 4) The network can run online and47
control a robot through the robot as a service principle (Kuffner, 2010) to interact with the environment. 5)48
It runs on standard computers and is based on well-documented, field-tested, free, open source software.49
We present the architecture of CloudBrain, demonstrate the advantages of the approach, and deploy it in50
closed-loop control of a robot.51

1.1 SNN simulators52

SNNs can be simulated on PCs or supercomputers using specialised software such as the GENESYS53
(Bower et al., 2003) and NEURON (Carnevale and Hines, 2006) simulators or the more computationally54
tractable NEST (Gewaltig and Diesmann, 2007), BRIAN (Stimberg et al., 2019) and CARLsim (Chou55
et al., 2018). These simulators are very useful for investigating the behaviour of networks and of their56
constituent parts. Their limitation lies in not being able to embody the neural simulation for instance to57
control a physical robot. It has also been suggested that they are less suited for evolving models (Nowke58
et al., 2018) because the model requires external control while evolving.59

An alternative to the software simulations is neuromorphic hardware. Since a spiking neuron only needs60
to do work whenever it receives a spike, it can operate asynchronously. That observation has been the61
basis for developing non-von-Neumann computer chips (Furber, 2016) leading to small, scalable, fast and62
energy-efficient devices for researching and deploying SNNs, such as SpiNNaker (Furber et al., 2014) and63
BrainScales (Schemmel et al., 2010) developed in the Human Brain Project, IBM’s True North (Essera64
et al., 2016), Loihi from Intel (Davies et al., 2018), and the analog DYNAPs (Qiao et al., 2015; Moradi et al.,65
2018) developed at ETH Zurich. Such neuromorphic hardware is well suited for embodied experiments66
since the neuronal computations can run in real time, for example controlling a physical robot.67

Each chip represents a trade-off between features and limitations. Common for all of them is that the68
interface to and from the chip is a bottleneck and does not allow the user to export all the spike events69
happening in the chip. This can complicate monitoring and makes it harder to analyse a network. The70
SpiNNaker platform (Furber et al., 2014) is available for loan but otherwise gaining access to neuromorphic71
hardware can be challenging because only few units exist or because intellectual property rights restrict its72

This is a provisional file, not the final typeset article 2

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

use. Support in the form of software frameworks and documentation can also be limited as is support for73
special features, for example to investigate new neuron models.74

More flexible hardware implementations of SNNs have been demonstrated on Field Programmable Gate75
Arrays (FPGAs) and Graphics Processing Units (GPUs). FPGAs are programmable devices consisting of76
numerous logic blocks that can be almost arbitrarily connected. Once programmed, the FPGA’s performance77
is comparable to specialised chips. The use of FPGAs to simulate SNNs has been found to be highly78
scalable (Moore et al., 2012; Wang and van Schaik, 2018) and some work suggests vector processing79
implemented in FPGAs can help mitigate the memory bottleneck problem that reduces access to spikes and80
parameters (Naylor et al., 2013). However, the lack of hardware support for floating-point arithmetic limits81
FPGAs to the simpler neuron models and they do not easily support online changes to network structure.82

FPGAs are still quite uncommon and programming them is very different from computer programming83
so their use requires special training. GPUs, on the other hand, are common in most modern PCs and84
implementations of SNNs on GPUs have been demonstrated to be highly scalable (Hoang et al., 2013;85
Chou et al., 2018). GeNN, a GPU-enhanced simulation software based on NVIDIA CUDA technology,86
even out-performed some state-of-the-art specialised chips with regards to speed and power-consumption87
(Knight and Nowotny, 2018). The availability of embedded GPU platforms, such as NVIDIA’s Jetson TX288
also enables GeNN to be used interactively to control a robot. The strong commercial development of89
GPUs is constantly moving the boundaries for what is possible but generally, moving data to and from the90
GPU memory is a bottleneck limiting access to spikes and parameters.91

Sometimes hybrid systems can enable new features or remove limitations. For example the SpiNNaker92
million-core machine is available through the Human Brain Project’s portal (Human Brain Project, 2017)93
for running even very large simulations and Intel Labs developed a cloud-based platform for research94
community access to scalable Loihi-based infrastructure (Intel, 2019). However, none of them support95
online experimentation, for example with robots. Brian2GeNN (Stimberg et al., 2020) is a software96
package that uses GeNN to accelerate simulations defined in Brian on GPU hardware. GPU acceleration of97
simulation software has also been demonstrated to improve performance on supercomputers and enable98
larger simulations on single computers (Hoang et al., 2013; Chou et al., 2018).99

1.2 Cloud infrastructure100

In recent years, cloud-based technology has seen rapid development driven by the demand for distributed101
and highly scalable IT-solutions (?). When executed in the cloud, a computer program often runs in a102
virtual environment called a container. Seen from the program the container is like any computer with103
resources such as CPU, memory, disk and an operating system while in fact the containers share these104
resources. Asynchronous, event-based architectures in particular have excelled in order to handle millions105
of social media users or e-commerce transactions. Programs are often asynchronous, meaning that they are106
waiting for input for example from a user requesting a website or completing a purchase. While waiting the107
program needs no computing resources and thus other programs in other containers can use the hardware.108
This fits well with the SNN model, where the neuron only does work when an input event is present.109

Modern IT solutions generate a lot of data and it is common to handle it as event-streams (?). Event-110
streams are ordered in topics such that nodes subscribing to a topic receive events that are published111
on that topic. There can be many publishers and many subscribers to a topic and there can be many112
topics. Copying and distribution of the events are handled by highly optimised and extremely scalable113
infrastructure software making it easy to interface programs with the event-stream. Such an architecture is114
well suited for handling spike events since many neurons need to receive the same events.115

Frontiers 3

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

2 ARCHITECTURE

An SNN simulation in CloudBrain is essentially a collection of small programs implementing mathematical116
models and communicating the resulting events as they happen. CloudBrain is the platform that runs the117
programs in a scalable and modular way. In CloudBrain, both neurons, synapses and any other models118
are user-defined programs, while spikes, parameters, and any other messages are events consisting of a119
timestamp and an arbitrary payload.120

2.1 Programs121

The NeuronProgram and SynapsePrograms run under the ControlProgram in order to hide the complexity122
of communication and OS-specific interfaces. One ControlProgram can run one NeuronProgram and123
multiple SynapsePrograms and to ensure scalability, the ControlProgram is executed in a container. Thus124
the ControlProgram can run on any host within the cluster and multiple ControlPrograms can run on the125
same host (figure 1). The user controls if the ControlProgram runs synchronously updating the neuron126
model at a specific rate or asynchronously only updating the model when a spike is received. The same127
goes for the SynapseProgram which is responsible for keeping information about the connections (for128
example weight and delay) and attaching it to the payload of received spikes before handing them to the129
NeuronProgram. The connection information is provided when the connection is first made but can also130
be updated during execution. Events are implemented as asynchronous messages transmitted following131
the publish-subscribe pattern (Birman and Joseph, 1987) so a ControlProgram receives messages only132
from topics it has subscribed to. Topics contain either ControlEvents, handled by the ControlProgram133
or NeuroEvents, passed first through a SynapseProgram and then handled by a NeuronProgram. Each134
ControlProgram has an individual ControlTopic that it always subscribes to while all other subscriptions135
are set up at run-time.136

2.2 Global control137

A GlobalController is responsible for scaling the number of containers in the cluster and for configuring138
the ControlPrograms by emitting ControlEvents. Each ControlProgram in the cluster has a unique ID139
known to itself and the GlobalController. To set up an experiment, the user writes a GlobalController140
program that tells each of the ControlPrograms which NeuronProgram and SynapsePrograms to run, which141
parameters to use and how to connect. It also defines any groupings of NeuronPrograms, for example142
into populations. If non-standard neuron models are used, they have to be implemented in code and either143
provisioned to the cluster before running the GlobalController or sent to the individual container using144
control events, during execution. The GlobalController can be run from any computer on the same network145
as the cluster.146

2.3 Simulation method147

Ideally, the NeuronPrograms and SynapsePrograms should be asynchronous, meaning that they only148
use processing resources when they receive or transmit an Event. This greatly improves performance but149
is not practical for all neuron models and thus they can also be periodic. To run asynchronously, every150
time a neuron receives a spike, it must predict when it will spike based on the mathematical model of the151
neuron and its internal parameters. The neuron then registers a timer to wake it at that time and removes152
any previously registered timers (figure 1).153

Communication in the cluster is faster than in biological neurons. Because the NeuronPrograms calculate154
behaviour based on timestamps and not on the actual time of arrival, the cluster essentially spends the time155

This is a provisional file, not the final typeset article 4

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

accounted for in the biological delays to complete the required calculations and communicate the results. If156
that time is insufficient, the post-synaptic neuron will know that a deadline was missed and can report it.157
The SynapseProgram receives incoming SpikeEvents and attaches the connection information (typically158
weight and delay) before passing them on to the NeuronProgram. When the NeuronProgram emits a spike,159
it also alerts the SynapseProgram thus allowing it to update the connection parameters according to its160
learning rule.161

3 METHODS

A proof-of-concept implementation based on Python and open-source software was built in order to validate162
the proposed architecture. The code is available on a git repository along with a demo of CloudBrain163
running on a single PC and instructions on how to set up a cluster with a cloud provider. All is available at164
sdu.dk/cloudbrain.165

3.1 Implementation166

ControlProgram and NeuronProgram are written in Python. A custom NeuronProgram inherits from167
a base class so the user only needs to override the functions used and need not care about the inner168
workings of the ControlProgram. The functionality exposed by the NeuronProgram base class include169
methods to emit events and to register callback functions for event reception or the expiration of timers.170
The Python code is integrated in a minimalistic docker image (?) and executed in docker swarm (?). Using171
the continuous integration tools included in gitlab (?), the process of deploying the code on the docker172
swarm is automated. Log activity from the containers is collected using Filebeat (?), allowing the logs to173
be searched and viewed from a web-based interface. Events are handled by Apache Kafka (?), an open-174
source stream-processing software platform, providing high-throughput and low-latency communication.175
Messages are JSON encoded and consist of a timestamp, sender ID and an arbitrary payload. Since Kafka176
is agnostic to the payload, it can be seamlessly changed to fit any computational model, to set parameters in177
a NeuronProgram or to retrieve arbitrary information. One of the great advantages of an event-based system178
is the availability of tools to view, search and aggregate data. We use Elasticsearch and the visualisation179
dash-board Kibana. This allows for fast, online and virtually unconstrained visualisation of activity in the180
network, for example, to monitor spiking rates at population level or for individual neurons, to analyse181
behavioural patterns or to monitor the flow of ControlEvents.182

3.2 Hardware183

The on-premises cluster consists of 15 PCs, each with 2 Intel Xeon 2.55GHz cores, 8 GB RAM, Gigabit184
network and with Debian9 installed on a solid state drive (figure 5 shows a photo of the cluster). An185
additional PC with Intel Xeon 2.67GHz quad-core, 12 GB RAM and SSD is used to run Kibana, Kafka,186
Elasticsearch connector and Zookeeper (used by kafka). Another PC with Intel I5 3.30 GHz quad-core, 12187
GB RAM and SSD is used to run Elasticsearch. Elasticsearch runs on a separate host to keep peak CPU188
and memory usage from interfering with the performance of Kafka. Finally a PC with Intel I5 2.90 GHz189
quad-core, 16 GB RAM and SSD was used to monitor the cluster using Grafana and InfluxDB. On each of190
the hosts in the cluster, Telegraf was installed to collect information about the utilisation of the nodes. The191
machines are connected to a gigabit managed switch using Cat5e cables and communication to the robot is192
provided by a VPN tunnel through a Wi-Fi access point. As an alternative to procuring an on-premises193
cluster, we repeated the experiments with Google Cloud Platform (GCP) executing CloudBrain. 14 virtual194
machines were configured each with 4 vCPUs running at 2 GHz, 15 GB RAM and 100GB disk. 10 VMs195

Frontiers 5

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

were used to run the neurons and the rest were used as VPN gateway, Kafka broker, Elasticsearch and196
connectors to Elasticserch. All VMs were located in Finland while the robot was in Denmark.197

3.3 Robot platform198

The mobile robot described in Larsen et al. (2013) is optimised for rapid prototyping and consists of a199
wooden board with two rear wheels connected to motors and a castor wheel in front. In this work it was200
fitted with two custom bumper sensors, one on each side of the front (figure 5). An on-board RaspberryPi 3201
model B connected to the cluster via Wi-Fi is responsible for generating PWM signals for the motors based202
on received events and for emitting events based on the state of the sensors. A piece of software running in203
the cloud translates spikes into motor messages and sensor messages into spikes. An H-bridge supplies204
the current to the motors based on the generated PWM signals. The two sensors are implemented with205
micro-switches and each sensor emits spikes on its own topic. When the sensor is activated, it emits spikes206
with a frequency of 100Hz and when the sensor is not activated it emits spikes with a frequency of 10Hz.207
Each motor has its own topic and the output is controlled by a running average of the number of spikes208
received within the past 50ms. The average is then linearly mapped from 1-4 spikes to ± 2 wheel rotations209
per second, controlled by a standard PID controller.210

During experiments the robot was enclosed in a 2.5m x 1.5m environment with slanted 25cm corners (see211
centre insert of figure 2). The environment can be configured as corridor or box by adding or removing the212
rectangle in the centre. The experiments were repeated several times in each configuration. The controller213
for the robot is based on the Braitenberg principle (Dennett and Braitenberg, 1986) where the left sensor has214
an inhibitory effect on the right motor and vice-versa. The network consists of six populations, each with215
five neurons (figure 2). Apart from the two sensor populations (A and B) and the two motor populations (C216
and D), an excitatory bias (E) is provided to both motor populations to make the robot move, and the last217
population (F) injects noise into the system to make the neurons fire out of phase.218

3.4 Neuronal models219

We implemented and tested three popular neuron models: Integrate-and-Fire (IF) (Keat et al., 2001;220
Jolivet et al., 2004; Paninski et al., 2004), Leaky-Integrate-and-Fire (LIF) (Stein, 1967; Tuckwell, 1989) and221
Adaptive-Exponential-Integrate-and-Fire (AEIF) (Brette and Gerstner, 2005; Gerstner and Brette, 2009).222
The IF and LIF neurons are implemented fully asynchronously so the neurons only use computational power223
when input spikes arrive or the neuron emits a spike. The AEIF model consists of two coupled differential224
equations that need to be integrated over time. To keep it asynchronous would make it computationally225
heavy because it would need to recalculate next spike time and set the timer accordingly every time a new226
spike arrives. Instead the model was implemented synchronously using the looping function with an update227
frequency of 1ms. We implemented the Spike-Timing-Dependent Plasticity (STDP) rule, such that it runs228
asynchronously and updates the weight of the synapse.229

4 RESULTS

To support the claims that CloudBrain provides 1) no constraints on the model elements, 2) online230
reconfiguration of the network, 3) online operation, and 4) access to all information, we provide three231
demonstrations. We demonstrate 1) the implementations of three popular neuron models and a synapse232
model, 2) that the morphology of the network can be changed during operation, and 3) that a robot can be233
controlled online by CloudBrain running on a cluster. Furthermore, to demonstrate how all information in234

This is a provisional file, not the final typeset article 6

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

the SNN can be monitored online, we provide the live plots from Kibana. Finally, we evaluate timing and235
load both on our own cluster and with a cloud provider.236

4.1 Model implementations237

To demonstrate the implemented neuron models, two different experiments were made. In the first one,238
a spike source was connected to the IF and LIF, respectively and their voltage potential and firing was239
observed (figure 3, top). The voltage potential of the IF neuron increases linearly until it fires, whereas240
the voltage potential of the LIF neuron charges exponentially. The AEIF model was tested in the regular241
bursting mode with constant current input (Naud et al., 2008) using parameters from NEST (Gewaltig and242
Diesmann, 2007) while voltage potential, adaptation variable and spiking pattern were observed (figure 3,243
middle). The voltage potential of the AEIF neuron depends on the adaptation variable and, as it falls to a244
certain level, the neuron bursts. This confirms normal behaviour for all three neuron models.245

Synaptic learning is demonstrated in a setup where a noisy spike source has excitatory connections to two246
LIF neurons. The two LIF neurons are connected with a synapse using STDP on all pre- and post synaptic247
events. The noisy spike source emits events with a random time difference between 100 ms and 1 s. Every248
time one of the LIF neurons spikes, the STDP synapse will update its weight based on the time since the249
other neuron last spiked. Figure 4 shows the evolution of synaptic weight in an STDP synapse. From the250
zoomed-in figure, we see that when a pre-synaptic spike occurs (green vertical line) the weight increases by251
an amount inversely proportional to the time since last post-synaptic spike. Similarly at the post-synaptic252
spike times the weight is reduced inversely proportional to the time since last pre-synaptic spike.253

4.2 Morphology254

To demonstrate that the network can be reconfigured online, an experiment was made with a 10Hz spike255
source (A) and two IF neurons (B and C). After 5 seconds, the source is connected to neuron B thus making256
it fire. After another 10 seconds, the connection is removed and the same procedure is repeated for neuron257
C. We plot the spiking pattern of the three neurons in figure 3. The morphology changes shown here are258
very basic, but demonstrate that connections can be created, updated or removed by sending ControlEvents.259

4.3 Online operation260

To demonstrate online operation, two experiments with the robot are reported, each in a different261
environment. The spiking rate of the populations were plotted online in Kibana and the resource use in the262
cluster were plotted using Grafana. Here we provide screenshots from both and a video of the experiment is263
available in the supplementary material. The experiments were run on the on-premises cluster and repeated264
in the GCP cluster.265

To evaluate the total delay in the robot experiments, we used videos to analyse reaction times when the266
robot is colliding with the wall. We also estimated the delay from a change in spike rate of the sensor267
population until the corresponding change in the opposite motor population. This represents the total delay268
in the neuronal system without the robot. The delay of a single event through Kafka was measured by269
subscribing to a topic and publishing 100 events on it. This was measured both over WiFi and within the270
clusters. We report the median of the 100 measurements along with the 1st and 99th percentiles.271

The robot was able to negotiate both corridor and box, reacting quickly and displaying the expected272
Braitenberg behaviour. The total delay from sensor activation to motor reaction was estimated based273
on several collisions with the wall, recorded on video. Upon collision the robot was thrown back a few274
centimetres and the controller reaction was fast enough to prevent the robot from hitting the wall again. It275

Frontiers 7

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

took on average 5 frames (min. 4 frames, max. 8 frames), corresponding to 166 ms (min. 133 ms, max.276
266 ms) to react. There are different contributions to this delay, mainly the characteristics of the motor. The277
total delay from a change in a sensor population to the corresponding change in the motor population could278
not be determined precisely due to noise but was estimated to 30–80 ms based on the plots from Kibana279
(figure 5). The delay of a single event through Kafka was measured over 100 messages. The time from an280
event was sent until it was received was 24 ms via Wi-Fi (median: 24.0 ms, 1st: 8.0 ms, 99th: 320.4 ms)281
and 4.2 ms within the cluster (median: 4.2 ms, 1st: 2.7 ms, 99th: 5.5 ms).282

Figure 5 also shows the load on the cluster while the robot is navigating the corridor. The memory usage283
is constant because once the neurons are running they do not make additional allocations. The network284
usage is less than 2%. For comparison, the idle cluster had memory usage of 6%, CPU usage 3% and285
network 0%. Under the experiment an average of 1930 spikes per second were passing through Kafka.286
Benchmarking of the Kafka broker showed that it could handle approximately 400.000 spikes per second.287

The same experiment was conducted on GCP for a duration of 15 minutes. Similar to the delay measured288
with the on-premises cluster, the latency was measured from the robot to the GCP. The delay measured to289
47.3 ms (median: 46.7 ms, 1st: 46.2 ms, 99th: 52.6 ms). The spike delay within the cluster was measured290
to 3.5 ms (median: 3.2 ms, 1st: 2.7 ms, 99th: 5.5 ms).291

The ControlProgram allows the user to toggle live logging of internal variables and parameters. The292
values are sent, as events, only when they change. The plots in figure 3 and 5 are all live screenshots293
from Kibana demonstrating that parameters are available online. Data can also be accessed online without294
Kibana for more advanced plots or extracted for offline generation of plots better suited for publication.295

5 DISCUSSION AND CONCLUSION

In this contribution, we propose a novel architecture for simulating spiking neural networks on readily296
available cloud infrastructure. We describe a proof-of-concept implementation, demonstrating how neuron297
and synapse models can be implemented and how the network connections can be updated while the system298
is running. Finally we demonstrate how a Braitenberg-controlled differential drive robot could be operated299
online from both our on-premises cluster and from a Google Cloud Platform cluster.300

The numbers provided are highly dependent on hardware, application and other implementation specific301
factors. We therefore provide the numbers observed in our proof-of-concept implementation without302
expecting them to generalise perfectly to other implementations. Our on-premises cluster built from 15303
refurbished PCs over ten years old was able to support the experiments in this paper and the total cost of304
running the robot experiment for 15 minutes on GCP was approximately 2 USD. This shows that hardware305
for this type of simulation is readily available.306

We did experience some jitter in the delay times and occasionally an event was late by a factor of307
hundreds which means it missed the deadline and thus essentially was lost. In our applications it was not a308
problem but means of mitigation should be further investigated. The Kafka broker can handle approximately309
400,000 spikes per second and this number scales linearly with the number of brokers. There are no limits310
in principle to the size of a computer cluster and cloud providers put huge clusters at our disposal. We311
simulated networks with up to 30 neurons for this paper but much larger networks should be possible312
and will be the focus of further work. In conclusion, we demonstrated key features that make CloudBrain313
especially suited for some types of experiments and argue that trading small form factor and low power314
consumption for such extra features can be sensible for research purposes.315

This is a provisional file, not the final typeset article 8

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

6 ACKNOWLEDGEMENTS

We thank Mathias Neerup for invaluable help setting up CloudBrain and for discussions on architecture316
and implementation. We thank Cao Danh Do and Emil Bonde Larsen for help preparing the robot and its317
environment. Finally we thank SDU-Biorobotics and The Centre for BioRobotics for funding the project.318

REFERENCES

Birman, K. and Joseph, T. (1987). Exploiting virtual synchrony in distributed systems. ACM SIGOPS319
Operating Systems Review 21, 123–138. doi:10.1145/37499.37515320

Bower, J. M., Beeman, D., and Hucka, M. (2003). The GENESIS simulation system. The Handbook of321
Brain Theory and Neural Networks , 475–478322

Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description323
of neuronal activity. Journal of Neurophysiology 94, 3637–3642. doi:10.1152/jn.00686.2005324

Carnevale, N. T. and Hines, M. L. (2006). The NEURON book. doi:10.1017/CBO9780511541612325

Carr, C. E. and Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem326
of the barn owl. Journal of Neuroscience 10, 3227–3246. doi:10.1523/jneurosci.10-10-03227.1990327

Chou, T. S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M., et al. (2018). CARLsim 4:328
An Open Source Library for Large Scale, Biologically Detailed Spiking Neural Network Simulation329
using Heterogeneous Clusters. In Proceedings of the International Joint Conference on Neural Networks330
(Institute of Electrical and Electronics Engineers Inc.), vol. 2018-July. doi:10.1109/IJCNN.2018.331
8489326332

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018). Loihi: A333
neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99334

Dennett, D. C. and Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psychology. The335
Philosophical Review 95, 137. doi:10.2307/2185146336

Essera, S. K., Merollaa, P. A., Arthura, J. V., Cassidya, A. S., Appuswamya, R., Andreopoulosa, A., et al.337
(2016). Convolutional networks for fast energy-efficient neuromorphic computing. Proc. Nat. Acad. Sci.338
USA 113, 11441–11446339

[Dataset] Furber, S. (2016). Large-scale neuromorphic computing systems. doi:10.1088/1741-2560/13/5/340
051001341

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker project. IEEE. Proceedings342
102, 652–665. doi:10.1109/JPROC.2014.2304638343

Gerstner, W. and Brette, R. (2009). Adaptive exponential integrate-and-fire model. Scholarpedia 4, 8427.344
doi:10.4249/scholarpedia.8427345

Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia 2, 1430.346
doi:10.4249/scholarpedia.1430347

Haessig, G., Milde, M., Aceituno, P. V., Oubari, O., Knight, J. C., van Schaik, A., et al. (2020). Event-based348
computation for touch localization based on precise spike timing. Frontiers in Neuroscience 14, 1–29.349
doi:10.3389/fnins.2020.00420350

Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M., and Harris, F. C. (2013). A novel351
CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Frontiers in352
Neuroinformatics 7, 19. doi:10.3389/fninf.2013.00019353

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application354
to conduction and excitation in nerve. The Journal of Physiology 117, 500–544. doi:10.1113/jphysiol.355
1952.sp004764356

Frontiers 9

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

[Dataset] Human Brain Project (2017). Silicon Brains357

[Dataset] Intel (2019). Beyond Today’s AI358

Jolivet, R., Lewis, T. J., and Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity359
approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology360
92, 959–976. doi:10.1152/jn.00190.2004361

Keat, J., Reinagel, P., Reid, R. C., and Meister, M. (2001). Predicting every spike: A model for the362
responses of visual neurons. Neuron 30, 803–817. doi:10.1016/S0896-6273(01)00322-1363

Knight, J. C. and Nowotny, T. (2018). GPUs Outperform Current HPC and Neuromorphic Solutions364
in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model. Frontiers in365
Neuroscience 12, 941. doi:10.3389/fnins.2018.00941366

Kuffner, J. (2010). Cloud-enabled robots In: IEEE-RAS international conference on humanoid robots.367
Piscataway, NJ: IEEE368

Larsen, L. B., Olsen, K. S., Ahrenkiel, L., and Jensen, K. (2013). Extracurricular Activities Targeted369
towards Increasing the Number of Engineers Working in the Field of Precision Agriculture . XXXV370
CIOSTA & CIGR V Conference , 1–12371

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar, A. (2012). Bluehive - A field-372
programable custom computing machine for extreme-scale real-time neural network simulation. In373
Proceedings of the 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing374
Machines, FCCM 2012. 133–140. doi:10.1109/FCCM.2012.32375

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A Scalable Multicore Architecture with376
Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).377
IEEE Transactions on Biomedical Circuits and Systems 12, 106–122. doi:10.1109/TBCAS.2017.378
2759700379

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in the adaptive exponential380
integrate-and-fire model. Biological Cybernetics 99, 335–347. doi:10.1007/s00422-008-0264-7381

Naylor, M., Fox, P. J., Markettos, A. T., and Moore, S. W. (2013). Managing the FPGA memory wall:382
Custom computing or vector processing? In 2013 23rd International Conference on Field Programmable383
Logic and Applications, FPL 2013 - Proceedings (IEEE Computer Society). doi:10.1109/FPL.2013.384
6645538385

Nowke, C., Diaz-Pier, S., Weyers, B., Hentschel, B., Morrison, A., Kuhlen, T. W., et al. (2018). Toward386
rigorous parameterization of underconstrained neural network models through interactive visualization387
and steering of connectivity generation. Frontiers in Neuroinformatics 12, 32. doi:10.3389/fninf.2018.388
00032389

[Dataset] Paninski, L., Pillow, J. W., and Simoncelli, E. P. (2004). Maximum likelihood estimation of a390
stochastic integrate-and-fire neural encoding model. doi:10.1162/0899766042321797391

Price, D. J., Jarman, A. P., Mason, J. O., and Kind, P. C. (2017). Building brains - An introduction to392
neural development. doi:10.1002/9781119293897393

Qi, Y., Shen, J., Wang, Y., Tang, H., Yu, H., Wu, Z., et al. (2018). Jointly learning network connections394
and link weights in spiking neural networks. In IJCAI International Joint Conference on Artificial395
Intelligence. vol. 2018-July, 1597–1603. doi:10.24963/ijcai.2018/221396

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., et al. (2015). A397
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K398
synapses. Frontiers in Neuroscience 9. doi:10.3389/fnins.2015.00141399

This is a provisional file, not the final typeset article 10

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. CloudBrain

Roy, S. and Basu, A. (2017). An online unsupervised structural plasticity algorithm for spiking neural400
networks. IEEE Transactions on Neural Networks and Learning Systems 28, 900–910. doi:10.1109/401
TNNLS.2016.2582517402

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S. (2010). A wafer-403
scale neuromorphic hardware system for large-scale neural modeling. In Proceedings of 2010 IEEE404
International Symposium on Circuits and Systems (IEEE), 1947–1950405

Spüler, M., Nagel, S., and Rosenstiel, W. (2015). A spiking neuronal model learning a motor control task406
by reinforcement learning and structural synaptic plasticity. In Proceedings of the International Joint407
Conference on Neural Networks. vol. 2015-Septe. doi:10.1109/IJCNN.2015.7280521408

Stein, R. B. (1967). Some Models of Neuronal Variability. Biophysical Journal 7, 37–68. doi:10.1016/409
S0006-3495(67)86574-3410

Sterling, P. and Laughlin, S. (2015). Principles of neural design. doi:10.7551/mitpress/9780262028707.411
001.0001412

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and efficient neural simulator.413
eLife 8. doi:10.7554/eLife.47314414

Stimberg, M., Goodman, D. F., and Nowotny, T. (2020). Brian2GeNN: accelerating spiking neural network415
simulations with graphics hardware. Scientific Reports 10, 1–12. doi:10.1038/s41598-019-54957-7416

Strohmer, B., Manoonpong, P., and Larsen, L. B. (2020). Integrating Non-Spiking Interneurons in Spiking417
Neural Networks. bioRxiv , 2020.08.13.249375doi:10.1101/2020.08.13.249375418

Tuckwell, H. (1989). Introduction to theoretical neurobiology volume 2, nonlinear and stochastic theories.419
Comparative Biochemistry and Physiology Part A: Physiology 92, 268. doi:10.1016/0300-9629(89)420
90177-1421

Wang, R. and van Schaik, A. (2018). Breaking Liebig’s law: An advanced multipurpose neuromorphic422
engine. Frontiers in Neuroscience 12, 593. doi:10.3389/fnins.2018.00593423

Woźniak, S., Pantazi, A., Bohnstingl, T., and Eleftheriou, E. (2020). Deep learning incorporating424
biologically inspired neural dynamics and in-memory computing. Nature Machine Intelligence 2,425
325–336. doi:10.1038/s42256-020-0187-0426

FIGURE CAPTIONS

Frontiers 11

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. FIGURES

Figure 1. Top left: Shows how CloudBrain scales. Several NeuroPrograms can run under one
ControlProgram. Several containers, each running one ControlProgram, can run on one host and the
cluster is made up of any number of hosts. Top right: Conceptual overview of the robot experiment. The
NeuroPrograms communicate through the kafka broker with the sensor and motor populations on the
robot. Bottom: Simplified scenario demonstrating how asynchronous neuron models are implemented in
CloudBrain.

This is a provisional file, not the final typeset article 12

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. FIGURES

Figure 2. The control loop of the robot. Onset/offset events from the sensors are rate encoded and fed into
populations A and B, respectively. E is injecting a bias (to keep the robot moving) and F injects noise. The
motor neuron populations C and D are decoded by a running average and used as set-point in the PID for
the motors. The centre insert shows the corridor track and the box track used for testing the robot.

Frontiers 13

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. FIGURES

Figure 3. Screenshots from live monitoring in Kibana. Top: Voltage potential from experiment with
Integrate-and-fire and Leaky-integrate-and-fire. Middle: Voltage potential, adaptation variable and
spikes from experiment with Adaptive-exponential-integrate-and-fire. Bottom: Spikes from morphology
experiment showing spikes from the spike source (top line) and from the two Integrate-and-fire neurons.
The spike source is in turn connected to and disconnected from the neurons, causing them to spike.

This is a provisional file, not the final typeset article 14

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. FIGURES

Figure 4. Synapse learning using STDP. Green vertical bars represent pre-synaptic spikes, while red
vertical bars represent post-synaptic spikes. The blue line represents the synaptic weight. The bottom plot
is a magnification of the yellow area in the top plot.

Frontiers 15

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662


Leon Bonde Larsen et al. FIGURES

Figure 5. Left image: The robot in the corridor. Right image: The robot in the box. Middle images:
The robot seen from below, the robot seen from above and the on-premise cluster. Top plot: Load on the
cluster during operation. All values are taken as the percentage of the cluster’s total capacity. The plot is
taken directly from Grafana as displayed live. Bottom plot: Spike rates on the interface populations (a/b
for left/right sensor and c/d for left/right motor). The first half is in the box and the second half is in the
corridor. While driving in the box, the robot displays a wall following behaviour thus always activating the
same sensor and reacting with the same motor. The plot is taken directly from Kibana as displayed live.

This is a provisional file, not the final typeset article 16

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.21.427662doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427662

	Introduction
	SNN simulators
	Cloud infrastructure

	Architecture
	Programs
	Global control
	Simulation method

	Methods
	Implementation
	Hardware
	Robot platform
	Neuronal models

	Results
	Model implementations
	Morphology
	Online operation

	Discussion and conclusion
	Acknowledgements

