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Abstract  

Cognitive resilience is the ability to withstand the negative effects of stress on cognitive 

functioning and is important for maintaining quality of life while aging. UK Biobank (UKB) 

does not have direct measurements of the same cognitive phenotype at distal timepoints. 

Therefore, we used number of education years (EY) as a proxy phenotype for past cognitive 

performance. Current cognitive performance was determined based on processing speed. This 

approach captured an average time span of 40 years between past and current cognitive 

performance in 330,097 individuals. A confounding factor was that EY is highly polygenic 

and masked the genetics of resilience. To overcome this, we employed Genomics Structural 

Equation Modelling (GenomicSEM) to perform a GWAS-by-subtraction using two GWAS, 

one GWAS of EY and resilience and a second GWAS of EY but not resilience. Subtracting 

one from the other generated a GWAS of Resilience. Replication of this approach was shown 

using independent discovery and replication samples and the full GWAS results were 

examined further using functional genomics analysis. We found 13 independent genetic loci 

for Resilience. Functional analyses showed enrichment in several brain regions and 

involvement of specific cell types, including GABAergic neurons (P=6.59x10-8) and 

glutamatergic neurons (P=6.98x10-6) in the cortex. Gene-set analyses implicated the 

biological process “neuron differentiation” (P=9.7x10-7) and the cellular component 

“synaptic part” (P=2.14x10-6). Mendelian randomization analysis showed a causative effect 

of white matter volume on cognitive resilience. These results enhance neurobiological 

understanding of resilience. 
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Author Summary 

 

We all differ in our levels of resilience to cognitive decline as we age. We know that a 

healthy lifestyle protects us from cognitive decline, however we do not know the role that our 

genes play in this process. By identifying the genes involved, we can then examine their 

biology, which could point to therapeutic interventions that may increase our resilience. To 

study the genetics of cognitive resilience we need large datasets with the same measures of 

cognitive performance over a long period of time. That data are currently not available, even 

within large biobanks. Instead, we used a measure of processing speed for current cognitive 

performance and number of years in education as a proxy measure of past cognitive 

performance to study genes associated with resistance over time in 330,097 individuals from 

the UK Biobank. After testing our method to show its replicability, we identified 13 genetic 

regions containing many genes that were associated with resilience. We showed that these 

genes function in several brain regions and different cell types. We also showed that white 

matter volume in the brain affects resilience. This study increases our biological 

understanding of resilience. 
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Introduction 

Cognitive decline is one of the most feared aspects of aging leading to major health and 

social issues and is associated with illness, dementia and death [1]. Non-pathological or age-

related cognitive decline leads to increased challenges in completing tasks that require 

information processing and memory, which in turn leads to a deleterious effect on an 

individual’s enjoyment of and participation in life events [2] . Cognitive resilience is our 

ability to withstand negative effects of stress and maintain cognitive functioning. 

Understanding the factors that contribute to resilience is becoming increasingly important 

given the aging demographics of the world’s population [3]. There is a growing knowledge of 

how non-genetic factors such as cardiovascular health and social participation contribute to 

cognitive resilience [4]; however an understanding of the genetic contribution has been 

hampered by the lack of large datasets with genetic data and suitable longitudinal data on 

cognition. One theory that examines the biological influences on rates of cognitive decline in 

healthy aging is the concept of reserve, maintenance, and compensation leading to cognitive 

resilience[5]. Reserve is usually described in terms of both brain reserve, which is the overall 

strength of size of structural components such as quantity of neurons and synapses and 

cognitive reserve, which refers to adaptability of these components [6].  These are 

hypothesised to reflect a level of neural resources built up over our lifetime, maintained via 

the ability to repair cellular damage to maintain cognitive function, with losses compensated 

for by use of alternative undamaged cognitive functions. In turn these mechanisms are 

thought to be mediated by a combination of environmental and genetic factors.  

Others propose that variation in the rate of cognitive decline can be explained by variation in 

intelligence. Longitudinal analysis in the Lothian Birth Cohort has shown that childhood 

intelligence has a protective effect on cognitive decline in late life [7]. Other studies show 

that while higher education reflects greater cognitive ability, the rates of change in that ability 

over time are consistent across all education levels, with those starting at a higher level 

simply having further to fall before they present with mild cognitive impairment [8] [9]. The 

role of intelligence is confounded by the fact that higher intelligence is associated with 

healthier life styles, which has a protective effect on cognitive decline [10]. 

Salthouse proposed the reduced speed of processing hypothesis as earlier studies on cognitive 

decline showed that processing speed is one of the strongest predictors of performance across 

cognitive tasks in older adults [11, 12]. This theory proposes that older adults take longer to 

process information and the result of this slower processing leads to impairment in cognitive 
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functions and information is not available for the next part of a task as quickly as in younger 

adults. It is proposed that superior intelligence is linked to faster processing speed and speed 

of higher order information processing explains about 80% of variance in cognitive ability 

[13]. In a study using 1,800 adults ranging in age from 20 to 90, it was found that 70 to 80% 

of decline in processing speed was shared with declining reasoning ability [14]. 

The purpose of this study was to explore genetic variation associated with cognitive 

resilience within the UK Biobank (UKB)[15]. We first used reaction time (RT), reflecting an 

individual’s processing speed, as a measure of current cognitive performance. Processing 

speed is a key component, and predictor, of cognitive ability [13] [16]. In the absence of a 

direct measure of processing speed at an earlier timepoint, we used academic achievement 

measured by number of years in education (education years (EY)) as a proxy phenotype for 

cognitive performance in early adulthood, following several previous studies [17-19]. 

Individual differences in processing speed are important in the relationship between 

executive functioning and  academic performance [20]. This approach captures an average 

time span of 40 years between past and current cognitive performance in UKB. A 

confounding factor in this strategy is that EY is highly heritability with a polygenic nature 

[21] that can mask the genetics of resilience. To overcome this we employed Genomics 

Structural Equation Modelling (GenomicSEM) [22] to perform a GWAS-by-subtraction [23] 

using two GWAS, one which captured genetic variants associated with EY and resilience and 

a second which captured genetic variants associated with EY but not resilience. Subtracting 

one from the other generated two new GWAS, one capturing EY and the other capturing the 

genetics of a processing speed-based cognitive resilience phenotype. Replication of this 

approach was shown using independent discovery and replication samples and the full 

GWAS results were examined further using functional genomics analysis.  
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Results 

Initial phenotype development 

Figure 1 shows an overview of the analysis steps and a detailed description of the process 

used to generate the resilience variable is included in the online methods. Given the multi-

step method proposed in this analysis, we sought to confirm findings using our method in an 

independent sample. Therefore, we divided the UKB into discovery (n=266,543; 81% of 

participants) and replication (n=63,554; 19% of participants) samples (Figure 1a). Sample 

sizes used for analysis are shown in Supplementary Table 1. We used EY as a proxy 

phenotype measuring past cognitive performance [13]. EY was calculated using a 

combination of data supplied on years in education and educational attainment (see online 

methods). Processing speed as measured by RT was chosen as an indicator of current 

performance given its strong correlation with age and the fact that data was available on most 

participants in UKB. We created a binary variable for each measure by using the average 

score within the dataset to split the participants into similarly sized groups. EY was split into 

above and below average based on participants completing greater than or equal to 17 years, 

or less than 17 years in education. RT was corrected for age and normalised using a log 10 

transformation and was split into faster and slower based on participants having a processing 

speed better or worse than the mean value (see online methods), such that faster RT speeds 

reflected better processing speed, and thus cognitive performance, than slower RT. By 

combining these two binary variables, we created four groups of participants (Figure 1b). 

One of these groups demonstrated high resilience and these were our cases for GWAS who 

had below average EY previously and faster than average RT now. A second group 

demonstrated low resilience or cognitive decline, and these were our controls for GWAS who 

had above average EY previously and slower than average RT now. Results for this GWAS 

were dominated by SNPs associated with EY because the high resilience cases and low 

resilience controls had below average and above average EY measures, respectively. We 

named this GWAS “EY+Res” because it identified SNPs associated with both EY and 

resilience (Figure 1c). 

In order to identify those SNPs that were associated with resilience alone and remove those 

SNPs that were associated with the EY component of the phenotype, we performed a second 

GWAS using the two remaining groups of UKB samples that displayed consistent (i.e., 

unchanging) performance over time. The first of these groups consisted of those with below 
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average EY previously and slower than average RT now (i.e., consistently below average 

performance over time); the second group consisted of those who showed above average EY 

previously and faster than average RT now (i.e., consistently above average performance 

over time). We named this GWAS “EY/NonRes” because it identified SNPs associated with 

EY but not resilience (Figure 1d). 

We then used GWAS-by-subtraction (GBS) [23] to subtract the results of EY/NonRes  from  

EY+Res to leave SNP associations with resilience. This method uses GenomicSEM [22] to 

integrate GWAS into structural equation modelling. Following the process described by 

Demange et al [23], we defined a Cholesky model (Figure 2) using the summary statistics 

from the EY+Res and EY/NonRes GWASs. Both EY+Res and EY/NonRes were regressed 

on a latent factor, which captured the shared genetic variance in EY (hereafter “EduYears”). 

EY+Res was further regressed on a second latent factor capturing the variance in EY+Res 

independent of EY/NonRes, hereafter “Resilience”. Genetic variance in Resilience was 

independent of genetic variance in EduYears (rg=0) as the Resilience factor represents 

residual genetic variation in our EY+Res phenotype that is not accounted for by the EduYears 

factor. These two latent variables, Resilience and EduYears were then regressed on each SNP 

in the original GWASs (EY+Res and EY/NonRes) resulting in new GWAS summary 

statistics for both Resilience and EduYears (Figure 1e). 

Discovery and replication analysis 

For the discovery sample, we performed the two initial GWASs (discovery.EY+Res and 

discovery.EY/NonRes) and then performed GBS on both sets of samples resulting in 

discovery.Resilience GWAS results and discovery.EduYears GWAS results. We repeated this 

for the replication sample to produce replication.Resilience GWAS results and 

replication.EduYears GWAS results. Comparison of the discovery.Resilience GWAS with 

the replication.Resilience GWAS by LD score regression (LDSR) analysis [22] showed 

extremely high correlation between the two data sets (rg = 0.964, P = 4.45 x 10-44). The 

discovery.Resilience GWAS was then processed through FUMA v 1.3.6 [24] and ten 

independent genome-wide significant SNPs were identified. When compared to the 

replication.Resilience GWAS, there was a consistent direction of effect for all ten SNPs 

(Binomial sign test, P = 9.77 x 10-4). Five of the ten SNPs were significant after Bonferroni 

multiple test correction for those SNPs tested (P < 0.005). Thus, we demonstrated that we 

could replicate genetic associations with Resilience in an independent sample. Results for the 
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ten-independent genome-wide significant SNPs and their replication analysis are in 

Supplementary Table 2. 

Analysis of the full sample  

Next, we combined both the discovery and replication samples to run an analysis on the full 

sample (n=330,097). This resulted in initial EY+Res and EY/NonRes GWASs and following 

GBS, Resilience GWAS results and EduYears GWAS results. SNP based heritability estimate 

analysis showed a h2 value of 0.13 (SE = .006) for Resilience. For comparison in similarly 

sized samples, we also ran GWASs of EY and RT using participants randomly selected from 

UKB (EY, n=82,000 above average EY cases and n=81,999 below average EY controls; RT, 

n=82,000 faster than average RT cases and n=82,000 slower than average RT controls). 

These comparisons are shown in Supplementary Table 3. A Manhattan plot and a Quantile-

quantile (Q-Q) plot of Resilience on the full sample is shown in Figure 3a and 3b. Manhattan 

plots for the other five GWAS (EY+Res, EY/NonRes, EduYears, EY and RT) are in 

Supplementary Figure 1.  

Initially, both EY+Res and EY/NonRes had a strong negative correlation with EY (rg = -0.88 

and rg = -0.89 respectively (Supplementary Figure 2). The strength of these correlations 

likely reflects the major contribution of EY to these phenotypes and they are negative 

because for EY+Res and EY/NonRes, the direction of effect is in the opposite direction to 

EY, as the cases are low EY whereas for the EY GWAS, the cases are high EY. EY+Res and 

EY/NonRes had a moderate positive correlation with each other (rg = 0.54). After GBS there 

was no genetic correlation between Resilience and EduYears (rg = 0.01, P = 0.803) 

suggesting that the subtraction had successfully separated out the genetic associations for 

both phenotypes.  

Although the EY component of Resilience was addressed by the GBS method, the RT 

component was not and the genetic correlation between Resilience and RT was strong (rg = 

0.80; Supplementary Figure 2). This finding was examined further following functional 

analysis of associated loci with detail on this provided at the end of Results.  

Functional analysis 

Description of genetic loci 

Function analysis was performed on Resilience in FUMA v 1.3.6 [24]. (Note: see Online 

Methods for parameters used and results publicly available in FUMA ID:171).  
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A total of 1,329 significant SNPs were tagged from the Resilience GWAS and were 

associated with 26 independent lead SNPs (P < 5 x 10-8).  Including SNPs in the reference 

panel that are in LD with the independent SNPs, resulted in a total of 1,922 candidate SNPs.  

Functional annotation of the candidate SNPs showed that 82% were intergenic/intronic. A 

total of 84 SNPs had a Combined Annotation Dependent Depletion (CADD) score greater 

than the threshold of 12.37 which indicates that the variants are potentially pathogenic [25] 

(see Supplementary Table 4 and 5). 

Lead SNPs were grouped into 13 independent genetic loci that are on 9 different 

chromosomes. Detailed maps of each locus are available in Supplementary Figure 3. 

Conditional analyses showed that the significance of all independent lead SNPs at each locus 

was reduced when the GWAS was conditioned for the index or most associated SNP, 

confirming the linkage of the index SNP to each lead SNP (Supplementary Table 6).  

Fine Mapping 

FINEMAP [26] was used to provide further information on significant SNPs in LD with the 

index SNP on each locus using the GWAS SNPs generated by FUMA (Supplementary Table 

7). The log10 Bayes factor (B10) quantifies causal evidence for a particular SNP and a 

posterior probability value yielding a B10 greater than 2 indicates considerable evidence of 

causality [26].  One SNP, rs62074125, on chromosome 17, exceeded this value (B10 = 2.64). 

This SNP is an intron within the WNT3 gene, which is associated with cognitive function 

[27]. The next highest result was on chromosome 4 where rs2189234 had a value slightly 

below 2 (B10 = 1.62). This SNP is an intronic variant in the TET2 gene, which is discussed 

below. FINEMAP analysis showed that the index SNP had the highest Bayes Factor for all 

loci with four exceptions (Supplementary Table 8). 

Gene mapping 

Three approaches were used in FUMA to map the associated variants to genes: (a) Positional 

mapping mapped 141 SNPs to genes based on their genomic location within a 10 kilobase 

window of known gene boundaries. (b)  Expression quantitative trait (eQTL) analysis 

mapped 207 cis-eQTL SNPs to genes whose expression they were associated with. (c) 

Chromatin interaction analysis using the 3D DNA to DNA interactions mapped SNPs to 243 

genes. Circos plots for all loci are included in Supplementary Figure 4. The circos plot from 

chromosome 3 shows that 102 genes were mapped to this region, representing 42% of the 

total genes mapped. In addition, the circos plot from chromosome 17 shows two distinct 
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clusters of SNPs. Genes in this region (MAPT, WNT3, CRHR1, KANSL1, and NSF) have been 

previously associated with general cognitive function but also with other cognitive indicators 

[27]. Details of this gene mapping analysis is in Supplementary Table 9. 

In addition to the three approaches above we also performed a genome-wide gene-based 

association analysis (GWGAS) using the MAGMA function within FUMA [24], which looks 

at the aggregate association results of all SNPs in a gene in contrast to the previous analyses 

that examined the association signals at the level of individual SNPs. A GWGAS was 

performed using the Resilience GWAS on 18,879 protein-coding genes containing at least 

one SNP from the GWAS. Based on the number of genes tested, a Bonferroni-corrected 

threshold of P < 2.65 x 10-6 was used (see Q-Q plot of this association – Figure 3c). A total of 

52 protein coding genes were identified as associated, 40 of which were identified by the 

previously described strategies (Supplementary Table 10). In total, 33 genes were identified 

by all four mapping strategies (Figure 3c and Supplementary Table 11).  

Many of these 33 genes have been connected with cognitive performance, neurodegenerative 

disorders or aging and represent potential therapeutic targets: STAU1 (chr 20) and SEMA3F 

(chr 3) are predicted to control cognitive decline in aging through formation of neural circuits 

and synaptic transmission [28]. BNS (chr 3) codes for bassoon presynaptic cytomatrix protein 

which is implicated in the regulation of neurotransmitters at inhibitory and excitatory 

synapses [29]. IP6K1 (chr 3) codes for inositol pyrophosphate biosynthesis, and mouse 

studies have shown its involvement in short term memory by altering presynaptic vesicle 

release and short-term facilitation of glutamatergic synapses in the hippocampus [30]. MST1 

(chr 3) has been shown to play a role in protecting cells from oxidative stress which leads to 

aging and eventual cell death [31].  TET2 (chr 4) codes for ten eleven translocation methyl 

cytosine dioxygenase 2 which catalyses the production of 5-hydroxymethylcytosine and is 

associated with increased neurogenesis in the hippocampus and cognition in animal studies 

[32].  ATXN2 (chr 20) is involved in regulating mRNA and is linked to decline in cognitive 

function in older adults [33], general cognitive function [27] and neurodegenerative disorders 

[34]. The ATXN2/BRAP locus has a strong association with parenteral lifespan [35]. Another 

mapped gene close to ATXN2 and BRAP is SH2B3, which encodes lymphocyte adaptor 

protein LNK, and plays a role in human aging though the mechanism involved is not fully 

understood [36]. The gene ALDH2 (chr 12) codes for aldehyde dehydrogenase and there is a 

link between this enzyme and life span as well as cardiovascular aging [37].  
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Among the associated SNPs at the 33 prioritized genes are two UTR3 variants on 

chromosome 3 (rs2681781 (CADD=17.77) and rs4625 (CADD=15.6)) that map to RBM5 and 

DAG1 respectively. Animal studies have shown that RBM5 is a likely regulator of Rab4a, 

which in involved in many neurobiological functions including the transport of 

transmembrane proteins required for neurotransmission [38]. DAG1 has been associated with 

increased cognitive performance and is associated with GABAergic signalling in the 

hippocampus [39]. In addition, one other variant of note is rs1130146 that maps to DDX27 

(chr 20), a gene that was mapped by all strategies except for GWGAS and is associated with 

longevity[40]. This missense SNP has a CADD score of 31 and is predicted by SIFT to be 

deleterious and by PolyPhen to be possibly damaging.  

Tissue, cell type and pathway enrichment analysis 

Using gene expression data for 53 tissues obtained from GTEx [41],  we found all brain 

regions to be significantly enriched for our associated genes with the strongest enrichments 

for the frontal cortex, BA9 (P = 2.26 x 10-11), the cortex (P = 8.48 x 10-11) and the cerebellar 

hemisphere (P = 1.18 x 10-10; Figure 4a and Supplementary Table 12). There was no 

significant enrichment in other tissues of the body. Expression analysis at the cellular level 

was performed using data sets from the Human Prefrontal cortex by age [42], the Human 

Cortex [43] and Linnarsson Mouse Brain Atlas [44]. We analysed significant cell types 

across datasets, independent cell type associations based on within-dataset conditional 

analyses and pair-wise cross-datasets conditional analyses (Figure 4b and Supplementary 

Tables 13 and 14). These analyses identified four neuronal cell types to be enriched for our 

associated genes. For human data, these were neurons in the cortex (P = 2.16 x 10-6), and 

GW26 GABAergic neurons in the prefrontal cortex (P = 6.59 x 10-8). For mouse data, these 

were excitatory glutamatergic neurons in cortical pyramidal layer 5 of the cerebral cortex 

(TEGLU10; P = 6.98 x 10-6) and excitatory glutamatergic/nitric oxide neurons in the 

tegmental reticular nucleus of the pons in the hindbrain (HBGLU8; P = 6.74 x 10-7). The 

enrichment in GABAergic neurons is interesting because there is growing evidence to 

suggest that impairment of the GABAergic system caused by aging results in an imbalance in 

the inhibitory/excitatory process involved in the neuronal response to cellular challenges and 

environmental changes. This results in increased vulnerability to synaptopathy and cognitive 

decline [45] . 
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Gene-set analysis performed on curated gene sets and Gene Ontology (GO) [46] terms using 

the full distribution of SNP P-values from the Resilience GWAS identified two GO terms to 

be significantly enriched after adjustment for multiple testing These were the biological 

processes“ neuron differentiation” (P = 9.7 x 10-07) and the cellular component “synaptic 

part” (P = 2.14 x 10-06). Bi-directional conditional analysis using MAGMA 1.08 [47] showed 

that these two annotations were independent of each other  (Supplementary Table 15).  

Genetic correlations with other traits 

We compared our Resilience GWAS with recent published GWAS of cognitive phenotypes, 

psychiatric and neurological disorders, and global brain imaging phenotypes using LDSR 

analysis. A moderate negative correlation of Resilience with intelligence [42] (rg= -0.26, P = 

1.29 x 10-17 and educational attainment [15] (rg= -0.45, P = 1.64 x 10-56 is as expected given 

that the resilience phenotype was derived from individuals within the UK biobank that has 

lower than average education years. Of the 13 independent genome-wide significant SNPs for 

Resilience, 6 are associated with intelligence at genome-wide significant levels (P < 5 x 10-8) 

but the remaining 7 SNPs are not associated with intelligence (P > 0.01). This indicates that 

some of genetic basis of Resilience does not overlap fully with the genetics of intelligence. 

When genetic correlation analyses between Resilience and psychiatric phenotypes were 

corrected for multiple testing (Pbon < 2.4 x 10-3), Resilience had a small positive correlation 

with unipolar depression [48] (rg = 0.17, P = 5.0 x 10-10), a small negative correlation with 

schizophrenia [49] (rg  = -0.18, P = 1.24 x 10-12) and bipolar disorder [50] (rg = -0.17, P = 

1.84 x 10-7), and a nominally significant negative correlation with neuroticism [51] (rg= -

0.07, P = 2.02 x 10-2). Examination of neurological disorders showed Resilience had a small 

nominally significant correlation with amyotrophic lateral sclerosis (ALS) [52] (rg  = -0.21, 

P= 1.44 x 10 -2), stroke [54] (rg= 0.08, P = 1.89 x 10-2), and Parkinson’s disease [53] (rg = -

0.08, P = 4.58 x 10-02), but Alzheimer’s disease (AD) [54] was not significant (rg = 0.04, 

P=0.358),(Supplementary Table 16 and Figure 5). 

The GWAS of 11 brain phenotypes from the UK Biobank [55] were examined by LDSC for 

genetic correlation with the Resilience (Supplementary Table 17 and Figure 5).  The volume 

of global white and grey matter and cerebral white matter in the left and right hemisphere 

were examined based on the relationship between brain volumes and cognition [56]. Volume 

of cerebrospinal fluid was included based of its documented association with brain atrophy 

[57] and the hippocampus, amygdala and nucleus accumbens were examined as moderators 
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of cognitive function [58] [59]. After adjusting for multiple testing (Pbon = 2.4 x 10-3), the 

only significant correlations found were for white matter volumes where a small positive 

correlation was found between Resilience and global white matter volume (rg = 0.14, P = 1.19 

x 10-3), and the volume of cerebral white matter in the left (rg = 0.148, P = 1.74 x 10-03) and 

right hemisphere (rg = 0.160, P = 7.34 x 10-04). 

The correlations of cognitive and psychiatric and neurological disorders are largely supported 

by gene enrichment analysis of the genes associated with Resilience here and previous 

GWAS of cognitive and psychiatric phenotypes. An analysis of published research from the 

GWAS catalog [60]  showed that the significant SNPs found in this study were previously 

cited 294 times. A total of 47% of these citations were from studies of cognitive phenotypes 

(educational attainment, cognitive ability, maths ability and RT) and 5% were from studies of 

psychiatric disorders (Supplementary Table 18). In addition, when this exercise was repeated 

for overlapping mapped genes, we found that there was considerable overlap with these 

phenotypes amongst others. The most significant overlap was where 40 mapped genes in the 

Resilience analysis overlapped with the 99 reported genes for short sleep duration (P= 2.03 x 

10-57). In a recent Mendelian randomisation study on sleep duration it was suggested that 

sleep duration may represent a potential causal pathway for differences in cognitive ability 

[61] and increase sleep in adults over 60 is associated with poorer cognitive function [62]. 

There was also a significant overlap with genes associated with extremely high intelligence 

[63] where 32 Resilience mapped genes overlapped with the 81 associated genes reported in 

that study (P = 1.17 x 10-45). Many of the overlapping genes for sleep duration and extremely 

high intelligence were on chromosome 3 (Supplementary Table 19). 

Mendelian Randomisation 

To investigate whether genetic correlations reflected directional effects, we examined the 

potential credible causality of the relationship between Resilience and phenotypes where 

independent samples were available using Generalised Summary statistics-based Mendelian 

Randomisation [64] (GSMR) (Supplementary Table 20 and online methods). We observed a 

significant bidirectional causal effect of Resilience on schizophrenia (bxy = -0.25, P = 7.02 x 

10-9) and schizophrenia on Resilience (bxy = -0.07, P = 3.80 x 10-7) indicating an inter-

relationship between the two phenotypes. By contrast, bipolar disorder and ALS did not have 

significant credible causality relationships with Resilience.  
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GSMR analysis was also performed using white matter volume variables and Resilience. To 

maintain independence between GWAS datasets, we used the discovery.Resilience GWAS 

that did not include UKB participants with imaging data. The low level of independent 

significant SNPs in the discovery GWAS did not allow for analysis of the causal effect of 

Resilience on white matter. A nominally significant causal association of white matter 

volume with Resilience was detected (bxy = 0.13, P = 0.049) along with causal associations of 

left and right cerebral hemisphere white matter volume with Resilience. The association with 

the right hemisphere survived multiple test correction (left: bxy = 0.15, P = 0.005; right: bxy = 

0.17, P = 0.002). There is no evidence of substantial pleiotropy in the GSMR analysis. 

Examination of the relationship of Resilience with RT 

Given the strong positive correlation of Resilience with RT (rg = 0.80), a possible concern 

was that we were just identifying genetic associations with RT that are independent of EY. 

To examine this further we performed a functional analysis on a GWAS of a dichotomised 

RT phenotype using all suitable participants in the UK Biobank (n=333,664). This GWAS 

was perfectly correlated (rg = 1, P = 7.24 x 10-115) with a previously published GWAS where 

RT was studied as a quantitative phenotype [27]. We found that while nine of the 13 loci 

identified in the Resilience GWAS overlapped with RT, four loci did not. There was a total of 

534 mapped genes for RT and 366 for Resilience. Of these, 301 were unique to RT and 133 

unique to Resilience with 223 shared genes. Only 11 of our 33 prioritized genes in Resilience 

were among the 27 prioritized genes for RT (Supplementary Figure 5). Pathway enrichment 

analysis identified GO terms that were enriched for both RT and Resilience associated genes 

(e.g., the cellular component “synaptic part”)) but also showed pathways related to neuronal 

processes that are only significant in Resilience (e.g., the biological process 

“neuron_differentiation”; Supplementary Table 21). The genetic correlation between 

Resilience and RT is strong because this is an RT-based resilience phenotype. However, there 

are differences in the associated genes being detected and prioritized because we detected 

SNPs associated with faster than average RT in individuals that previously showed below 

average EY, i.e., the resilience phenotype in this study. This phenotype enabled the 

identification of genetic differences between those individuals in the UK Biobank who 

preserved or maintained their capability to process information and respond over a 40-year 

time period compared to individuals who showed diminishing processing speed. 
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Discussion 

This is the first study, to our knowledge, to explore the genetic basis of cognitive resilience in 

a large data set, here using processing speed measured in later adulthood as a basis for a 

resilience phenotype. In the absence of longitudinal data, we used a proxy phenotype of EY 

to measure cognitive performance in earlier adulthood and have combined case-control 

GWAS with structural equation modelling to extract genetic variants associated with 

Resilience in the UKB. We have shown the robustness of this method by confirming 

associations detected in a discovery sample replicate in an independent sample. We have 

successfully identified 13 independent genome-wide significant loci resulting in 366 mapped 

genes and 33 prioritized genes for Resilience. Functional analysis showed significant 

expression of associated genes in all brain tissues, and particularly in the frontal cortex. 

Significant enrichment of associated genes was also found at the cellular level in both 

GABAergic and glutamatergic neurons indicating an excitatory/inhibitory control in the 

prefrontal cortex, and within biological processes related to neuron differentiation and 

synaptic activity.  

Mapping of GWAS results identified genes that have been previously associated with 

cognitive decline including STAU1, SEMF3A, IP6K1, MST1, the ATNX2/BRAP locus, 

ALDH2 and DDX27, where a likely functional missense variant is highly associated. Other 

associated genes involved with synaptic activity and neurogenesis include BNS, DAG1, 

IP6K1 and TET2, pointing to potential targets for improvement of cognitive resilience.  

One limitation of our study was our reliance on RT to create the Resilience phenotype, which 

results in a strong genetic correlation between Resilience with RT. This reflected our study 

design that detected SNPs associated with faster than average RT or processing speed in 

individuals that previously showed below average EY. However, the majority of genes 

prioritized by our Resilience GWAS are not prioritized by the RT GWAS and vice versa. We 

conclude that these findings point to genes that enhance maintenance of processing speed 

over the life span. Decline in processing speed is a s strong predictor of decline in cognitive 

processing in older adults [11] and had been found to be associated with cerebral small vessel 

disease and factors involved in the maintenance of cerebellar morphology[65]. In addition, 

better cognitive processing speed is also associated with larger cerebral cortex volumes 

(supporting our finding of a causal relationship with white matter volume), lower levels of 

inflammatory markers and insulin and is mediated by physical exercise [66]. Over half of our 
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genome-wide significant loci for Resilience are not associated with intelligence, indicating 

that factors such as reserve, compensation and maintenance may play a role over and above 

overall intelligence in determining resilience. 

Our use of a proxy phenotype for past cognitive performance and GBS to generate a 

Resilience GWAS was in response to the limitation of not having direct repeated 

measurements of same cognitive phenotype in large numbers of genotyped samples over an 

extended time period. Instead, we refined our analysis to make best use of available 

phenotypic data in UKB to exploit the large sample size available for genetic discovery. We 

used the proxy phenotype of academic achievement (EY) to represent past cognitive 

performance in the absence of a direct measure of processing speed. In support of this 

approach, a study using  a sample of 1,560 pupils found that information processing speed is 

the key predictor of number sense, fluid intelligence and working memory, which in turn 

predict individual difference in academic achievement [67]. A further limitation is that 

processing speed as measured by RT is only one component of cognition and it may not be 

possible to extrapolate the results of this analysis to global cognitive resilience. However, this 

can be addressed by various biobanks that plan new data collection in the future. In addition, 

while the robustness of the method is demonstrated in a discovery and replication sample, it 

is limited to the UK Biobank and is not confirmed here in another data set. 

This study demonstrated a new method to explore cognitive resilience and identifies 

associated loci and genes that provide neurobiological insights for this processing speed-

based resilience phenotype. It suggests that cognitive resilience is not just a function of 

superior intelligence and is causally related to variation in white matter volume. This is turn 

may represent a potential target for studies seeking to enhance resilience therapeutically.  
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Materials and Methods: (Refer to https://github.com/joanfitz5/cog.res for detailed analysis 

steps) 

Ethics Statement 

Our use of the UK Biobank data in this study falls within UK Biobank's generic Research 

Tissue Bank (RTB) approval from the NHS North West Research Ethics Committee, UK 

(reference 11/NW/0382). 

UK biobank 

The UK Biobank (UKB) is a data set of over half a million participants between the ages of 

40 and 69, recruited from all over the UK in the period of 2006 to 2010 and had been 

described extensively elsewhere [15].  We obtained permission to access both the phenotypic 

and genetic data under project # 23739.  

Genetic data:  Genotypic data was collected, processed, quality controlled and imputed by 

UKB [68]. During our in-house quality control of the imputed data, we excluded samples 

with a Mahalanobis distance >6 SD from multi-mean of European Population structural 

analysis, removed samples with discordant sex information, chromosomal aneuploidies, high 

missingness/heterozygosity, retracted consent, and we excluded all related subjects using 

UKB-provided files on genomic relatedness. The final sample size used in this analysis was 

333,664 participants. 

Variants were screened by applying quality control filters (geno 0.02, MAF 0.001, info score 

0.09 and HWE 0.0001) and removing duplicates resulted in 8,378,152 variants for use in our 

final analysis. 

Phenotypic data 

Participants undertook a wide range of cognitive tests.  The types of tests and the method of 

collection and reliability are described elsewhere [69, 70].  Analysis of cross-sectional 

cognitive data at time zero using IBM SPSS V24 [71] shows a moderate correlation between 

age and decline in performance on reaction time and a small correlation with numeric 

memory, pairs matching, prospective memory, and a weak correlation with fluid intelligence 

(Supplementary Table 22). Fluid intelligence was repeated at two subsequent intervals, 

however no significant sensitivity to aging was found. Deficiencies in the robustness of the 
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longitudinal data collected at the second and third time points have been discussed elsewhere 

[9,10].  

Generation of resilience phenotype 

Given the lack of longitudinal data, an alternative approach was to use proxy phenotypes. For 

past cognitive performance we examined the use of educational attainment / years in 

education [13]. Educational attainment is available for 332,089 individuals in UKB that met 

our genotypic QC requirements. In the data set, age completed full time education was 

recorded for participants who did not go to college but not for those who attended higher 

education. We therefore assigned a default score of 20 to those who attended college and 

created a binary phenotype using less than or equal to age 17 to divide participants into two 

categories – above average and below average education years (EY). We then examined the 

cognitive data and selected the parameter of processing speed as measured by reaction time 

(RT) as an indicator of current cognitive performance. RT was chosen as it had a good 

correlation with age and data was available on most participants (N=331,495).  RT was 

adjusted for age and to improve normality [17], the natural log of corrected RT was 

computed, and a binary RT variable was created using the mean value (5.71). Those with a 

value less than or equal to the mean were considered to have faster than average processing 

speed/RT (quicker to react) and those above the mean were considered to have slower than 

average processing speed/RT. At total of 330,098 individuals had measurements for EY and 

RT and genetic data and these made up the final sample (Supplementary Table 23).  

Using these two binary variables – above or below average EY and faster or slower RT – we 

created four group of participants (Figure 1b). One of these groups demonstrated high 

resilience and these were our cases for our first “EY+Res” GWAS who had below average 

EY previously and faster than average RT now. A second group demonstrated low resilience 

or cognitive decline, and these were our controls for that GWAS who had above average EY 

previously and slower than average RT now. The two remaining groups of UKB samples 

displayed consistent cognitive performance over time. Here our cases for our second 

“EY/NonRes” GWAS had below average EY previously and slower than average RT now 

(below average cognition over time) and our controls had above average EY previously and 

faster than average RT now (above average cognition over time).  

GWAS-by subtraction 
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To extract those SNPs that were associated with resilience only we used Genomics Structural 

Equation Modelling (GenomicSEM ) [22]. There are several processing steps that need to be 

performed to enable the summary statistics to be processed through GenomicSEM and these 

are described in the original paper by Grotzinger et al and accompanying tutorials [22, 72]. 

Following closely the process use by Demange et al [23], we defined a Cholesky model 

(Figure 2) as follows using the summary statistics from the EY+Res and EY/NonRes 

GWASs. Both EY+Res and EY/NonRes were regressed on a latent factor, which captured the 

shared genetic variance in EY (hereafter “EduYears”). EY+Res was further regressed on a 

second latent factor capturing the variance in EY+Res independent of EY/NonRes, hereafter 

“Resilience”. Genetic variance in Resilience was independent of genetic variance in EduYears 

(rg = 0) as the Resilience factor represents residual genetic variation in our EY+Res 

phenotype that is not accounted for by the EduYears factor. These two latent variables, 

Resilience and EduYears were then regressed on each SNP in the original GWASs (EY+Res 

and EY/NonRes) resulting in new GWAS summary statistics for both Resilience and 

EduYears (Figure 2). To calculate the path loadings for λEduYears – EY+Res and 

λResilience – EY+Res, the model was run without the SNPs.  

Execution of GBS 

To show replication of our GBS-based Resilience GWAS, we divided the UKB into a 

discovery (81%) and replication (19%) sample. The replication sample included those 

participants in UKB that had brain imaging data available (n=37,439) and other random 

participants to give a total sample size of 63,554. The discovery sample consisted of the 

remaining suitable participants (n= 266,543) Sample sizes used for analysis are shown in 

Supplementary Table 1. For the discovery, replication and full analysis we performed two 

initial GWAS for each sample (EY+Res and EY/NonRes) in plink2.0 [73]  using sex, age, 

assessment centre, genotype array and the first 8 principle components of the population 

stratification analysis as supplied by the UK Biobank. We then performed GBS on both sets 

of samples resulting in a discovery.Resilience and discovery.EduYears GWAS, a 

replication.Resilience and a replication.EduYears GWAS, and later a full Resilience GWAS 

and EduYears GWAS. 

Calculation of sample size after GBS 

Running the analysis through GBS alters the sample size and it is necessary to calculate the 

new value for downstream analysis. To calculate sample size or effective N (Neff) of the 
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Resilience GWAS for test, replication and full we followed the procedure specified in 

GenomicSEM[22, 74] and by Demange et al [17] (see URLs). To do this we needed to 

determine path loading for the models used in the three analysis as the path loading differs 

with different sample sizes. We trimmed our data to only include SNPs with a MAF of >0.10 

and <0.40 as low and high MAF can bias the result. The output of this analysis and the 

calculations of sample size is in Supplementary Table 24. 

Additional GWAS 

To examine the effect of GBS on EY+Res we ran two further case-control GWAS of 

above/below average EY and faster/slower than average age corrected RT. We mirrored the 

sample size used to generate EY+Res and EY/NonRes by randomly selecting 82,000 samples 

as cases and controls from the data set. This analysis was run in plink 2.0 [73]  using sex, age, 

assessment centre, genotype array and the first 8 principle components of the population 

stratification analysis as supplied by the UKB. To further interpret the relationship of 

resilience to RT we performed a quantitative GWAS on the 164,000 samples used in the 

cases control study. In addition, we also performed a full dichotomised study of all 333,664 

individuals in the UK biobank with RT data. 

Identification of genomic loci associated with resilience 

Manhattan plots of GWAS outputs from original phenotypes and GBS outputs were 

generated in FUMA v 1.3.6 [24] using a P-value setting of <5 x 10-8 for genome-wide 

significant SNPs. We used an LD r2 setting of 0.6 and the 1000G phase 3 European reference 

panel to identify independent lead SNPs and an additional r2 setting of 0.1 to identify lead 

SNPs and a maximum distance for LD blocks of 250 kb to separate findings into separate 

genetic loci. Conditional analysis was performed where there was more than one independent 

significant SNP within 1000 kb distance using --condition command in Plink 1.9 [73], which 

adds a SNP as a covariate in GWAS analysis.  

FINEMAP [26] was used to investigate causal SNPs by analysing the relationship between 

the candidate GWAS SNPs generated in FUMA and LD data. LD files were generated in 

plink 1.9 using the --r square spaces command.  Results of SNPs listed by Bayes Factor for 

each locus were examined as well as the configuration files generated by FINEMAP to 

examine for causal SNPs sets. The maximum number of SNPs in a set was fixed at 3.  

Function analysis of GWAS output 
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We used FUMA v 1.3.6 [24] to perform functional analysis. We used the default settings as 

described in the Tutorial section of the website and in previous publications [54, 75] . FUMA 

analysis of Resilience is published and can be viewed publicly in FUMA as ID:171. We used 

the calculated effective sample size of 111,316 (Neff) for the analysis of the Resilience output 

to examine the functional consequences of SNPs on genes, Combined Annotation Dependent 

Depletion (CADD) scores, chromatin states and Regulome DB analysis. 

Mapping SNPs to genes 

Gene-mapping was performed in FUMA using three strategies: (a) Positional mapping which 

mapped SNPs to genes based on their genomic location within a 10 kb window of known 

gene boundaries.  (b) Expression quantitative trait (eQTL) mapping which aligned  cis-eQTL 

SNPs to genes whose expression they affected, selecting information from tissue types in 4 

data sets in FUMA (PsychENCODE [76], BIOS QTL [77], Blood eQTL [78], and GTEx 8 

[79]). (c) Chromatin interaction mapping using the 3D DNA to DNA interactions mapped 

SNPs to genes. 

Gene-set analyses: The GENE2FUNC function within FUMA examines enrichment of 

mapped genes using hypergeometic tests of 9494 gene-sets form GTEx [80] , MSigDB [81] 

and GWAS catalog [82].   

MAGMA gene-based analysis 

FUMA computes a gene-based genome-wide association analysis (GWGAS) from the SNP-

based P-value from the GWAS. A total of 18,879 protein coding genes containing a 

minimum of one GWAS SNP were used in this analysis and were used to test for association 

with 53 tissue types. Associations were Bonferroni corrected for multiple testing with P < 

0.05/18,879 = 2.648 x 10-6. 

We further explored the sets of associated genes in cell type specificity analyses with scRNA-

seq in FUMA [83] using the following data sets: GSE104276 Human Prefrontal cortex per 

ages [42], GSE67835 Human Cortex [84] and Linnarsson Mouse Brain Atlas [44]. We 

analysed significant cell types across datasets, independent cell type associations based on 

within-dataset conditional analyses and pair-wise cross-datasets conditional analyses. 

Comparison with published traits 
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LD score regression (LDSR) analysis was performed using the LDSC function within 

GenomicSEM [22] to examine the genetic correlation between Resilience with other 

phenotypes. Various sources were used to obtain summary statistics from GWAS of 

published research in psychiatry, brain imaging, and other traits of interest (supplementary 

Table 16 and 17). Munged summary statistic files generated during GBS were used for 

Resilience, EduYears, EY+Res and EY/NonRes in the LDSR. Associations were Bonferroni 

corrected for multiple testing with P < 0.05/21 = 2.88 x 10-3. 

Mendelian Randomisation 

Mendelian randomisation was performed using Generalized Summary statistics-based 

Mendelian Randomization [85] GSMR using the GCTA tool [86]. The procedure examines 

credible causal associations between different traits based on GWAS outputs and requires 

non-overlapping samples. This restricted our analysis because most of the traits examined by 

LDSC contained UKB participants. However the sample used for the discovery.Resilience 

GWAS (section 1.2.1) does not contain individuals that have imaging data within the UKB so 

we used this cohort to examine unidirectional and bidirectional causal associations between 

Resilience and phenotypes that showed significant correlations with Resilience using LDSC. 

We used a HEIDI-outlier p-value of 0.01 for outlier detection analysis. Given the low level of 

independent significant SNPs in the discovery.Resilience GWAS and the imaging GWAS, we 

reduced the default minimum level of significant SNPs from 10 to 8.  For the disorders of 

ALS, bipolar disorder and schizophrenia we used the full Resilience GWAS and ran the 

analysis at the default setting of a minimum of 10. Associations were Bonferroni corrected 

for multiple testing with P < 0.05/12 = 4.23 x 10-3. 

URLs:    

UK Biobank: http://biobank.ndph.ox.ac.uk 

Plink: www.cog-genomics.org/plink/2.0/ 

GenomicSEM: https://github.com/MichelNivard/GenomicSEM/wiki 

GWAS-by-subtraction: https://rpubs.com/MichelNivard/565885 

GBS sample size (N effective) calculation: https://github.com/PerlineDemange/non-

cognitive/blob/master/GenomicSEM/Cholesky%20model/Calculation_samplesize.R 

Functional Mapping and Annotation (FUMA): https://fuma.ctglab.nl/downpage.html 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.01.22.427640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427640


28 

 

Venn diagram: http://bioinformatics.psb.ugent.be/webtools/Venn/ 

FINEMAP: http://www.christianbenner.com/ 

Generalised Summary-data-based MR: https://cnsgenomics.com/software/gcta/#GSMR 

GWAS Catalog: https://www.ebi.ac.uk/gwas/ 

Brain phenotypes: https://open.win.ox.ac.uk/ukbiobank/big40/ 

GWAS Atlas: https://atlas.ctglab.nl/ 

Ensembl Variant Effect Predictor: https://www.ensembl.org/Tools/VEP 
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Figure Legends 

Figure 1: Flow chart of study design. (a) The available UKB samples were split into 

Discovery (81%) and Replication (19%) samples. Following successful replication analysis, 

the Full sample was also put through the analysis pipeline. (b) For Discovery, Replication or 

Full, samples were assigned to one of four categories based on their EY and RT measures. (c) 

EY+Res cases and controls were analysed in a GWAS. (d) EY/NonRes cases and controls 

were analysed in a GWAS. (e) GBS used to subtract the genetic signals for EY/NonRes from 

EY+Res to result in a Resilience GWAS and an EduYears GWAS. (f) Resilience GWAS 

functionally analysed to identify associated SNPs and genes, and enriched tissues, cell types 

and pathways, identify genetic correlations with other traits and explore causal relationships 

between resilience and other traits using Mendelian randomisation. 

 

Figure 2: SEM of GWAS-by subtraction model. The observed variables are the GWAS 

EY+Res and EY/NonRes and SNP and the latent variables (unknown) are Resilience and 

EduYears. There are two pathways for the SNPs analysis in this model to EY+Res – the first 

is through EduYears to EY+Res and EY/NonRes and incorporates the genetic effects of the 

variables used in the phenotype. The other path is through Resilience to EY+Res and 

measures the genetic effect of resilience independent of EduYears. To calculate the model, 

the genetic covariances between EY+Res and EY/NonRes and Resilience and EduYears are 

set to 0 and the variances of EY+Res and EY/NonRes are also set to 0. The variance is 

therefore explained by the latent factors. The SNP value is calculated as 2pq from allele 

frequencies of the 1000 Genome phase 3 data where p is the reference allele and q the 

alternative allele.   

 

Figure 3: Resilience GWAS and gene identification. (a) Manhattan plot of Resilience 

identifying 13 independent genome-wide significant loci. (b) Quantile – quantile plot of 

GWAS SNPs. (c) Quantile –quantile plot of the gene-based association test. (d) Venn 

diagram of overlapping mapped genes by four strategies showing 33 genes were mapped by 

all four strategies. These genes are listed underneath. 
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Figure 4: Tissue and cell type expression analysis. (a) Gene - tissue expression analysis 

based on GTEx RNA-seq data. Results that are still significant after correction for multiple 

testing are in red. (b) Independent cell type associations based on within-dataset conditional 

analyses. 

 

Figure 5: Genetic correlation with cognitive traits, psychiatric and brain disorders, and 

brain imaging phenotypes. Significant P values corrected for multiple testing are in bold, 

*normalised for head size ,**generated by subcortical volumetric segmentation. 
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