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Abstract 

Reciprocal exchanges of DNA (crossovers) that occur during meiosis are mandatory to ensure the 
production of fertile gametes in sexually reproducing species. They also contribute to shuffle 
parental alleles into new combinations thereby fuelling genetic variation and evolution. However, 
due to biological constraints, the recombination landscape is highly heterogenous along the genome 
which limits the range of allelic combinations and the adaptability of populations. An approach to 
better understand the constraints on the recombination process is to study how it evolved in the 
past. In this work we tackled this question by constructing recombination profiles in four diverging 
bread wheat (Triticum aestivum L.) populations established from 371 landraces genotyped at 
200,062 SNPs. We used linkage disequilibrium (LD) patterns to estimate in each population the past 
distribution of recombination along the genome and characterize its fine-scale heterogeneity. At the 
megabase scale, recombination rates derived from LD patterns were consistent with family-based 
estimates obtained from a population of 406 recombinant inbred lines. Among the four populations, 
recombination landscapes were significantly positively correlated between each other and shared a 
statistically significant proportion of highly recombinant intervals. However, this comparison also 
highlighted that the similarity in recombination landscapes between populations was significantly 
decreasing with their genetic differentiation in most regions of the genome. This observation was 
found to be robust to SNP ascertainment and demography and suggests a relatively rapid evolution 
of factors determining the fine-scale localization of recombination in bread wheat.    
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Introduction 

Meiotic recombination (or crossover; CO) is the obligate genetic exchange between homologous 
chromosomes that occurs during the production of gametes in sexually reproducing species. Besides 
its role in ensuring proper segregation of chromosomes in gametes, it also impacts evolution by 
breaking linkage between advantageous and deleterious alleles and by creating novel combinations of 
alleles (Barton 1995; Charlesworth and Barton 1996; Otto 2009). Recombination rates are highly 
variable between species and also at different genomic scales. At the chromosomal level, COs are not 
evenly distributed depending on either the size of the chromosomes, the region of the chromosomes 
or on interference. Interference was first observed in Drosophila (for review see (Berchowitz and 
Copenhaver 2010) and is defined as the impossibility for a type I CO (i.e. COs that are submitted to 
interference contrary to type II COs that are not) to occur in the vicinity of another CO from the same 
type. Type I COs are thus more regularly spaced along chromosomes than expected from random 
(Zickler and Kleckner 2015). Within chromosomes, some regions are also deprived of Cos, such as 
centromeres where COs are absent in all species studied so far. Moreover, in many species, distribution 
of COs is skewed towards telomeres where they show a high tendency to occur. In wheat (Triticum 
aestivum L.) for example, more than 80% of the recombination events occur in the terminal regions of 
the chromosomes representing less than 20% of the genome (Saintenac et al. 2009; Choulet et al. 
2014; Darrier et al. 2017; International Wheat Genome Sequencing Consortium IWGSC 2018). The 
main hypothesis to explain this behaviour is the early initiation of synapsis and recombination in the 
telomeric regions as shown in barley (Higgins et al. 2012; Dreissig et al. 2019). In species with small 
chromosomes such as Arabidopsis thaliana or rice (Oryza sativa), recombination events are more 
evenly distributed along the chromosomes with the exception of the centromeres (Choi et al. 2013; 
Drouaud et al. 2013; Marand et al. 2019). However and despite these differences, there is rarely more 
than three COs per chromosome and per meiosis in every species (Mercier et al. 2015). 

At a local scale, in most species including yeast, birds, snakes, fishes, mammals and plants, COs mainly 
occur in small regions of a few kilobases (kb) called hotspots (Myers et al. 2005; Mancera et al. 2008; 
Choi and Henderson 2015; Singhal et al. 2015; Shanfelter et al. 2019; Schield et al. 2020). In some 
mammals, these hotspots are determined by PRDM9, a SET-domain protein with a zinc-finger array 
that binds DNA (Boulton et al. 1997; Oliver et al. 2009; Baudat et al. 2010; Myers et al. 2010). PRDM9 
recognizes specific DNA motifs and deposits an epigenetic landmark (histone H3 trimethylated on 
lysine 4: H3K4me3) that is further recognized by the machinery forming double-strand breaks that 
initiates COs (Murakami et al. 2020). However, many if not most species (e.g. birds, plants, yeast, 
snakes and fishes) do not exhibit a PRDM9 derived mechanism for driving the localization of 
recombination hotspots. There are mainly determined by chromatin features and are often found in 
accessible chromatin regions (Auton et al. 2013; Choi and Henderson 2015; Singhal et al. 2015; Marand 
et al. 2017; Marand et al. 2019) although intermediate situations exist (Schield et al. 2020). 

Determinisms of local recombination rates with regards to the distribution of CO hotspots remain 
unknown in many organisms. One approach to better understand these determinisms is to 
characterize the evolution of the recombination landscape and evidence its conservation or lack there-
of. This can be achieved by contrasting recombination landscapes in closely related species (Stapley et 
al. 2017) or in differentiated populations of the same species (Kong et al. 2010; Salomé et al. 2012; 
Petit et al. 2017). For example, in rice, less than 20% of the CO hotspots are common between the two 
subspecies Oryza sativa ssp. japonica and O. s. ssp. indica (Marand et al. 2019) although they diverged 
relatively recently (440,000-86,000 years ago (YA); Ma and Bennetzen 2004; Vitte et al. 2004; Zhu and 
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Ge 2005; Tang et al. 2006). Similarly, analysis of the recombination landscapes in the cocoa-tree 
(Theobroma cacao) showed only little overlap of recombination hotspots across ten diverging 
populations with less divergent populations showing higher level of overlap (Schwarzkopf et al. 2020). 
An analysis of the recombination landscapes in wild barley (Hordeum vulgare ssp. spontaneum) vs. 
domesticated barley (H. vulgare) revealed that recombination tend to cluster in more distal regions in 
the latter (Dreissig et al. 2019) while the two species diverged approximately 4 million years ago (MYA 
; Brassac and Blattner 2015), and domestication began approximately 10,000 YA (Badr et al. 2000). A 
finer-scale analysis among subpopulations of wild barley revealed that recombination rate varied 
according to environmental conditions (temperature, aridity, solar radiation, annual precipitations), 
suggesting that environmental factors might explain part of these differences (Dreissig et al. 2019). 

High-density genotyping SNP arrays as well as new generation sequencing (NGS) approaches now allow 
to analyse large collections of wild/domesticated, ancient/modern populations of both animals and 
plants. Such a large amount of accurate data permits to better decipher the recombination landscape 
from patterns of Linkage Disequilibrium (LD) (Li and Stephens 2003; Auton and McVean 2007; Chan et 
al. 2012). The advantages of using this approach stem from the large number of meiosis that occurred 
during the evolution of sampled populations compared to bi-parental or multi-parental experimental 
populations. First, as LD-based recombination inference is based on recombination happening in many 
different individuals it should consequently be less sensitive to individual specific variation, which 
might occur in the presence of structural variation for example (Bauer et al. 2013; Rowan et al. 2019). 
Second, LD-based recombination rate estimates are more resolutive as genetic diversity is higher 
compared to experimental segregating populations that typically involve few parents. However, the 
drawback of this approach is that the recombination landscapes obtained can be affected by 
evolutionary forces (Charlesworth and Charlesworth 2010; Auton and McVean 2012; Choi and 
Henderson 2015) and consequently have to be interpreted cautiously. 

Despite these limitations, the LD-based approach was successfully applied at the whole-genome level 
in many species including birds (Singhal et al. 2015; Smeds et al. 2016), yeast (Tsai et al. 2010), 
Arabidopsis (Choi et al. 2013), rice (Marand et al. 2019), barley (Dreissig et al. 2019) and bread wheat 
chromosome 3B (Darrier et al. 2017). This latter study was limited to chromosome 3B as it was the 
only chromosome presenting a sufficiently high-standard reference sequence at that time (Choulet et 
al. 2014; IWGSC 2014). The analysis of two collections representative of the Asian and European 
genetic pools revealed a high similarity between their recombination profiles. These LD-based profile 
were also shown to be consistent with a meiotic recombination profile derived from a bi-parental 
population (Chinese Spring x Renan ; Choulet et al. 2014). This result suggested that recombination 
rate estimation through a LD-based approach could be even more informative and resolutive along the 
whole genome using the last gold-standard reference sequence available (IWGSC 2018), as well as 
high-density genotyping of large wheat collections. 

The complexity and huge size (16 gigabases) of the wheat genome have long hampered the 
development of high throughput genomic tools as well as the establishment of a whole genome 
sequence. Bread wheat is an allo-hexaploid species (AABBDD; 2n = 6x = 42) derived from two 
successive interspecific crosses involving three diploid species (for details, see 
https://www.wheatgenome.org/; IWGSC 2014; IWGSC 2018): T. monococcum ssp. urartu (AA 
genome), a yet-unknown species related to the Sitopsis section (SS genome related to the wheat BB 
genome) and Aegilops tauschii (DD genome). However, international efforts combined with 
appropriate and original strategies using chromosome sorting, chromosome-specific BAC libraries, 
paired-end short-read sequencing and relevant assembly approaches, lead to the publication of a high-
standard, annotated, oriented and anchored sequence of the wheat genome (IWGSC 2018). At the 
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same time and despite the presence of a high proportion of transposable elements (85%; Wicker et al. 
2018), high-density SNP arrays have been successfully developed and used for marker-assisted 
selection (Sun et al. 2020) and for the characterization of collections (Winfield et al. 2016; Balfourier 
et al. 2019). In the study of Balfourier et al. (2019), the genetic structuration of 4,506 bread wheat 
landraces and cultivars representative of the worldwide diversity was described using the TaBW 280k 
SNP chip. These data offer the opportunity to extend previous work on bread wheat by analysing 
recombination along the whole genome and across more populations. We compared the ancestral 
recombination profiles of four populations with the meiotic recombination observed in a biparental 
recombinant inbred lines (RILs) population (Chinese Spring x Renan; CsRe). We developed specific 
statistical models to evaluate and minimize the influence of evolutionary forces on the comparison of 
recombination landscapes between populations.  

Results 

Identification of four populations of bread wheat landraces  

Establishing LD-based recombination maps requires samples of unrelated chromosomes from a 
homogeneous population. We extracted a subset of 371 landraces representative of the worldwide 
diversity from Balfourier et al. (2019), forming four distinct and mostly homogeneous genetic 
populations (see methods) (Figure 1) that were named according to the geographical origins of their 
members: the West-European population (WE), composed of 127 accessions originating from France 
(52 accessions), Spain (10), Germany (8) and from 30 other Western European, Mediterranean 
countries and Iberian peninsula; the East-European population (EE), composed of 70 accessions 
originating from France (9), the Russian Federation (7), Ukraine (5) and from 27 other Eastern 
European countries; the West-Asian population (WA), composed of 97 accessions originating from 
Afghanistan (8), Pakistan (8), Turkey (8) and from 33 other of Caucasian and Central Asia countries and 
Indian peninsula; the East-Asian population (EA) composed of 77 accessions originating from China 
(61), Japan (7), the Republic of Korea (4) and from 5 other South East Asian countries (supplementary 
file S1). The genetic differentiation of the four populations confirmed an increasing genetic divergence 
along a Eurasian gradient (Figure 1), consistent with isolation by distance, selection and differentiation 
that occurred during the initial independent spreads of bread wheat from the Cradle of Agriculture 
and Wheat in the Fertile Crescent toward Europe on the one hand and Asia on the other hand during 
the Neolithic period (Balfourier et al. 2019). WE and EE are the most related groups (FST = 0.015) while 
WE and EA are the more divergent ones (FST = 0.085) and also the most geographically distant. The WA 
population is the closest population to the tree root possibly because it includes accessions that were 
collected not far from the centre of domestication of bread Wheat (Fertile Crescent: Turkey, Iraq, Iran; 
Caucasus and Caspian Sea: Armenia, Georgia, Kazakhstan, Turkmenistan). The EA population appears 
as a very differentiated and homogenous population. WE and EE are less differentiated because they 
separated more recently from each other (Balfourier et al. 2019). 

The genetic composition of the four populations appeared quite distinct between populations but 
homogenous within populations when described by the K=4 admixture analysis of Balfourier et al. 
(2019) (Figure 1). WE, EE, WA and EA have almost all their members belonging to the same specific 
dominant group (respectively named by Balfourier et al. (2019) as North West European, South East 
European, Central Asian and African and South East Asian groups) with a high membership coefficient: 
0.74 on average for WE (standard deviation = 0.16), 0.81 for EE (±0.16), 0.73 for WA (±0.17) and 0.93 
for EA (±0.14). The WE and WA populations appear to be more admixed than EE and EA at K=8 
(supplementary Figure S1). In order to analyse groups that are large enough to estimate relevant 
statistics, we split landraces into four populations, although there is some sub-structuration within 
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populations. This was motivated by the fact that model we used to estimate LD-based recombination 
rates was shown to be robust to moderate levels of structuration (Li and Stephens 2003).  

 

 

Figure 1: Bread wheat landrace genetic divergence and structuration. Population tree Neighbour Joining tree built with 
pairwise Reynold distance matrix computed on SNP alleles and rooted by HAPFLK software (Bonhomme et al. 2010; Fariello 
et al. 2013). WE = West Europe, EE = East European, WA = West Asia, EA = East Asia. Fst matrix (%) Weir and Cockerham 
pairwise Fst computed with simple matching distance of haplotypic alleles. Population structure Admixture coefficients for 
K=4 from Balfourier et al. (2019) using STRUCTURE software and haplotypic alleles. 

 

Recombination patterns are broadly conserved across populations 

Robust meiotic recombination map of a population of Recombinant Inbred Lines (RILs) 

We established a meiotic recombination map from recombination events observed in a population of 
406 F6 RILs (termed CsRe in the following). This population is derived from a cross between two bread 
wheat varieties: Chinese Spring and Renan belonging respectively to the EA and WE gene pools. The 
CsRe population was previously genotyped for the same set of SNPs as the landraces (Rimbert et al. 
2018). Recombination rates in CsRe were derived from the observed proportion of recombinants in 
each of the 79,543 intervals defined by SNPs that were polymorphic in the cross. The distribution of 
recombinants in these intervals led to extremely contrasted situations. On one hand, 60% of these 
intervals harboured no recombinant among the 406 offspring. On the other hand, a few recombinants 
were observed in very small intervals. Using a simple statistical approach to estimate recombination 
rates from these observation produces extreme differences in recombination rates that are highly 
influenced by the limited sample size available. In order to produce more reliable estimates that better 
account for sample size and uncertainty, we fitted a Bayesian Poisson Gamma model on the observed 
recombinant counts (see methods). With this model, the estimates of recombination rates in the RILs 
population ranged from almost 0 to 78 cM/Mb among intervals. Compared to the simple estimates 
that ranged up to 2,806 cM/Mb this approach has the advantage of shrinking extreme values that are 
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unrealistic and solely due to the limited number of RILs available. Consistent with the Bayesian model 
correcting for the effect of sample size, the correlation between naive and Bayesian estimates 
increases with the number of observed recombinants per intervals (Supplementary Figure S2), i.e. the 
two approaches converge to the same inference when the data is informative enough. 

Validation of LD-based recombination maps on CsRe meiotic recombination map 

LD-based recombination maps were inferred from patterns of LD between polymorphic SNPs for each 
landrace population independently using PHASE (Li and Stephens 2003). As LD is strongly related to 
meiotic recombination but can also result from evolutionary forces, those maps were compared to the 
meiotic CsRe recombination map described above.  

Before estimating LD-based recombination rates, SNPs were filtered out on Minor Allele Frequency 
(MAF) with a minimum value of 3% within each population, yielding to 170,509 SNPs for WE, 161,137 
for EE, 171,901 for WA and 131,585 for EA. The average marker density was 11 SNPs/Mb with most of 
the SNPs located at telomeres (25 SNPs/Mb) while centromeres were depleted in SNPs (3 SNPs/Mb). 
SNP density was almost three times higher on the A and B genomes compared to the D genome 
(respectively 14, 14 and 5 SNPs/Mb). This is consistent with the lower rate of polymorphism of the 
wheat D genome.  

 

 

Figure 2: Meiotic and LD-based recombination profiles in 4 Mb windows along chromosome 3B in the CsRe segregating 
population (left) and in the four West European (WE), East European (EE), West Asia (WA) and East Asia (EA) collections (right). 
Each colour corresponds to genomic regions defined by Choulet et al. (2014): highly recombining telomeres R1 (magenta) & 
R3 (red); low recombining pericentromeres R2a (dark green) & R2b (light green); and centromere C (blue) where 
recombination rates are close to 0. LD-based recombination profiles at natural scale are present in supplementary Figure S3. 
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Both LD-based and meiotic recombination profiles showed the same global patterns at the 
chromosome scale (Figure 2). In both approaches, the telomeric regions R1 and R3 of chromosomes 
showed recombination rates (average LD-based recombination rate in WE = 1e-2/kb; average CsRe 
Bayesian recombination rate = 0.8 cM/Mb) around ten times higher than the pericentromeric regions 
R2a and R2b (2e-3/kb; 0.1cM/Mb) and one hundred times higher than the centromeric regions C (2e-
4/kb; 0.01 cM/Mb). Recombination rates on the D genome were higher than recombination rates in 
the A and B genomes. This can be explained by a lower genetic diversity facilitating homologous pairing 
and recombination during meiosis (Saintenac et al. 2011; Rimbert et al. 2018) and by the reduced 
physical size of D chromosomes which, associated to an obligatory crossing over per tetrad, results in 
higher recombination rates on smaller chromosomes.  

 The genome-wide correlation of LD-based recombination profiles and CsRe Bayesian meiotic 
recombination profile was quite high for the four populations (≥ 0.7, Table 1) but slightly higher for 
European populations (pairwise significant differences according Zou’s test (Zou 2007), R cocor 
package). These high correlations are explained by the strong partitioning of the recombination profile 
along chromosomes present in all bread wheat populations, i.e. low recombination rates in 
centromeres and high recombination rates in telomeres (Figure 3). Beyond this inter-region contrast, 
the within region correlations were lower but still significantly positive (1AR1 – 7DR3, Figure 4, 
supplementary file S2). In telomeres R1 & R3 and pericentromeres R2a & R2b, the average correlation 
ranged between 0.50 in EA to 0.58 in WE (Table 1), with an average of 0.56 all populations confounded.  

Table 1 Correlation of the LD-based recombination profiles of the 4 populations of landraces with CsRe Bayesian meiotic 
recombination profile. Recombination rates were averaged in 4 Mb windows. 

 WE EE WA EA 

Genome-wide 0.76 0.75 0.74 0.70 

Average on 84 genomic regions  
(R1, R2a, R2b, R3 of chr 1A – 7D) 0.58 ± 0.22 0.55 ± 0.28 0.55 ± 0.27 0.50 ± 0.29 

Average on 21 C regions 
(chr 1A – 7D) 0.32 ± 0.33 0.30 ± 0.34 0.20 ± 0.34 0.19 ± 0.36 

 

The recombination rates in centromeric regions showed much lower consistency: the correlation of 
centromeric LD-based recombination rates and CsRe recombination rates ranged from 0.19 in EA to 
0.32 in WE. Considering the low correlation but also the low SNP density and the fact that centromere 
sequence assemblies are challenging because of the presence of numerous repeated sequences such 
as transposons and retro-transposons (IWGSC 2018; Wicker et al. 2018), centromeres were no longer 
included in the analyses.  

Among the genomic regions considered, the 7DR3 one exhibited a strikingly low and negative 
correlation between LD-based and meiotic recombination rates in all populations (≤ -0.19, Figure 4). 
This result is due to a low recombination rate in part of this region in the CsRe biparental genetic map 
that is not observed in LD-based maps (supplementary Figure S4). This low recombination rate can be 
explained by the fact that the Renan line carries an inter-specific introgression of 28 Mb on 
chromosome 7D around the eyespot resistance gene Pch1 coming from Aegilops ventricosa (tetraploid 
species; DDNN) (Maia 1967). This introgression does not recombine in the CsRe cross as this was 
previously evidenced in another background (Worland et al. 1988). Interestingly the Renan line carries 
another 20 Mb introgression from Aegilops ventricosa in 2AR1 region around the Lr37/Sr38/Yr17 
resistance gene cluster. However, in this region, contrary to the 7DR3 case, the LD patterns are also 
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consistent with an overall low recombination rate. Since the introgression in region 2AR1 suppresses 
recombination in an already low recombining region, this explains why the correlation coefficient with 
LD-based profiles in 2AR1 does not stand out particularly (Figure 4).  

 

 

Figure 3: Left Genome-wide relationship between the CsRe biparental population meiotic recombination rates and the LD-
based recombination profile of a Western European (WE) bread wheat population. Points represent the recombination rates 
averaged within 4 Mb windows. Right Correlation of LD-based and CsRe recombination rates at a 4 Mb scale within each 
genomic region of bread wheat genome (1AR1…7DR3). Genomic regions smaller than 20 Mb are not included. Stars represent 
genomic regions including well documented introgressions in CsRe population. 

Both CsRe and LD-based maps show a high heterogeneity in the distribution of recombination rates 
along chromosomes: on average 36% of physical distance represents 80% of genetic distance in all our 
populations. To further study the distribution of chromosome sites cumulating historical crossovers, 
we defined highly-recombining intervals (HRIs) in the four landrace populations as intervals with an 
LD-based recombination rate exceeding four-times the background recombination rate (λ ≥ 4, see 
Methods). Combining all four populations, this resulted in 8,713 HRIs, with a median deviation to 
background recombination rate λ = 6.5 (range λ = 4 to λ = 511). Note that we avoid here the term LD-
based recombination hotspot as functional hotspots typically span much smaller genomic regions (size 
< 5 kb, (Marand et al. 2019)) than our defined HRIs (median size = 20 kb). Therefore, we cannot be sure 
that an HRI harbours a single recombination hotspot. The repartition of HRIs along the genome was 
heterogeneous. Most HRIs (73%) were located in telomeric R1 or R3 regions, and the other HRIs (27%) 
in pericentromeric R2a or R2b regions. As HRIs corresponded to respectively 2% and 1% of intervals in 
those regions, telomeres were significantly enriched in HRIs compared to pericentromeres (significant 
chisq test, P-value < 2.2e-16). These HRIs represented 15 % of LD-based genetic distance (from 12 % in 
EA to 18% in WA) and around 9% of the physical distance (from 6% in EA to 10% in WE). The proportion 
of HRIs and non-HRIs intervals co-localizing with open-chromatin features such as genes, 5’UTR and 
3’UTR features was measured independently within regions R1, R2a, R2b and R3 and then averaged. 
It revealed that HRIs are much more co-localizing with gene features than non-HRIs intervals, as the 
proportion of HRIs co-localizing with genes, 5’UTR and 3’UTR was respectively 80%, 56% and 54%, but 
dramatically decreased to 53%, 22% and 24% when considering non-HRIs intervals (supplementary 
Figure S5). Consequently, 80% of HRIs were associated with gene features versus 53 % of the other 
intervals. The density of HRIs is also positively associated with the CsRe meiotic recombination rate 
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averaged in 4 Mb windows in each genomic region R1, R2a, R2b and R3 (P-value < 2.2e-16). The 
proportion of CsRe crossovers overlapping HRIs ranged from 20% in EA to 37% in WE. Most HRIs (82%) 
overlapped at least one CsRe crossover. 

Despite high similarities between LD-based and meiotic recombination profile within genomic region, 
there is still the possibility that LD-based recombination rates might be locally influenced by 
evolutionary forces, such as positive selection, as shown by (Petit et al. 2017) in sheep for example. To 
evaluate the potential effects of positive selection on the LD-based maps, we studied whether a set of 
genes known to be involved in domestication (e.g. brittle rachis (Brt), tenacious glume (Tg), 
homoeologous pairing (Ph) or non-free-threshing character (Q)) or recent crop improvement (Pont et 
al. 2019) were found in regions outliers for the ρ/CsRe ratio. The results showed no evidence of 
reduced recombination around these genes (supplementary Figure S6).  

As no strong bias of evolutionary forces was evidenced, we converted meiotic recombination map 
specific to each landrace population in supplementary file S3. Briefly, LD-based recombination rates 
being proportional to landraces specific meiotic recombination rates, we removed the proportionality 
coefficient by rescaling those LD-based map on CsRe Bayesian recombination map (supplementary 
protocol S1). Generally, the LD-based profiles of recombination are congruent with the meiotic 
recombination map in the CsRe RILs population. This validates the use of LD-based recombination 
maps to study the evolution of recombination patterns.  

Significant differences between LD-based population-specific recombination maps 

Our results reveal that the average LD-based recombination rates vary in a two-fold range between 
populations: WE has the highest rate and EA the lowest (WE: ρ = 0,004/kb; WA: ρ = 0,004/kb; EE ρ = 
0,003/kb; EA: ρ = 0,002/kb; excluding centromeres). This ranking between populations could be 
explained by genetic diversity levels (Figure 1) as well as by different average meiotic recombination 
rates. The fact that WE and WA are more admixed populations than EE and EA favoured a more 
important contribution of diversity levels compared to a real difference on average recombination 
intensity. To eliminate the systematic effect of diversity and demography on recombination rate 
estimates, we chose to compare the population recombination profiles in terms of the deviation from 
their local background recombination rates. Specifically, the Li and Stephens's model (2003) estimates 
an interval specific recombination parameter (λ) that measures the relative rate of recombination of 
an interval compared to its neighbours in a 2 cM window (see Methods). We therefore expect 
population-specific effects (other than local variation in recombination) to affect the background 
recombination rate but not the relative intensities of intervals measured by the parameter λ. 

The similarity of λ profiles along the genome was evaluated by fitting a linear mixed model on the 
variations of	𝑙𝑜𝑔!"%𝜆#$''''( within each genomic region. In almost all genomic regions (79 out of 84), a 
linear model specifying a variance-covariance matrix with different correlation coefficients for each 
pair of populations showed a lowest BIC than a simpler model specifying a variance-covariance matrix 
including only one common correlation coefficient for all pairs of populations (see Methods). This 
indicates that local variations of recombination rates are significantly different between populations. 

The average correlation of local variations of recombination rates across genomic regions was twice 
higher for the highest correlated pair WE-EE (0.47 ± 0.11) than for the lowest one EE-EA (0.20 ± 0.11), 
with an average value of 0.32 (Figure 4). Such decrease in the genome-wide similarity of recombination 
rates can also be measured using a Gini coefficient (Gini 1936). The Gini coefficient is a measure of the 
unevenness of a distribution. It is best known for its use in economics to measure the repartition of 
wealth among individuals. A Gini coefficient of 0 corresponds to a uniform distribution and one of 1 
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corresponds to the case where the distribution is a single point mass. Here we use the Gini coefficient 
to measure the unevenness of the repartition of genetic distance along chromosomes between two 
different populations by computing it based on the distribution of recombination in one population 
along the genetic map of the other: a Gini coefficient of 0 corresponds to identical recombination 
profiles and the more divergent the distribution in recombination profiles is, the higher Gini coefficient 
is. In our case, the pairwise Gini coefficients increased along the Eurasian gradient, with lower values 
for closely related population (around 0.43 for WE-EE) and higher values in distant populations (0.77 
for WE-EA), meaning that similarity in distribution of LD-based genetic distance along chromosomes 
decreases along the Eurasian gradient (supplementary Figure S7). 

 

 

Figure 4: Relationship between pairwise correlation of LD-based recombination intensity λ and Fst. Each boxplot contains 
84 correlation coefficients corresponding to the 84 genomic regions (1AR1…7DR3, excluding centromeres). Letters above 
boxplots indicate if the means are significantly different between populations (Fisher test, p-value < 2.2e-16).  

In light of these significant differences in the local repartition of recombination events, we investigated 
whether this could be explained by difference in the localization of crossover hotspots by comparing 
that of the HRIs (see above).  We first defined “hot windows” as genomic regions that harbour a HRI 
in at least one population. Figure 5A represents the proportion of the 5,881 resulting hot windows 
including HRIs that are population specific (HRI in one population only) or shared by two, three or all 
four populations. Around 66% of these windows are population-specific and 34% are shared by two 
populations or more. The proportion of hot windows shared by three or four population drops to 12% 
and 2% respectively. Location of shared HRIs along the genome followed the density of HRIs per region, 
as most (76%) shared windows were located in telomeric regions R1 and R3 and the rest (24%) in 
pericentromeric regions R2a and R2b (chisq.test P-Value = 0.06). To check if such an overlap across 
populations can be explained by chance alone, we compared the observed repartition of hot windows 
to a simulated distribution obtained by a random assignment of HRIs corresponding to the null 
hypothesis of the absence of HRI population sharing (see methods). The proportion of common hot 
windows under this random assignment is represented by grey boxplots on Figure 5A. The observed 
proportion (coloured points) was always significantly different to the expected proportion under 
random assignment of HRIs. On average, 95% of hot windows are population-specific if assigned 
randomly, much more than the 66% we observed. In addition, four-population overlaps were rare in 
the simulations (8.1% of our simulations) and when they happened they concerned only one or two 
intervals while we found 139 windows where HRIs are shared between the four landrace populations. 
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HRIs shared by more populations tend to be more intense. For example, 55% of WE’s HRIs (λ ≥4) co-
localize with HRIs of other populations (λ ≥4), but this proportion rises to 78% when subsampling WE’s 
HRIs with a higher threshold of λ ≥ 20. The intensity of recombination in a hot window increases when 
it is shared by more populations: the median of λ is 10.7, 8.1 and 6.9 when shared by 4, 3 and 2 
populations respectively and is only 5.9 for population-specific hot windows. This approach to compare 
HRI between populations depends on the threshold to claim HRIs and our ability to detect them, which 
can vary between populations. To make up for these effects, we looked at the recombination intensity 
(λ) observed in one population around HRIs detected in another population (supplementary file S4). 
Figure 5B presents this average recombination intensity for HRIs detected in each of the four 
populations. It shows that the local intensity at an HRI position in the other populations is almost twice 
the background intensity (defined as the intensity measured at 100 kb from the HRI centre (average 
ratio at HRI positions: 29%; average background ratio: 13%). This further shows that HRIs tend to be 
shared across populations. Comparing HRI localizations and intensities in all four populations 
demonstrate that there is a significant amount of sharing of HRIs that could be due to an underlying 
partial conservation of recombination hotspots.  

 

Figure 5: Conservation of highly recombining intervals (HR) across landrace populations. A Proportion of co-localizing HR 
(coloured points) and simulated co-localizing values under random assignment of HRIs (grey boxplots) B LD-based 
recombination intensity in each of the four populations WE, EE, WA and EA around HRIs specific to one population 

Further examination of the increase in recombination intensity on Figure 5B reveals that HRI intensities 
tend to be more similar when populations are more related. For example, around WE’s HRIs, the 
recombination intensity increases in all populations, but slightly less in EA which is the most genetically 
distant population to WE. To study this further, we studied quantitatively the relationships between 
the similarity in recombination profiles and the genetic divergence of populations. To do so, we fitted 
a linear regression to estimate the effect of the local differentiation index (Fst) on the similarity of 
recombination profiles (measured by their correlation) for all genomic regions (R1, R2a, R2b, and R3) 
on all chromosomes (1A to 7D) (Figure 6). We found that most effects (slopes) were negative, revealing 
a striking pattern where the similarity in recombination intensity decreases proportionally with genetic 
divergence: almost all genomic regions (67 among 84) had a negative slope estimate significantly 
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different from 0 and others genomic regions (15 among 84) had negative but non-significant slope 
estimates different from 0. We stress out here that the similarity in recombination profiles is based on 
the relative local recombination intensity (parameter λ) that should not be affected by the evolutionary 
history of populations and that we calculated Fst from haplotypes rather than single SNP to avoid an 
ascertainment effect, although results based on SNP Fst showed the same pattern (supplementary 
figure S8). To further evaluate if the decreasing similarity of recombination patterns could be explained 
by the varying proportion of shared polymorphisms between population pairs, i.e. SNP ascertainment, 
we carried out all our analyses on a subset of 100,381 SNPs that are polymorphic in all four populations. 
We found that the decreasing similarity of recombination intensities with genetic divergence still hold 
using this common SNP dataset (supplementary Figure S9), even if the absolute values of slope 
estimates were smaller (supplementary Figure S10). Finally, these results demonstrate that the 
similarity in recombination profiles of bread wheat populations is strongly negatively associated with 
their genetic divergence and highlight that recombination landscapes in bread wheat have been 
evolving during the establishment of the current genetic structure of wheat populations for reasons 
that we now discuss. 

 

 

Figure 6: Relationships between correlation of local recombination intensity and FST per genomic region. A Relationship 
per genomic region. B Ranked slope estimates (coloured points) and their 95% confidence interval (grey bar). Blue colour 
represents slopes with a confidence interval overlapping 0 and red colour confidence interval not overlapping 0.  

Discussion 

LD-based recombination rates can be computed genome-wide in bread wheat 
 
In our study, we estimated LD-based recombination rates for the first time at the whole-genome scale 
in bread wheat. Previous studies were done at local scale only (Darrier et al. 2017) but suggested that 
this approach could be applied genome-wide. We used four diverging populations of landraces 
representative of the four main worldwide genetic groups (Balfourier et al. 2019). For all maps, 80% of 
the genetic distance was found in 36% (±1%) of the physical distance. This is less concentrated than 
what was previously observed on single chromosome 3B (80% in less than 20%; Saintenac et al. 2009; 
Darrier et al. 2017). This discrepancy is likely due, on one hand to the higher SNP density in previous 
studies on chromosome 3B that allowed to precisely delimit recombination hotspots on this particular 
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chromosome, and on the other hand likely because classical empirical estimates of recombination 
rates in biparental maps let most of the genome depleted of recombination. However, and as 
expected, historical crossovers tend to accumulate in distal sub-telomeric regions of the chromosomes 
(namely R1 and R3 regions). In most organisms, pairing initiation between homologues occurs in many 
places along the chromosomes but tends to be favoured by a meiosis-specific organisation called 
“bouquet” where telomeres are gathered on the internal nuclear envelope at the Leptotene stage, just 
before synapsis (Zickler and Kleckner 2015). The bouquet would then facilitate alignment between 
homologues and pairing would be simultaneously favoured through the repair of double-strand breaks 
including crossovers (Zickler and Kleckner 1998; reviewed in Scherthan 2001 or Harper et al. 2004). In 
bread wheat, distal crossovers would then be predominant because of the bouquet and be limited in 
R2a and R2b regions because of interference (Saintenac et al. 2009). 
 
At a fine scale, LD-based maps revealed that 1% to 2% of intervals of telomeric and pericentromeric 
regions (depending on the population) exhibited especially high recombination rate (HRIs), suggesting 
that these intervals overlapped recombination hotspots. The accumulation of crossovers in 
recombination hotspots was already observed in bread wheat (Saintenac et al. 2011; Darrier et al. 
2017) and seems to be a common phenomenon across many species (for a review see Stapley et al. 
2017). Recombination hotspots are usually found to be associated with open-chromatin signatures (for 
a review, see Dluzewska et al. 2018). In previous study in bread wheat, recombination hotspots were 
found to locate nearby gene promotors and terminators. Our results are consistent with this finding, 
as most (80%) of our HRIs are located nearby gene features. 
 
LD-based recombination maps correlate well with the biparental genetic map 
In principle, LD-based recombination maps are suited to study the similarity of recombination profiles 
of diverging populations. In our study, they allowed to compare recombination rates of four 
populations with about twice more SNPs than the densest genetic maps currently available (131-170k 
SNPs in EA and WA respectively, versus 80k SNPs in Rimbert et al. 2018, 55k markers in Liu et al. 2020, 
50k SNPs in Jordan et al. 2018). Moreover, LD-based maps are representative of a whole population 
and less susceptible to individual specific variation, for example introgressions which are known to 
prevent local formation of CO between the introgressed chromatid and the native chromatid. 
Introgressions from wild relative species are frequent in bread wheat species, representing from 4 to 
32% of bread wheat genome (Zhou et al. 2020). 
The limitation of LD-based maps relies on the fact that they can be affected by evolutionary patterns, 
which in turn can hinder their usefulness to study the evolution of recombination rate. Indeed, to the 
extent that evolutionary forces and past demographic events (bottlenecks, population expansions, 
hidden structuration) affect LD patterns they can also affect recombination rate estimates. To measure 
to which extent LD-based recombination rates differ from meiotic ones, we compared LD-based maps 
to the CsRe meiotic map. This revealed that, genome-wide, the correlation between the two 
approaches was very high (≥ 0.7, Table 1). Although part of this correlation is explained by the large 
differences in recombination rate between chromosomal regions (R1, R2a, R2b, R3 and C), our results 
also indicate a substantial high correlation within each of these regions. The correlation between LD-
based and the CsRe genetic map ranged from 0.50 on average in EA, 0.55 in WA and EE and 0.58 in WE 
at 4 Mb per genomic region considering all populations but only telomeres and pericentromeres (Table 
1). This value is consistent with correlation values obtained in the literature for other plant species. 
For example, the correlation between LD-based and meiotic recombination map was found to be 0.3 
in rice (Marand et al. 2019), 0.81 in barley (Dreissig et al. 2019) and 0.44–0.55 in Arabidopsis (Choi et 
al. 2013). The correlation values we report are thus likely to be underestimates of the true values. To 
compute these correlations, we used estimates of recombination rates. Like any statistical estimates 
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they come with measurement errors of the true parameters. Hence the correlation between 
estimates, providing these errors are independent, are necessarily smaller than the true correlation 
(Fisher 1915). Apart from this statistical effect, we could also explain some of the differences between 
LD-based maps and the meiotic map by genomic rearrangements (introgressions on chromosome 7D 
and 2A in Renan) that are specific to the CsRe population: in these regions the CsRe recombination 
profile is not representative of the landraces recombination profiles. 
The overall similarity between the meiotic map and LD-based maps shows that LD-based 
recombination patterns offer a robust representation of the distribution of recombination along the 
bread wheat genome. 
 
Robustness of LD-based recombination maps 

Despite good concordance with the meiotic map, LD-based recombination maps can still be locally 
affected by demographic effects, and thus result in bias when interpreting differences or similarities 
between populations. For example, Kim and Nielsen (2004) and Chan et al. (2012) showed that 
selective hard-sweeps can produce LD patterns that mimic those of recombination hotspots. Dapper 
and Payseur (2018) showed that demographic events can decrease the power to detect hotspots 
leading to an under estimation of the co-localization of LD-based recombination hotspots when using 
LDhat software (Auton and McVean 2007). Here, we used PHASE (Li and Stephens 2003), a software 
to infer recombination rates from LD patterns that implements a quite different methodological 
approach than LDhat but it is possible that its inference is also affected by such effects. In particular, 
there were twice many HRIs detected in WE (2,739) and WA (2,743) than in EE (1,968) and EA (1,253), 
representing a significant variation from 1% of intervals in EA (122,490 SNPs once centromeres 
removed) to 2% of intervals in WE (161,953 SNPs once centromeres removed) (significant chisq test, 
P-value < 2.2e-16). Although this varying number of HRIs per population could result from a variation 
in recombination patterns, it is likely also due to differences in the power to detect HRIs in each 
population which would be consistent with results from Dapper and Payseur (2018). Indeed, as the 
proportion of HRIs per population follows the levels of admixture and SNP density (both higher for WE 
and WA than for EE and EA), this favours a possible contribution of a different detection power to the 
variation of HRIs per population. However, we did not observe any atypical LD-based estimate for 
intervals located nearby genes known to be involved in domestication (e.g. brittle rachis, tenacious 
glume, homoeologous pairing or non-free-threshing character) or in recent crop improvement. To 
further reduce the potential influence of demographic forces on our inference, we performed the 
comparison between population maps, not on LD-based recombination rates themselves (ρ) but on 
the relative rate (λ) of recombination in an interval compared to its neighbours in windows of 2 centi-
Morgans. Using relative rates should clean our inference from any local effect of demographic forces, 
especially selection that could tend to be more shared between closely related populations than 
distant ones.  

Results were not much affected by SNP ascertainment or the method used to calculate the FST index. 
The decreasing similarity of recombination rates with genetic differentiation still hold when estimating 
LD-based recombination rates on a population specific SNP dataset or a common SNP dataset. The co-
localization of highly recombining intervals was also not influenced by the SNP dataset (supplementary 
Figure S11). The estimation of FST index, using either haplotypic or SNP alleles, provided also consistent 
results. Overall, these results strongly support the idea that the decrease of similarity in LD-based 
recombination profiles is not an artefact of demographic forces or biases due to SNP ascertainment 
but that the underlying recombination profile is linked to the divergence of populations. 
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Evolution of the recombination landscape in bread wheat  

Our results are consistent with previous reports. Gardiner et al. (2019) showed that closely-related 
bread wheat parental lines lead to RIL populations with more similar crossover profiles. (Darrier et al. 
(2017) compared LD-based recombination profiles of a European and an Asian population, the two 
main ancestral bread wheat genetic pools, on two scaffolds of 1.2 and 2.5 Mb on chromosome 3B. 
They found that LD-based recombination profiles are broadly conserved, but highlighted that hot 
intervals in LD-based recombination profiles were not necessarily shared between these two pools. 
Similar results were observed in other plant species such as rice (Oryza sativa; Marand et al. 2019) and 
cocoa-tree (Theobroma cacao; Schwarzkopf et al. 2020). Other plant studies hint at a possible 
decreasing similarity of fine scale recombination profiles over evolutionary time measured by FST 
(maize Zea mais Rodgers-Melnick et al. 2015); poplar Populus species Wang et al. 2014; Wang et al. 
2016); cotton Gosypium hirsutum Shen et al. 2019); barley Hordeum vulgare Dreissig et al. 2019).  

Several hypotheses can be formulated to explain the differences in recombination profiles between 
populations. First, this can be due to environmental effects. This is the case in barley, where 
recombination rates vary along the genome and are affected by environmental conditions as well as 
by domestication (Dreissig et al. 2019). For example, high temperatures are known to affect meiosis 
and above 35°C, this may lead to complete failure and severe sterility (Loidl 1989; Higgins et al. 2012). 
Interestingly, within a range of 22-30°C, highest temperatures may modify the recombination profile. 
In barley, it was shown that at 30°C, distal recombination events are reduced while interstitial events 
became more frequent revealing thus a slight shift and a modification of the global recombination 
profile (Higgins et al. 2012). However, in our case, this hypothesis is not the most likely as we were 
using populations from the same hemisphere and latitudes, with landraces from different countries. 
Environment is thus certainly very different between all the origins of our landraces and temperature 
should vary a lot in each location and is not stable enough to affect durably and maintain a different 
recombination profile between the four populations. Moreover, it was recently shown that increased 
temperature up to 28°C for three weeks during wheat meiosis has only a limited impact on 
recombination distribution (Coulton et al. 2020). 

Secondly, differences in recombination profiles can be explained by differences in the chromatin 
accessibility landscape during meiosis between populations. Many studies showed that chromatin 
status is the main feature that drives recombination in plants. DNA is partitioned in blocks of 
heterochromatin and euchromatin which are dispersed along the chromosomes. In bread wheat, 
heterochromatin preferentially locates in pericentromeric regions while euchromatin-rich DNA is more 
frequent in distal subtelomeric regions of the chromosomes (IWGSC 2018). In Arabidopsis, it was 
shown that crossovers are enriched in euchromatin and mainly occur close to genes promoters and 
terminators (Choi et al. 2013; Drouaud et al. 2013). Meiotic recombination profile in this species is also 
shaped by H2A.Z nucleosome occupancy, DNA methylation or epigenetic marks such as Histone 3 
Lysine 9 di-methylation (H3K9me2; (Choi et al. 2013; Underwood et al. 2018). This led to our second 
hypothesis that chromatin status has evolved between our four populations, rather than an evolution 
of the recombination determinism itself. It is likely that during the evolution process, there has been a 
selection pressure around different genomic regions depending on geographical area. This selection 
pressure could therefore contribute to the deposition of histone landmarks to regulate gene activity 
such as H3K4me3, H3K9ac and H3K27ac that are associated with transcriptional activation (Roth et al. 
2001; Howe et al. 2017) or on the contrary H3K27me3 and H3K9me3 associated with transcriptional 
suppression (Saksouk et al. 2015). Interestingly, in some mammals, recombination is directed by the 
zinc finger protein PRDM9 that possesses a set domain that catalyses the trimethylation of lysine 4 of 
H3 to produce H3K4me3 (for review see Grey et al. 2017). Similar mechanisms involving histone 3 
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modifications such as methylation or acetylation that could affect recombination profile afterward are 
thus likely in plants. 

Another factor that may explain the difference of recombination patterns between the populations 
could be the natural introgression of alien DNA fragments from wheat relatives during the evolution 
process. Introgressions from wild-species have been widely used and more than 50 alien germplasms 
have been used to improve wheat varieties (Wulff and Moscou 2014). For example, Renan possesses 
two introgressed fragments from Aegilops ventricosa conferring resistance to leaf, yellow and stem 
rusts (Lr37/Yr17/Sr38) on chromosome 2A (2A/2N translocation) and to eye-spot (Pch1) on 
chromosome 7D (7D/7Dv translocation; Maia 1967; Helguera et al. 2003). These introgressions repress 
recombination (Worland et al. 1988) and this resulted in a poor correlation between CsRe genetic map 
and our LD-based maps for genomic region 7DR3 in our analysis. It was recently shown that natural or 
artificial introgressions of wheat wild-relatives DNA contributed to up to 710 Mb and 1580 Mb in wheat 
landraces and varieties respectively (Cheng et al. 2019), and represent from 4 to 32% of bread wheat 
varieties genome (Zhou et al. 2020). A similar analysis used exome capture to evaluate introgression 
in 890 hexaploid and tetraploid wheats (He et al. 2019). The results also suggest that introgressions of 
DNA fragments from wheat relatives contributed significantly to improve the diversity of current 
wheat cultivars. Since natural introgressions are frequent in wheat landraces and because they 
contribute to modify the recombination profile, we could hypothesise that these introgressions are 
different in our four collections, which would result in different recombination profiles as well. Only 
an extensive sequencing of our accessions would allow to bring the answer. 

Conclusion  

This study demonstrates the evolution of the recombination profile at a genome-wide scale in closely-
related wheat populations with increasing genetic divergence. Based on recombination landscapes 
robust to demographic events, the comparison of the four landrace populations revealed a clear signal 
of a decreasing similarity between fine-scale recombination landscapes with increasing genetic 
divergence. Specifically, we found (i) that highly recombining intervals were more shared between 
closely related populations, (ii) recombination intensities at HRIs detected in one population decreased 
in the other populations with their genetic divergence and (iii) the correlation of recombination 
landscapes between pairs of population decreases with their local genetic distance as measured by FST. 
Our results, interpreted in the light of previous findings in bread wheat and other species, clearly shows 
that recombination landscapes in wheat change with genetic divergence between populations. Being 
based on closely related populations that recently diverged (no more than 10 000 years ago), this study 
further shows that this divergence can be quite fast. Reasons for this divergence remain to be found 
but our results can hint at some possibilities. Further analyses are needed to settle this question, which 
should greatly help developing original approaches useful for wheat improvement and breeding. 
 

Materials & Methods 

Plant material 

A collection of 632 bread wheat landraces (Balfourier et al. 2019) was genotyped on the TaBW410k 
SNPs, including 280k SNPs from the Axiom Affymetrix® TaBW280k SNP array. Besides, a population of 
406 F6 Recombinant Inbred Lines (RILs) derived from the cross between the Asian variety Chinese 
Spring and the European variety Renan (CsRe), were also genotyped on the TaBW280k SNP array. After 
quality filtering including control of missing data rate (10% maximum), heterozygosity rate (5% 
maximum), excluding off-target variants (OTVs), 578 landraces genotyped with 200,062 SNPs were 
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kept for the population-based analysis and 79,564 polymorphic SNPs were successfully mapped on the 
CsRe population. 

The physical positions of SNPs on the 21 bread wheat chromosomes were determined using BLAST 
(Basic Local Alignment Search Tool; Altschul et al. 1990) of context sequences on the International 
Wheat Genome Sequencing Consortium RefSeq v1.0 genome assembly (IWGSC 2018). Position of high 
confidence genes, exon, 5’UTR and 3’UTR were extracted from RefSeq V1.0 annotation. 

 

Robust estimation of the meiotic recombination profile 

Due to the relatively low number of meiosis sampled in the CsRe data, a Bayesian model inspired from 
Petit et al. 2017 was used to obtain robust estimates of recombination rates. We modelled the 
probability distribution of the recombination rates observed in RIL (𝐶%) given the number of observed 
recombination events (𝑦%) as:  

𝑃(𝐶% 	|	𝑦%) = 	
𝑃(𝑦% 	|	𝐶%)	𝑃(𝐶%)

𝑃(𝑦%)
 

The likelihood 𝑃(𝑦% 	|	𝐶%) is modelled as a Poisson distribution, its parameter being the expected 
number of recombination events in an interval and computed as: 𝑦$0  	= 	𝐶% × 𝐿% ×𝑀, where 𝐿%  is the 
physical size (in megabases, Mb) of the interval and M the total number of RILs. Thus, the likelihood of 
the recombination rate 𝐶%  is:  

𝑃(𝑦% 	|	𝐶%)	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐶% × 𝐿% ×𝑀) 

To specify a prior distribution of	𝑃(𝐶%), we considered that the wheat recombination landscape varies 
widely along a chromosome. According to the nomenclature of Choulet et al. 2014, each of the wheat 
chromosomes can be segmented into five chromosomic regions associated with different global 
recombination rates and genomic content: two highly-recombining telomeric regions (R1 and R3), two 
low-recombining pericentromeric regions (R2a and R2b) and one centromeric region (C) where 
recombination is almost completely suppressed. The small arm of each chromosome is composed of 
R1 and R2a while the long arm is composed of R2b and R3. The physical size of these regions ranges 
between 10 Mb for the smallest telomere to 321 Mb for the largest pericentromere (supplementary 
file S5). To account for the specific range of recombination rate variation in each region in our model, 
the prior distribution of the recombination rates in each of these regions was a specific Gamma 
distribution: 

P%𝐶%(')(	~	Г(𝛼',	𝛽') 

where r denotes the region, 	*!
+!

  gives the mean of the Gamma distribution and 	*!
+!²

 gives the variance. 

The Gamma distribution being a conjugate prior to the Poisson distribution, the posterior distribution 
of 𝐶%  is also a Gamma distribution: 

𝑃(𝐶% 	|	𝑦%)	~	Г(𝑦% +	𝛼'; 	𝑀	𝐿% + 𝛽') 

The posterior mean of 𝐶%  (in M/Mb) is then: 

𝐶%(')
-./ 	= 	

𝑦% +	𝛼'
𝑀	𝐿% + 𝛽'

 

The parameters 𝛼'  and 𝛽'  of the prior Gamma distribution were set using an empirical Bayes approach, 
(i.e. estimating prior distribution directly from data), independently for each of the five r regions 
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(supplementary Figure S12). A Gamma distribution was fitted (R MASS package, Venables and Ripley 
2002) over the distribution of empirical recombination rates observed in RIL. This latter was computed 
as  

𝐶%
01# =	 /"

2	3"
 

Note that null recombination rates were replaced by the lowest non-null estimate of recombination 
rates of the region to allow fitting the Gamma distribution. We derived the meiotic recombination 
rates from the RILs recombination rates using the Haldane and Waddington formula (Haldane and 
Waddington 1931) and the Morgan mapping function (cM = frequency of recombinants * 100). Indeed, 
the size of intervals (median = 5 Kb) were small enough to consider that interference is very strong 
within and thus one recombination in one individual result from only one crossover (and not from 
coincidence of several crossovers). We thus obtained the Bayesian meiotic recombination rate 𝑐4560	%

-./  
(cM/Mb). 

Considering uncertainty in crossover locations  

For estimation of recombination rates, it was necessary to count the number of recombinants in CsRe 
intervals (𝑦%). Missing data on genomic segments with no parental allele switch at segment extremities 
were imputed. A crossover was counted at each parental allele switch, yielding 26,239 crossovers. Due 
to the presence of missing data in RIL genotypes, a number of switches did not occur between pairs of 
immediately adjacent markers. In such cases, the crossover cannot be assigned with certainty to a 
single interval of two successive SNPs. For example, a RIL genotype AA/--/BB identifies a switch 
between the first and third marker but cannot discriminate a recombination in the first vs. the second 
interval. In such cases, we accounted for the uncertainty in crossover location following the sampling 
procedure of Petit et al. (2017). Briefly, each crossover is overlapped by a set of one or more intervals. 
A sampling procedure assigned each crossover to a particular interval with a probability computed as 
the size of the interval divided by the size of the crossover area (physical distance between the two 
closest SNPs showing different parental alleles). Repeating 1,000 times the sampling procedure yields 
1,000 estimates of 𝑦%  per interval, which can then be converted into recombination rates and averaged. 

LD-based recombination profiles of four diverging populations of landraces from patterns of linkage 
disequilibrium 

Identification of diverging populations of landraces representative of bread wheat worldwide diversity 

Balfourier et al. (2019) analysed the genetic structure of the landrace dataset and could pinpoint four 
main groups corresponding to the geographic origins of lines. Despite this structuration, the general 
pattern of differentiation in these data is somewhat continuous, a lot of individuals exhibiting admixed 
origins. Here, we subsampled the dataset in order to constitute populations of individuals that were 
both homogeneous within groups and clearly differentiated between groups. This was done in two 
steps that we now describe. 

From the Balfourier et al. 2019 admixture analysis with K=4 groups, landraces exhibiting an admixture 
coefficient smaller than 50% of their dominant group were removed, yielding 534 “low admixed” 
landraces. These 534 landraces were grouped (again) into 4 populations by hierarchical clustering on 
the pairwise distance matrix estimated in Balfourier et al. (2019) and using the Ward’s grouping 
criterion. The four populations were named as West Europe (WE), East Europe (EE), West Asia (WA) 
and East Asia (EA) from the geographical origin of their members. The genetic distance between two 
landraces was the proportion of mismatched haplotypic alleles along the genome, computed using 
8,741 haplotypic blocks containing up to 20 alleles per block (Figure 1 of Balfourier et al. ( 2019)). After 
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this first step, the second one was aimed at discarding closely related individuals within each 
population to avoid over representing family specific recombination events. Pairs of individuals 
exhibiting a very low genetic difference were discarded, keeping 371 landraces (more details in 
supplementary protocol and supplementary Figure S13).  

Evolutionary distance between populations measured by FST 

Pairwise differentiation indexes (FST) of the four populations were computed within each genomic 
region (chromosomal region within a chromosome e.g. 1AR1) using alleles of 8,741 haplotypic blocks 
(Weir & Cockerham distance, R hierfstat package, function pairwise.WCfst, Goudet and Jombart 2015) 
or SNPs (Reynolds distance, HAPFLK software, Bonhomme et al. 2010; Fariello et al. 2013) 
(supplementary file 6). 

Inferences of LD-based recombination rates from linkage disequilibrium patterns 

LD-based recombination rates were estimated using PHASE software V2.1.1 (Li and Stephens 2003; 
Stephens and Scheet 2005). PHASE inputs were successive windows of SNPs along the genome, 
constituted of one central part and two flanking parts overlapping the previous and the next windows 
to avoid border effect in PHASE inferences. Central and flanking parts spanned on average 1 cM and 
0.5 cM respectively based on the CsRe genetic map (supplementary protocol S3). PHASE was run for 
each window with default options, except for two parameters of the Markov Chain Monte Carlo 
(MCMC), following recommendations of the documentation on estimating recombination rates. The 
number of sampling iterations was increased to obtain larger posterior samples (option -X10) and the 
algorithm was run 10 times independently (option –x10) to better explore combinations of parameters 
and keep the run with the best goodness of fit. The sampling stage of the MCMC yielded 1,000 samples 
of the posterior distribution of: 

- The background recombination rate of the window w: 𝜌7  
- The ratio 𝜆%  between the background recombination rate of the window 𝜌7 and the LD-based 

recombination rate in each interval i of two successive SNPs 𝜌%  so that 𝜌% =	𝜆% ∗ 	𝜌7(%) where 
w(i) identifies the window which interval i belongs to. The parameter 𝜆%  can be seen as a 
measure of local recombination intensity compared to genomic background (inflation or 
deflation). 

PHASE samples jointly 𝜌7 and 𝜆%  in their posterior distribution at each iteration, so their product yields 
1,000 samples of the posterior distribution of LD-based recombination rate 𝜌%  (/kb) (supplementary 
file S7). 
 

Correlation of LD-based recombination profiles  

To compare LD-based recombination profiles, it was necessary to obtain a common set of intervals 
across the four populations (WE, EE, WA, EA), as polymorphic SNP sets were different. We defined 
smaller intervals formed of successive markers that were polymorphic in at least one population 
(supplementary Figure S14). For each population, the recombination estimates in smaller intervals 
were considered to be the same as the estimates belonging to population specific intervals overlapping 
them, assuming that recombination rates are constant within intervals. We removed intervals not 
overlapped by all populations on chromosome extremities. This process yielded a complete factorial 
dataset of 194,409 intervals with no missing data and a set of 1,000 values sampled from the posterior 
distribution for each parameter 𝜌#%  and 𝜆#% 	per interval i and per population p (supplementary file S8). 
The similarity between LD-based recombination profiles was measured by correlating the	𝑙𝑜𝑔!" of 
median of 𝜆#% 	(noted	𝑙𝑜𝑔!"%𝜆#$''''() of all intervals between different populations. The median of 
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posterior distribution of 𝜆#% 	 was chosen as a it is robust to outliers in the posterior distribution, as 
recommended (Li & Stephens 2003) and using the log scale is natural when comparing intensities 
across groups. To obtain correlation coefficients, a linear model including a full unstructured variance-
covariance matrix was fitted on	𝑙𝑜𝑔!"%𝜆#$''''(, so that each population had its own range of variation of 
local recombination intensity and each pair of population has a specific covariance parameter:  

𝑌#%  =	𝑙𝑜𝑔!"%𝜆#$''''(  

𝑌#% = 	𝜇 +	𝐸#%  

𝐸C⃗  ~MVN(0,	𝐼8	 ⊗𝛴9∗9) 

where 𝛴9∗9	 is a variance-covariance matrix from which we extract correlation coefficients.  

The model was applied independently to each genomic region (from 1AR1 to 7DR3, except centromeric 
regions). The total number of intervals n per genomic region ranged from 154 to 8,131. The differences 
of recombination intensity profiles across the four populations of landraces was assessed by model 
comparison. We compared the Bayesian Information Criterion (BIC) of a model with a full variance-
covariance matrix to a simpler model with a variance-covariance matrix including only one correlation 
parameter for all pairs of populations. The complex model was deemed to be a better model if its BIC 
was inferior to the BIC of the simpler model. The models were fitted with ASREML-R V3 (Butler et al. 
2009) 

 
Co-localisation of highly recombining intervals between populations 

Intervals with a LD-based recombination rate exceeding four-times or more the background 
recombination rate (λ ≥ 4) figuring as outliers in λ distribution (supplementary Figure S15 and 
supplementary file S9), were defined as highly recombining intervals (HRIs) and adjacent HRIs within a 
population were merged. Due to strong heterogeneity of HRI’s size, we discarded too small or too wide 
HRIs (supplementary protocol S4). For each HRI in each population, the overlapping HRIs in other 
populations were recorded. A set of HRIs intervals was considered as co-localizing in two, three or four 
populations if all HRIs overlapped each other (i.e. they formed a clique in network terminology). Note 
that this implies that a wide HRI can potentially be involved in more than one clique. For each group 
of co-localizing HRIs (each clique), we defined a hot window as the smallest common overlapped area 
(supplementary file S10). Population specific HRIs, i.e. HRIs which did not overlap any other HRIs, also 
formed hot windows whose frontiers were defined by the upper and lower limit of HRIs. Each hot 
window thus included HRIs of one, two, three or four populations. The proportion of HRIs shared by 
two populations or more (for example WE and EE) was computed as the number of hot windows 
including HRIs of each population (hot windows including both WE’s HR and EE’s HR) divided by total 
number of hot windows (including either WE, EE, WA or EA’s HRIs) (supplementary Figure S16). 
Dividing by the total number of hot windows is more convenient to compare the proportion of HRIs 
population-specific, or shared by two, three or four populations.  

To test for the hypothesis that the observed proportion of HRIs shared by populations is due to chance, 
an empirical range of plausible values of co-localization due to chance was estimated by simulation. In 
1,000 simulations, each HRI of each population was assigned to a random interval within the genomic 
region it belongs (1AR1 to 7DR3) and the proportion of shared hot windows was computed 
(supplementary file S11). 

Comparison of the LD-based recombination rates and the CsRe meiotic recombination rates  
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The comparison between meiotic (CsRe) and LD-based recombination rates were done on windows of 
4 Mb (~ 1 cM on average, wide enough to accurately estimate intrinsic recombination rate) along the 
genome. Meiotic recombination rates were estimated using the Bayesian model described above, the 
attribution of crossover to windows being done using the (Petit et al. 2017) approach (see above). To 
compute the LD-based recombination rate in 4 Mb windows, the total LD-based genetic distance per 
window of 4 Mb was divided by the total physical distance and averaged over the 1,000 samples of the 
posterior distribution:  

𝜌#7#$% =	
1

1000
J

∑ (𝜌#%; ∗ 	𝐿%)%<7#$%
∑ 𝐿%%<7#$%

!	"""

;=!

 

with i the interval and j one posterior distribution value among 1,000 (supplementary file S12). 
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