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ABSTRACT Cell motility in response to environmental cues forms the basis of many developmental processes in multicellular9

organisms. One such environmental cue is an electric field (EF), which induces a form of motility known as electrotaxis.10

Electrotaxis has evolved in a number of cell types to guide wound healing, and has been associated with different cellular11

processes, suggesting that observed electrotactic behaviour is likely a combination of multiple distinct effects arising from the12

presence of an EF. In order to determine the different mechanisms by which observed electrotactic behaviour emerges, and13

thus to design EFs that can be applied to direct and control electrotaxis, researchers require accurate quantitative predictions of14

cellular responses to externally-applied fields. Here, we use mathematical modelling to formulate and parametrise a variety of15

hypothetical descriptions of how cell motility may change in response to an EF. We calibrate our model to observed data using16

synthetic likelihoods and Bayesian sequential learning techniques, and demonstrate that EFs bias cellular motility through only17

one of a selection of hypothetical mechanisms. We also demonstrate how the model allows us to make predictions about cellular18

motility under different EFs. The resulting model and calibration methodology will thus form the basis for future data-driven and19

model-based feedback control strategies based on electric actuation.20

SIGNIFICANCE Electrotaxis is attracting much interest and development as a technique to control cell migration due to
the precision of electric fields as actuation signals. However, precise control of electrotactic migration relies on an accurate
model of how cell motility changes in response to applied electric fields. We present and calibrate a parametrised stochastic
model that accurately replicates experimental single-cell data and enables the prediction of input–output behaviour while
quantifying uncertainty and stochasticity. The model allows us to elucidate and quantify how electric fields perturb the
motile behaviour of the cell. This model and the associated simulation-based calibration methodology will be central to
future developments in the control of electrotaxis.

INTRODUCTION21

Cell migration underpins key physiological processes central to developmental biology, as well as wound healing and tissue22

regeneration, and it plays a crucial role in invasive, metastatic cancers. There are ongoing efforts to intervene in and influence23

these phenomena to, for example, inhibit metastasis (1) or accelerate wound healing (2). However, the cellular processes driving24

collective migration are complex and multifaceted, deriving from diverse physical mechanisms and various external stimuli (3),25

making it challenging for researchers to accurately and robustly direct cell motility. Due to the ease with which electric fields26

can be controlled and applied to cells, research into the control of cell motility has recently focused on exploiting electrotaxis27
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(also known as galvanotaxis) (3–5). However, the precise effects of electric fields on intracellular processes and thus on cell28

motility are not fully understood, making quantitative predictions and control policy design impractical.29

Electrotactic cells have been observed to change their motile behaviour in response to the presence of a direct current (DC)30

electric field (EF) (3–7). Researchers seeking to control cell motility exploit this phenomenon by applying external electrical31

cues to cell populations (2, 4–9). The key advantages of using electrical cues to guide cell migration include the ability to exploit32

endogenous, evolved biological functionality to respond to precisely controllable DC EFs. This compares favourably to using33

chemoattractants to guide motility, since chemical signals experienced by the cell cannot be so precisely or flexibly controlled,34

especially dynamically, and chemoattractants are usually highly cell-specific. In contrast, light-directed motility allows for35

precise actuation signals. However, it requires sophisticated optogenetic manipulations of the cell population under control (10).36

As such, EFs provide a relatively precise and simply implemented actuation signal to achieve specified motile behaviours.37

While an important strength of electrotactic cell control is that applying an EF for actuation is flexible enough to apply to38

any electrotactic cell type, the precise signal to be applied in order to achieve any specified goal needs to be carefully calibrated.39

At the most basic level, even the direction of migration within the same DC field has been shown to vary across different cell40

types, and within one cell type under different experimental conditions (5, 11). More broadly, a large number of biochemical41

and biophysical mechanisms have been implicated in the electrotactic response across different cell types (3). Each electrotactic42

mechanism, which may co-exist in combination at unknown relative strengths, may induce distinct observable effects on the43

dynamics of cellular motility. Overcoming this uncertainty in the observable electrotactic response is a fundamental challenge44

for designing EFs to control cell motility.45

Mathematical models are a vital tool for quantifying the different ways in which cells can change their motility in response46

to EFs (12–14). In this paper we describe a parametrised stochastic model of the motile behaviour of a single human corneal47

epithelial cell, in which the cell’s motility is driven by an internal polarity, in combination with the external influence of a DC48

EF. We assume that the cell can undergo both spontaneous and electrotactic polarisation. The model allows us to describe49

mathematically four distinct ways an EF may influence motility. We use experimentally observed trajectories of single cells,50

both with and without applied EFs, to calibrate the parameters of this model, thereby quantifying the extent to which different51

aspects of cell motility are impacted by the EF. The resulting calibrated model provides a vital first step towards being able to52

design feedback control policies and provide robustness guarantees, which are necessary if electrotaxis is to be used to control53

cell motility in practical applications such as wound healing or tissue engineering.54

Single-cell modelling55

The agent-based modelling framework used in this work follows standard modelling assumptions outlined in (13). Specifically,56

we model the evolution of the velocity of a single cell in the overdamped regime, so that cell velocity is proportional to the sum57

of non-frictional forces on the cell. We provide full details on the mathematical model inMaterials and Methods and in the58

Supplementary Material.59

In the absence of any EF, the only non-frictional force acting on the cell is assumed to be an active force arising from the60

internal polarity of the cell. Thus, the cell velocity, v = vcell, is comprised of a single component. A preliminary analysis of61

single-cell motility data, described more fully in the Supplementary Material, suggests that the cell velocity arises from a cell62

being polarised in a particular direction, and that the direction of polarisation drifts stochastically over time. A polarised cell63

has a positive speed, parametrised by a modal value, ‖vcell‖ ≈ E, where the scalar-valued parameter E > 0 has dimensions64

µm min−1. In addition to random changes in cell speed, preliminary analysis also suggests that the direction of cell motion65

stochastically evolves according to a persistent random walk, such that the autocorrelation between displacement directions66

decays as the time lag increases. Thus, the direction of cell motion (in the absence of an EF) is assumed to vary according to an67

unbiased random walk with positive timescale constant � > 0, with dimensions min−1, which characterises the rate of decay68

in the autocorrelation of the polarisation direction over time. Eq. (2) in Materials and Methods provides the mathematical69
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formulation of this model.70

We hypothesise that a vector-valued DC EF, u, can affect cell motility in a variety of ways. We use a number of extensions71

of the model in order to implement different ways in which motility may be impacted by the EF, specifying, in particular,72

four distinct ways in which it may affect the dynamics of a motile cell. We parametrise the magnitude of each hypothesised73

electrotactic effect, observed at a reference EF strength of 200 mV mm−1, by the parameters W1, W2, W3 and W4, such that if74

W8 = 0 then the corresponding hypothesised effect is not included in the model. Eq. (3) in Materials and Methods provides the75

mathematical formulation of this model.76

The four means by which we model cell motility to be perturbed by the EF are:77

Velocity bias (W1) The EF imparts an additional component of force on the cell. The resulting velocity, v = vcell + vEF, is78

thus the sum of two components: the original polarity component, vcell, and an EF component, vEF. The EF velocity79

component acts in the direction of the field with magnitude W1E.80

Speed increase (W2) Polarised cells travel more quickly under the influence of an EF in the direction in which they are81

polarised. The modal magnitude of vcell for polarised cells is increased by W2E.82

Speed alignment (W3) Polarised cells travel more quickly when the direction of their polarisation aligns with the EF, but83

slower if opposed to the EF. The modal magnitude of vcell for polarised cells is increased by W3E cos(\), where \ is the84

angle between vcell (i.e. the polarity direction) and the EF direction.85

Polarity bias (W4) The random walk determining cell polarity is biased so that cells preferentially polarise in the direction of86

the EF. The strength of this bias is parametrised by W4.87

Two models can be distinguished: the autonomous model, where no EF is applied, and the electrotactic model, where a88

reference strength EF is applied. In each of these models, the cell velocity at time C, denoted v(C), undergoes a random walk.89

Figure 1 characterises each of these models by depicting the stationary probability distribution of this random walk. The top90

plot shows that without an applied EF the modal cell speed is near E, with direction chosen uniformly at random. The bottom91

plot of this figure demonstrates how each electrotactic effect, quantified by the value of W8 for 8 = 1, 2, 3, 4, can be interpreted in92

terms of the probability distribution of the cell velocity: W1 translates the velocity distribution uniformly in the direction of the93

field; W2 rescales the domain of the distribution; W3 parametrises asymmetry in the shape of the velocity distribution; and W494

parametrises asymmetry in the density of the velocity distribution.95

[Figure 1 about here; moved to end of manuscript by endfloat.]96

Outline97

The primary goal of this work is to use single-cell experimental data to calibrate the parametrised mathematical model98

of spontaneous polarisation and electrotaxis. The model calibration process enables the identification of which of the four99

hypothesised electrotactic effects of EFs on cell motility can be observed in the experimental data. Importantly, the calibrated100

model also quantifies the relative contribution of each of these identified effects. The level at which we model the system allows101

us to subsequently use the calibrated model to simulate and predict the single-cell response to dynamic EFs.102

The data used for model calibration is gathered from two assays in which the trajectories of motile human corneal epithelial103

cells are recorded for five hours: (a) without any EF applied for the entire experiment, and (b) with a DC EF at a reference104

strength of 200 mV mm−1, applied from left to right over hours 2–3 and from right to left over hours 4–5. These assays are105

termed the autonomous and electrotactic experiments, respectively. We use all five hours of the autonomous experiment106

and the first three hours of the electrotactic experiment as training data to calibrate the parameters of the autonomous and107

the electrotactic models. To calibrate the electrotactic model, we first identify which combination of the four hypothesised108
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electrotactic effects is best supported by the data. After identifying which of the electrotactic effects are present in the model,109

we can then proceed to quantify the relative contribution of each of them to the observed electrotaxis induced by the EF.110

After formulating and calibrating the extended model of electrotaxis, we use simulations of the calibrated model to predict111

how the cell trajectories evolve over the final two hours of the electrotactic experiment, in which the EF input has changed112

direction. We compare these predictions to the cell trajectories observed over the final two hours of the electrotactic experiment,113

held back to be used as test data, and thus validate the predictive capability of the model for dynamic EF inputs. The ability to114

make predictions of cellular motility using a calibrated, stochastic, uncertain model is a first step towards the future goal of115

model-based policy design for the electrotactic control of single-cell and population-level motility.116

MATERIALS AND METHODS117

Data collection118

Two experiments were carried out, which we call the autonomous and electrotactic experiments. In both experiments, time-lapse119

images of human corneal epithelial cells, seeded at a low density, were acquired at 5 min intervals over 5 h. In the autonomous120

experiment, no EF was applied. In the electrotactic experiment, the cells were subjected to a DC EF at a reference strength,121

200 mV mm−1, applied across the medium from C = 60 min to the end of the experiment. The EF was directed from left to right122

from 60 min to 180 min, at which point the field direction was reversed from right to left for 180 min to 300 min. Two replicates123

of each experiment were performed, with 26 and 27 cell centroids tracked for each of the autonomous assay replicates, and124

with 26 and 30 cell centroids tracked for each of the electrotactic assay replicates, all over the entire time horizon. Visual125

confirmation from the raw experimental output confirms that cell collisions were rare, due to the low density (100 cells cm−2) at126

which cells are initially seeded. We thus assume that cell–cell interactions can be neglected in the current model. The data used127

in this work is shared online at DOI:10.5281/zenodo.4749429.128

We denote the resulting cell trajectory data xNoEF,8 (C: ) and xEF, 9 (C: ) for the autonomous and electrotactic experiments,129

respectively, where each trajectory is translated to begin at the origin, such that xNoEF,8 (0) = xEF, 9 (0) = 0 for all 8 and 9 . For130

these experiments, the indices 8 = 1, . . . , 53 and 9 = 1, . . . , 56 refer to the cell being traced, while C: = 5: min refers to the131

snapshot time points for : = 0, . . . , 60. We hold back xEF, 9 (C: ) for 9 = 1, . . . , 56 and : = 36, . . . , 60 as test data, for the132

purposes of validating model predictions. The remaining data is used as training data, from which the model is calibrated. Thus,133

the training data consists of the trajectories from the autonomous experiment over the entire time horizon, and the trajectories134

from the electrotactic experiment over 0 min to 180 min, which are denoted by xNoEF and xEF, respectively. The test data,135

denoted xtest, consists of all trajectories from the electrotactic experiment over 180 min to 300 min, where the input EF has136

switched direction.137

Materials138

EpiLife culture medium with Ca2+ (60 µM), EpiLife defined growth supplement, and penicillin/streptomycin were purchased139

from ThermoFisher Scientific (Waltham, MA, USA). FNC Coating Mix was purchased from Athena Enzyme Systems140

(Baltimore, MD, USA). Dow Corning high-vacuum grease was purchased from ThermoFisher. Agar was purchased from141

MilliporeSigma (Burlington, MA, USA). Silver wires with 99.999% purity were purchased from Advent Research Materials142

Ltd. (Oxford, United Kingdom).143

Cell culture144

Telomerase-immortalized human corneal epithelial cells (hTCEpi) were routinely cultured in EpiLife medium supplemented145

with EpiLife defined growth supplement and 1% (v/v) penicillin/streptomycin. Cells were incubated at 37 ◦C with 5% CO2 until146

they reached ∼70% confluence and were used between passages 55 and 65 for all cell migration assays.147
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Electrotaxis assay148

Electrotaxis experiments were performed as previously described (15, 16) with minor changes. Briefly, the electrotaxis149

chambers (20 mm × 10 mm × 0.2 mm) were constructed in 100 mm petri dishes with glass strips and high-vacuum grease.150

The dimensions of the chambers were defined by the thickness and length of the glass slides, respectively. Chambers were151

coated with FNC Coating Mix, following the manufacturer’s instructions to facilitate cell attachment. Cells were seeded at a152

low density (100 cells cm−2) and cultured overnight (12 h to 18 h) in the chambers to allow sufficient attachment. Chambers153

were covered with glass coverslips and sealed with high-vacuum grease. Electric currents were applied to the chamber through154

agar-salt bridges connecting with silver–silver chloride electrodes in Steinberg’s solution (58 mM NaCl, 0.67 mM KCl and155

0.44 mM Ca(NO3)2, 1.3 mM MgSO4 and 4.6 mM Tris base, pH 7.4). Fresh cell culture medium (Epilife) was added into156

reservoirs to ensure good salt bridge contact and to support cell viability during electric stimulation. An EF strength of157

200 mV mm−1 was used unless otherwise noted. A pair of measuring electrodes was placed at the end of the electrotaxis158

chamber and connected to the multimeter for real-time monitoring of EF strength. The applied voltages were confirmed at the159

beginning of the experiment and every 30 min afterwards to ensure consistent EF application.160

Time-lapse imaging and quantification of cell migration161

Cell migration was monitored and recorded by phase-contrast microscopy using an inverted microscope (Carl Zeiss, Oberkochen,162

Germany) equipped with a motorized stage and a regular 10× objective lens. Time-lapse images were acquired at 5 min intervals163

using Metamorph NX imaging software (Molecular Device, Sunnyvale, CA, USA). To maintain standard cell culture conditions164

(37 ◦C, 5% CO2), a Carl Zeiss incubation system was used. Time-lapse images of cell migration were analyzed by using ImageJ165

software from the National Institutes of Health (http://rsbweb.nih.gov/ij/). Adherent cells in the images were manually166

tracked, and cells that divided, moved in and out of the field, or merged with other cells during the experiment were excluded167

from analysis. The position of a cell was defined by its centroid.168

Model construction169

We constructed a mathematical model of single-cell dynamics. The model tracks the position of the cell centre in the plane,170

x(C) ∈ R2, as a function of time, C ≥ 0 min, with initial condition x(0) = 0 at the origin. The position is a deterministic integral171

of cell velocity, v, such that172

dx(C) = v(C) dC, (1)

and the stochastic dynamics of v are modelled. The key to this modelling task is the non-dimensional internal variable173

representing the cell polarity, p(C) ∈ R2. We assume that the polarity imparts a force on the cell that corresponds to its active174

motility, resulting in a velocity component vcell (C).175

Modelling spontaneous polarisation and motility176

We first describe the model of cellular motility with no biasing EF, which we will term the autonomousmodel. The only velocity177

component is that due to polarisation, so that we write the cell velocity as a single component,178

v(C) = vcell (C) = Ep(C), (2a)

where the parameter E ≥ 0, with dimensions µm min−1, represents the modal magnitude of vcell for a polarised cell. Note that179

Eq. (2a) implies that the polarity variable, p, is a non-dimensionalisation of the velocity component vcell. We further assume180
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that the polarity, p, undergoes a random walk according to a Langevin diffusion, such that181

dp(C) = −�∇, (p(C)) dC +
√

2� dB, (2b)

where B(C) ∈ R2 is a two-dimensional Wiener process, and the parameter � (in min−1) quantifies the speed at which the182

random walk approaches stationarity. The initial polarity, denoted p0 = p(0), also needs to be specified.183

The potential function, (p) in Eq. (2b) is defined to capture the intended features of the autonomous model, namely that184

the magnitude of the cell velocity is randomly distributed around a modal value of E, and that the direction of the polarity is185

uniformly distributed at stationarity. It can be shown (17, 18) that the variability of the velocity around its modal value of E is186

determined by a non-dimensional energy barrier, denoted Δ, , that is sufficient to define the potential function,, (p). For187

further details on the definition of, , see the Supplementary Material. We will calibrate the autonomous model in Eq. (2) by188

identifying the parameters E, �, and Δ, .189

Modelling motility bias due to an EF190

We use a vector-valued function, u(C), with non-dimensional magnitude ‖u(C)‖ = D(C) to describe a (time-varying) DC EF191

of strength 200D(C) mV mm−1, directed parallel to u(C). In particular, the specific EF used in the electrotactic experiment,192

with magnitude 200 mV mm−1 in the positive G direction (left to right) over 60 min to 180 min, and reversed over 180 min to193

300 min, is represented using the constant canonical unit vector, i, by the vector-valued function194

uEF (C) =


0 C < 60,

i 60 ≤ C < 180,

−i 180 ≤ C.

Note that the function uEF (C) represents the specific EF corresponding to the electrotactic experiment, while arbitrary EF inputs195

are modelled using the notation u(C). The autonomous model in Eq. (2) can be extended to include the four hypothesised effects196

of the EF. The velocity bias effect is accounted for by modelling the velocity using two components,197

v(C) = vcell (C) + vEF (C), (3a)

where the EF induces a deterministic velocity component in the direction of the field,198

vEF (C) = W1Eu(C). (3b)

The two hypothesised electrotactic effects of speed increase and speed alignment are both modelled through adapting the199

velocity component induced by the cell polarity, originally defined in Eq. (2a), into200

vcell (C) = (1 + W2D(C) + W3u(C) · p̂(C)) Ep(C), (3c)

where p̂ is the unit vector in the direction of the polarity, p. Finally, the hypothetical polarity bias effect is modelled in the201

stochastic evolution of the polarity variable p. We add a drift term proportional to the EF to the Langevin diffusion equation,202

such that203

dp(C) = −� [∇, (p(C)) − W4u(C)] dC +
√

2� dB, (3d)

where, (p) is the same potential function as used in Eq. (2b). As for the autonomous model, the initial value for the polarity,204

denoted p0 = p(0), is also required.205
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Note that substituting u(C) ≡ 0 or setting W8 = 0 for all 8 = 1, 2, 3, 4 into Eq. (3) recovers the dynamics of the autonomous206

model, in Eq. (2). We will term the extended model in Eq. (3) the electrotactic model. It is parametrised by the three parameters207

E, Δ, and �, with the same meaning and dimensions as in the autonomous model, and also by W8 for 8 = 1, 2, 3, 4, which, since208

u is non-dimensional, are all non-dimensional.209

The models in Eq. (2) and Eq. (3) result in a stochastic path for the velocity, v(C), with a parametrically determined stationary210

distribution. Following Eq. (1), each path can be integrated to produce a stochastic trajectory of the cell position over time. The211

stationary distributions of v under the autonomous and electrotactic models are depicted in Figure 1. The effect of each of the212

parameters W8 , and hence each of the hypothesised electrotactic effects, can be identified by comparing the position, scale, and213

asymmetries of the two stationary distributions.214

Summarising simulations215

For any given set of parameter values, \ = (E,Δ, ,�, W1, W2, W3, W4), together with initial polarity, p0, and non-zero EF216

input, u(C), the stochastic model in Eq. (3) can be simulated. Note that, if the EF is zero, we simulate the autonomous model in217

Eq. (2). Each simulation produces a random trajectory, denoted l = (p(C), x(C))C≥0. We will use summary statistics to analyse218

the model outputs by mapping each simulated trajectory, l, to a number (or small set of numbers) that summarise the trajectory.219

More details of the summary statistics can be found in the Supplementary Material.220

We define a set of summary statistics based on simulated cell positions at five-minute timepoints C 9 = 5 9 over any given221

time interval, C= < C=+<. We consider: (a) the net horizontal cell displacement over the entire interval, (x(C=+<) − x(C=)) · i,222

denoted by .1 (l); (b) the net absolute cell displacement over the entire interval, ‖x(C=+<) − x(C=)‖, denoted .2 (l); (c) the path223

length, measured as the sum of displacements,
∑<

A=1 ‖x(C=+A ) − x(C=+A−1)‖, between the five-minute sample points, denoted224

.3 (l), (d) the standard deviation of the displacements, ‖x(C=+A ) − x(C=+A−1)‖, over A = 1, . . . ,<, and denoted .4 (l). Note that225

the four summary statistics .1, .2, .3 and .4 can also be applied to the observed data, xNoEF,8 and xEF,8 , in addition to any226

simulated trajectory, l.227

In the models in Eq. (2) and Eq. (3), the polarity, p(C), evolves randomly from initial value p0. We define a further three228

summary statistics based on the simulated polarity, using a threshold polarity magnitude, ?̄. First, we define the time to polarise,229

)1, as the average time at which a simulated cell polarity, from initial polarity p0 = 0, first has polarity ‖p(C)‖ ≥ ?̄. Conversely,230

we define the time to depolarise, )0, as the average time at which a simulated cell polarity, from initial polarity p0 = i, first has231

polarity ‖p(C)‖ ≤ ?̄. Finally, the value P(polarised) is defined as the probability that a simulated cell polarity at the end of an232

assay satisfies ‖p(300)‖ ≥ ?̄. Note that these summary statistics cannot be applied to the observed data, since the polarity is233

not observed, and can only be used to summarise simulated trajectories.234

Model calibration and selection235

Given the experimental training data sets, xNoEF and xEF, the autonomous and electrotactic models can be calibrated by236

identifying the values of the parameters,237

\ = (E,Δ, ,�, W1, W2, W3, W4),

that are consistent with the observed behaviour. We employ a Bayesian approach to parameter inference, whereby prior beliefs238

about \, encoded in a prior distribution, c(\), are updated in the context of the experimental data according to Bayes’s rule,239

c(\ | xNoEF, xEF) =
L(xNoEF, xEF | \)c(\)

?(xNoEF, xEF)
,

where L(xNoEF, xEF | \) is the likelihood of observing the data under the models in Eq. (2) and Eq. (3) with the parameter240

value \. The resulting posterior distribution, c(\ | xNoEF, xEF), represents the remaining uncertainty in the parameter values,241
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given the training data (19).242

The simulation and inference algorithms used in this work have been developed in Julia 1.5.1 (20). The code is publicly243

available at github.com/tpprescott/electro.244

Bayesian synthetic likelihoods and sequential Monte Carlo245

In practice, the likelihood cannot be calculated directly, and so we require a likelihood-free approach. We replace the true246

likelihood with a synthetic likelihood, where for each value of \ the likelihood is approximated by the likelihood of summarised247

data under an empirical Gaussian distribution. The empirical distribution is fit to the sample mean and covariance of a set of248

= = 500 summarised simulations (21–23). The summary statistics we use are .1, .2, .3 and .4, as described in Summarising249

simulations, above. We summarise the interval 0 min to 300 min for the trajectories from the autonomous experiment, and the250

separate intervals 0 min to 60 min and 60 min to 180 min for the trajectories from the electrotactic experiment. To mitigate the251

computational burden of the large number of model simulations required for parameter inference, we combine a sequential252

Monte Carlo (SMC) algorithm with synthetic likelihoods (21, 24, 25). This approach is a popular strategy for efficiently253

sampling from a target distribution, and also allows the exploitation of parallelisation to speed inference (21, 25–27). We provide254

full details of the SMC inference approach using summary statistics and synthetic likelihoods in the Supplementary Material.255

Prior specification and model selection256

The space of possible parameter values is defined as the product of intervals,257

Θ = (0, 5]2 × (0, 0.5] × [0, 2]4,

where the interval bounds were chosen based on a preliminary qualitative, visual analysis of the simulation outputs in comparison258

to observed data. In order to identify which of the sixteen possible combinations of the four hypothesised electrotactic effects259

are best supported by the experimental data, we will define sixteen possible priors on Θ. For each of the sixteen subsets,260

- ⊆ {1, 2, 3, 4}, we define a uniform prior distribution c- (\) on Θ that takes a constant, positive value for parameter vectors \261

if and only if W8 > 0 for all 8 ∈ - , and W8 = 0 otherwise. Thus, by performing Bayesian inference using the prior distribution,262

c- , we constrain the electrotactic model in Eq. (3) to model only electrotactic effects included in the subset - ⊆ {1, 2, 3, 4}.263

We define an optimisation problem that aims to prevent over-fitting, by balancing the closeness of the model fit to data264

while prioritising smaller parameter dimensions. The optimal subset, - , of electrotactic effects is defined as the maximiser of265

the objective function,266

�` (-) = log ?- (xNoEF, xEF) − `(3 + |- |), (4)

where the regularisation parameter ` > 0 controls the cost of over-fitting by penalising the total number of non-zero parameters.267

This number is three, corresponding to E, Δ, , and �, plus |- |, corresponding to the positive W8 for 8 ∈ - . We use ` = 0 and268

` = 2 in our analysis, though we note that the choice of ` is somewhat arbitrary. Choosing ` = 2 imposes a penalty on the269

parameter dimension analogous to that used in the Akaike information criterion (19). One interpretation of the value of ` is that270

it effectively imposes a ‘prior’ on the subsets, - ⊆ {1, 2, 3, 4}, with probability mass proportional to exp(−` |- |).271

The first term in �` (-) measures the closeness of fit between the data and the model, when constrained to only include the272

electrotactic effects in - . This fit is defined for each - ⊆ {1, 2, 3, 4} by the value of the partition function,273

?- (xNoEF, xEF) =
∫
L(xNoEF, xEF | \)c- (\) d\.

As the likelihoods L(xNoEF, xEF | \) cannot be calculated directly, the partition functions ?- (xNoEF, xEF) are estimated for each274

- by Monte Carlo sampling, where again the simulation-based synthetic likelihood is used in place of the true likelihood. More275
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details of the specific sequential Monte Carlo sampling methodology used for this estimate are given in the Supplementary276

Material.277

RESULTS278

We initially calibrate the autonomous model, based on the portion of the training data set xNoEF from the autonomous experiment279

alone, in order to confirm the principle of the modelling framework and its ability to replicate observed behaviours, and to check280

that the parameters are identifiable from the data. Then, we calibrate the full electrotactic model using the full training data281

set, xNoEF and xEF, in two stages. We first assess which subset of the four hypothesised electrotactic effects are best supported282

by the data. After choosing the optimal combination of electrotactic effects, we then calibrate the parameters of the selected283

electrotactic model.284

Parameters of the autonomous model are identifiable285

We begin by confirming that the chosen modelling and inference approaches appropriately capture the autonomous experimental286

behaviour, xNoEF, where no external EF is applied. The cell trajectories in this portion of the training data are depicted in Figure 2(a).287

This scenario is modelled by the autonomous model in Eq. (2), which depends on three parameters, \NoEF = (E,Δ, ,�). The288

Bayesian synthetic likelihood approach was used to generate posterior samples for: the characteristic speed of a polarised cell,289

E µm min−1; the timescale constant, � min−1, which determines the characteristic timescale of the spontaneous polarisation290

dynamics; and the dimensionless parameter, Δ, , which determines the variability of the cell polarity around its modal value.291

[Figure 2 about here; moved to end of manuscript by endfloat.]292

Figure 2(b–d) depicts the marginals of the posterior distribution, c(\NoEF | xNoEF), for each of the three calibrated parameters.293

The prior distribution used for Bayesian inference assumed that the parameters were independently uniformly distributed on294

the intervals 0 < E ≤ 5 µm min−1, 0 < Δ, ≤ 5, and 0 < � ≤ 0.5 min−1. Each plot in Figure 2(b–d) demonstrates that the295

posteriors are concentrated within a small interval of the prior support, implying that the parameters of the autonomous model296

are identifiable from the experimental data, with quantifiable uncertainty.297

The sample median parameter value, calculated from the sample in Figure 2(b–d), can be used as a point estimate for298

the parameter values: E = 1.15 µm min−1, Δ, = 0.018, and � = 0.042 min−1. In Figure 2(e), we depict a random sample of299

trajectories simulated from the autonomous model, with parameter values sampled from the empirical posterior, that compare300

well with the observed trajectories from the autonomous experiment, xNoEF. A comparison between these plots shows that301

parameter inference based only on the selected four-dimensional summary statistics produces a close match (for this point302

estimate) between the visual characteristics of simulations and experimental observations. A more detailed analysis of the fit303

of the calibrated autonomous model to the training data is given in the Supplementary Material, including a comparison of304

posteriors trained on the two replicates separately, and a cross-validation of the posterior predictive distribution of the four305

summary statistics.306

Figure 2(b–d) quantifies the uncertainty in each parameter value resulting from the Bayesian approach to parameter inference.307

In order to make sense of this uncertainty in terms of the model outputs, simulations can be used to interpret how the uncertainty308

propagates to observable behaviour. Figure 2(f–h) depicts an estimate of the uncertainty in (f) the average time a simulated cell309

takes to polarise, )1, (g) the average time a simulated cell takes to depolarise, )0, and (h) the proportion of simulated cells that310

are polarised by the end of the experiment, P(polarised). Each of these distributions are conditioned on the posterior parameter311

distribution in Figure 2(b–d). This procedure allows us to map quantified uncertainty in the parameter values to uncertainty in312

cell behaviour. The calibrated model suggests that the expected time for a cell to spontaneously polarise (i.e. without an EF313

applied) ranges from 2.8 min to 10 min (5% to 95% quantiles), with median value of 5.4 min. Similarly, the expected time for a314
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cell to depolarise is 94 min to 174 min, with median value 124 min. Finally, the probability that a simulated cell is polarised (in315

any direction) at the end of the experiment is 0.9 to 0.97, with median value 0.94.316

One of the four proposed electrotactic effects is supported by the data317

Given that the autonomous model can be calibrated to the data set from the autonomous experiment, we now seek to calibrate318

the full electrotactic model to the entire training data set taken from both experiments. However, some or all of the hypothesised319

electrotactic effects used to define the model in Eq. (3) may not be supported by the experimental data. Thus, we first use the320

training data to select which of these proposed effects can be detected in the observed cell behaviours. Recall that the parameters321

W1, W2, W3 and W4 correspond to four distinct hypothesised electrotactic effects: velocity bias, speed increase, speed alignment,322

and polarity bias. Positive values of the parameters W8 , for 8 = 1, 2, 3, 4, mean that the corresponding effect is included in the323

model. Conversely, setting any of these parameters to zero excludes the corresponding effect(s) from the model. There are324

a total of 24 = 16 possible combinations of the four proposed electrotactic effects that the model in Eq. (3) can implement,325

through combinations of positive and zero parameter values.326

[Figure 3 about here; moved to end of manuscript by endfloat.]327

Each of the 16 possible combinations of the four electrotactic effects corresponds to a subset - ⊆ {1, 2, 3, 4}. We evaluate328

each combination of electrotactic effects, given by - , with respect to the objective function, �` (-), given in Eq. (4). This329

objective quantifies the trade-off between the model fit and the number of non-zero parameters in order to select a suitably330

accurate model while avoiding over-parametrisation. Figure 3 ranks each of the 16 possible combinations of electrotactic331

effects, - ⊆ {1, 2, 3, 4}, using two different objective functions. The top plot considers ` = 0, such that the maximiser of �0 is332

the combination that gives the best fit to data, with no consideration given to the dimension of parameter space. The bottom333

plot uses ` = 2, which imposes a marginal cost on increasing the dimension of parameter space. Both objective functions are334

maximised by the singleton subset - = {4}, by a margin of over 10 from - = {1, 4} in second-place. This margin implies a335

Bayes factor (19) greater than 10 in favour of a prior such that W4 ∈ (0, 2], with W1 = W2 = W3 = 0, thus providing strong support336

for including only the polarity bias effect of the EF in our model, and neglecting all of the other hypothesised effects. Indeed,337

we can also conversely conclude from Figure 3 that any prior that sets W4 = 0 would induce a poor fit to the observed data.338

The electrotactic effects of the EF on motility can be quantified339

Recall that cell motility is modelled as the sum of an active force component, deriving from cell polarisation, and a component340

comprised of other external forces acting on the cell. In the selected model found in the preceding section, we found W1 = 0,341

meaning that the training data provides no evidence that the EF imparts an external force. Finding that W2 = W3 = 0 further342

implies that polarised cells do not travel any faster in the presence of a field, neither uniformly nor only if polarised in alignment343

with the field. Instead, the EF produces the observed bias in cell motility solely due to causing cells to preferentially polarise in344

the direction of the EF. In this section, we calibrate the electrotactic model by using the entire training data set, xNoEF and xEF,345

to infer the posterior distribution of W4 > 0, while also refining the posterior distributions of E, Δ, , and �.346

Bayesian synthetic likelihoods were used to calibrate the electrotactic model by inferring the posterior distribution,347

c(\ | xNoEF, xEF), for348

\ = (E,Δ, ,�, W1, W2, W3, W4).

The chosen prior distribution, c{4} (\), is the product of independent uniform distributions on the intervals 0 < E ≤ 5 µm min−1,349

0 < Δ, ≤ 5, and 0 < � ≤ 0.5 min−1, multiplied by an independent and uniformly distributed prior for the polarity bias350

parameter on the interval 0 < W4 ≤ 2. The remaining parameters in c- (\) are fixed at W1 = W2 = W3 = 0.351

[Figure 4 about here; moved to end of manuscript by endfloat.]352
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Figure 4(a–d) shows the empirical marginals from the posterior sample from c(\ | xNoEF, xEF), constructed using Bayesian353

synthetic likelihoods and SMC sampling. The marginals shown correspond to the four non-zero parameters of the model, E,354

Δ, , �, and W4. The posterior marginal distributions of the previously inferred parameters, E, Δ, and �, closely match those355

in Figure 2(b–d), as depicted in Figure S7 of the Supplementary Material. Similarly to Figure 2, the posterior distribution is356

concentrated in a small region of the prior domain, providing evidence that each of the parameters is identifiable using the357

chosen summary statistics.358

The median of the SMC sample depicted in Figure 4(a–d) can be used as a point estimate for the parameter values:359

E = 1.11 µm min−1, Δ, = 0.020, � = 0.069 min−1, W4 = 0.60. Figure 4(e–h) compares the training data against 50 simulations360

from both models, Eq. (2) and Eq. (3), using parameter values randomly sampled from the empirical posterior depicted in361

Figure 4(a–d). The observed bias in motility towards the direction of the EF is reflected in the stochastically simulated outputs.362

This provides visual confirmation that parameters inferred by Bayesian synthetic likelihood, based on the chosen summary363

statistics, produce simulated outputs that share observable characteristics with the experimental data. In the Supplementary364

Material we provide a more detailed validation of the fit of the calibrated model to the training data, including a cross-validation365

of the posterior predictive distributions of the summary statistics against the observed summary statistics, in Figure S8.366

Validation against test data367

Recall that the portion of the data collected from the electrotactic experiment corresponding to the time interval 180 min to368

300 min was held back from the training set used to calibrate the model. The predictions of the calibrated electrotactic model369

can be validated against this test data set, as a prediction of the cell responses to a reversed EF input.370

[Figure 5 about here; moved to end of manuscript by endfloat.]371

In Figure 5, we compare the predictions to the test data in two ways. Figure 5 depicts the marginals of the empirical posterior372

predictive distribution for all four summary statistics over the interval 180 min to 300 min, overlaid against the corresponding373

summarised test data. These distributions show a good level of agreement, demonstrating that these characteristics of the374

observed motility data can be predicted by the model. In Figure 5(e–f) we also compare the observed trajectories over 180 min375

to 300 min (translated to begin at the origin) against a set of simulated trajectories, using parameter values sampled randomly376

from the posterior in Figure 4(a–d). A visual comparison shows that the diversity of observed trajectory characteristics is377

well-captured by the stochastic simulations and parameter uncertainty. These comparisons provide evidence helping to validate378

the calibrated model, by demonstrating its ability to accurately predict the cellular response to dynamic EF inputs against379

unseen data.380

DISCUSSION & CONCLUSION381

The primary goal of this work has been to use mathematical modelling to quantitatively identify the contributions of multiple382

hypothesised means by which EFs induce electrotaxis in single cells. We have presented an empirical, parametrised, agent-based383

model of electrotactic cell motility, and shown that it can be calibrated to single-cell trajectory data using likelihood-free384

Bayesian inference. To our knowledge, although many models of single-cell and collective motility under environmental cues385

have been developed (13), there have been few mathematical models of electrotaxis (28, 29), and this work is the first use of386

detailed mathematical modelling at a single-cell level to quantify motility under electrotaxis. Moreover, the inferred parameter387

values of the calibrated model provide quantitative, mechanistic insights into experimentally-observed electrotaxis.388

Specifically, by calibrating the model to experimental observations of electrotaxis in human corneal epithelial cells, we have389

concluded that the observed bias in motility is the result of polarity bias, where cells preferentially evolve the direction of390

their polarisation to align with the direction of the EF. The data does not support the hypothesis that an EF contributes an391
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external force on the cell; nor that polarised cells travel at different speeds in the presence of a field. By carefully calibrating the392

parametrised mathematical model to experimental data, we have quantified the effect of the polarity bias on the electrotactic393

phenotype of this cell line.394

A key strength of the model presented in Eq. (3) is its flexibility. The parametric design means that the Bayesian calibration395

methodology used in this work can be recapitulated to calibrate the same model to electrotaxis assays using other cell types or396

with different experimental conditions. Thus, observed differences in spontaneous and electrotactic motility between different397

cells and experimental conditions (3, 5) can be modelled and predicted within a common parametric framework. It is also398

important to acknowledge that we have chosen from only four hypothetical observable effects of electrotaxis. Other electrotactic399

effects may be reasonably included in the modelling process: for example, the EF may induce changes to the rate of polarisation400

and depolarisation (3). The electrotaxis model can straightforwardly be extended and recalibrated to account for any alternative401

hypothetical effects.402

We have also considered EFs at a single reference strength, requiring a single parameter to quantify each hypothesised403

electrotactic effect. However, the characteristics of electrotaxis have been observed to vary nonlinearly with EF strength (5).404

The model is sufficiently flexible to account for this phenomenon through the replacement of the parameters W8 with functions405

Γ8 (D) that vary with the EF strength, D mV mm−1. The challenge will then be to use experimental data gathered from assays406

using EFs of different strengths to infer each of the functions Γ8 in place of each of the parameters W8 .407

The model we have presented predicts single-cell electrotactic behaviour. However, there is a wealth of data and analysis408

on electrotaxis in the context of cell populations (3, 4, 6–9, 13). The electrotaxis model in this paper is a starting point for a409

comprehensive agent-based model that also incorporates phenomena such as volume exclusion, adhesion, elastic collisions,410

contact inhibition, and so on (13, 30, 31). Furthermore, there is significant scope for linking the calibrated parameters of the411

single-cell model described in this work to the construction of lower-level models of the intracellular processes that give rise412

to electrotaxis. Multifidelity approaches (27, 32) that can link experiments and information at the intracellular, single-cell413

and multicellular level will be vital to identify and quantify the biasing effects of EFs on the collective motility of cell414

populations (12, 14, 33).415

The model considered in this paper, and the Bayesian uncertainty quantification of its parameters, are important tools for416

enabling stochastic model predictive control designs of such policies based on output feedback and filtering (34). We have417

therefore provided a significant step towards the real-time model predictive control of populations of electrotactic cells.418
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Figure 1: Comparison of the stationary distributions for the random velocity, v, under the autonomous and electrotactic models,
where darker regions correspond to greater probability. The bottom plot shows the hypothesised electrotactic effects of an
EF, applied in the positive G direction, parametrised by W1, . . . , W4. The effects of W1, W2 and W3 are visible in the shape of the
distribution. Polarity bias (W4) produces asymmetry in the distribution density, shown as a darker region to the right of the
figure.
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Figure 2: Parameter inference and simulation of the autonomous model. (a) The subset of the training data used to calibrate the
autonomous model, corresponding to all observed trajectories under the autonomous experiment. (b–d) All one-dimensional
projections of the posterior sample from c(\NoEF | xNoEF). The covariance structure of the posterior is given in Supplementary
Material, Figure S2. (e) Simulations of the calibrated model, using parameters randomly selected from the posterior depicted in
(b–d). (f–h) Posterior predictive samples for )1 (time to polarisation), )0 (time to depolarisation), and P(polarised) (probability
of a cell being polarised at the final time) for simulations from the autonomous model with parameters taken from the posterior,
c(\NoEF | xNoEF), depicted in (b–d).
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Figure 3: Objective functions �0 (-) and �2 (-) from Eq. (4), for combinations of electrotactic effects indexed by - ⊆ {1, 2, 3, 4}.
Greater values are preferred. Each objective function is translated to have zero minimum value.
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Figure 4: Empirical posterior samples inferred from training data: all trajectories from the autonomous experiment, and also from
the electrotactic experiment for 0 min to 180 min. (a–d) One-dimensional projections of the empirical posterior distribution for
all non-zero parameter values, based on the selected prior, c [4] . In the Supplementary Material, the two-dimensional projections
of this posterior are depicted in Figure S6, and a comparison of the posterior distributions of E, Δ, and � in Figure 2(b–d) and
here is depicted in Figure S7. (e–h) Observed and simulated trajectories for (e, f) the autonomous experiment, and (g, h) the
electrotactic experiment over 0 min to 180 min. Simulations in (f,h) were produced for randomly sampled parameter values
from the posterior in (a–d).
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Figure 5: Comparing predictions of the calibrated electrotactic model against test data: observed trajectories from the electrotactic
experiment for 180 min to 300 min. (a–d) One-dimensional projections of the summary statistics. Curves are an empirical
distribution of simulated summary statistics for each parameter value from the posterior sample depicted in Figure 4(a–d). We
overlay a barcode plot of each of the summary statistics of the observed test data. (e–f) Observed and simulated trajectories
over 180 min to 300 min. Simulations in (f) were produced for randomly sampled parameter values from the posterior in
Figure 4(a–d).
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