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Abstract

Deep learning models are receiving increasing attention in clinical decision-making,
however the lack of interpretability and explainability impedes their deployment in
day-to-day clinical practice. We propose REM, an interpretable and explainable
methodology for extracting rules from deep neural networks and combining them
with other data-driven and knowledge-driven rules. This allows integrating ma-
chine learning and reasoning for investigating applied and basic biological research
questions. We evaluate the utility of REM on the predictive tasks of classifying
histological and immunohistochemical breast cancer subtypes from genotype and
phenotype data. We demonstrate that REM efficiently extracts accurate, compre-
hensible and, biologically relevant rulesets from deep neural networks that can
be readily integrated with rulesets obtained from tree-based approaches. REM
provides explanation facilities for predictions and enables the clinicians to vali-
date and calibrate the extracted rulesets with their domain knowledge. With these
functionalities, REM caters for a novel and direct human-in-the-loop approach in
clinical decision making.

1 Introduction

Diagnosis, prognosis and treatment planning in healthcare are nowadays informed by a variety of data
types ranging from imaging to genomic biomarkers and electronic health records. The differences
among these data types challenge common statistical methods. This has turned the attention to
Machine learning (ML), and in particular deep neural networks (DNNs) that are capable of handling
high volume of heterogeneous data. Unfortunately, while accurate, the opacity of many ML models
such as DNNs poses a great challenge for their deployment in safety critical domains, such as
oncology. This is evidenced by the scepticism of clinical community about ML systems [4, 21].

Addressing the ML opacity issues has gained a lot of attention in recent years to the extent that
explainability of decisions made by machine is now a legal requirement in some cases [14]. This has
given rise to the emerging fields of interpretable and explainable ML (See Supplementary materials
for essential definitions). While typically these terms are used interchangeably, we make a distinction:
interpretable ML focuses on the model itself and “how” well its underlying processes for making a
prediction can be understood. Explainable ML, on the other hand, solely focuses on understanding
“why” an ML model makes a prediction.
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Models that are interpretable (e.g., decision tree, ruleset) are explainable by default. For non-
interpretable models (e.g., DNN, SVM), the explanation is provided by post-hoc means, most
common of which is feature importance [3], where for each prediction the importance of individual
features is approximated by removal or perturbation [24, 27, 25]. Recent user studies, however, show
that feature importance does not necessarily increase human understanding of the model and its
predictions [17, 22]. This causes serious challenges in domains such as healthcare, where verifiability
and simulatability are crucial in supporting clinical decision-making. The former allows clinicians
to inspect the predictions of an ML model and contrast them with their expert knowledge to verify
the biological relevance, while the latter allows checking the impact of perturbation in input on the
output and adjusting the model accordingly.

To support clinical decision making, we propose an integrative Rule Extraction Methodology (REM)1

(Figure 1) that addresses the issue of interpretability and explainability simultaneously, while catering
for verifiability and simulatability. The REM-D component of REM approximates a DNN with an
interpretable ruleset model and uses that ruleset to explain the predictions of DNN. The REM-T com-
ponent, on the other hand, extracts rulesets from tree-based approaches (e.g., decision trees, random
forests). The REM-D is a decompositional method that decomposes a DNN into adjacent layers from
which rules are extracted. Compared to the methods that extract rules from the network predictions
directly without considering the inner working of the network, decompositional approaches benefit
from the noise removal property for neural networks and take into account the role of hidden features
as well as input features [26].

In addition to gaining explainability and interpretability, the advantage of approximating DNNs with
ruleset models is in easy integration of such rulesets with other data and knowledge driven rules to
allow reasoning with more than one modality. REM pipeline (Figure 1) shows an instantiation of
this process, where rulesets are extracted by REM-D and REM-T from data modalities modelled
with DNNs and tree-based approaches, respectively. Together with rulesets coming from knowledge
modalities, the final ruleset allows domain experts to conduct reasoning, get explanation for the
predictions made by the reasoning process, inspect the biological relevance of the predictions and,
calibrate them with their expertise. With these functionalities, REM essentially caters for a novel and
direct human-in-the-loop approach in clinical decision making.

REM pipeline, by using ruleset as surrogate for DNNs, makes the following contributions: (i) fa-
cilitates highlighting the similarities and differences between the rules of decision making by a
machine and human experts; (ii) provides the clinicians/physicians with an explanation of predictions;
(iii) allows clinicians/physicians to adjust the model and therefore its decision-making based on
their expertise; and (iv) enables flexible multi-modality reasoning with rules coming from various
modalities and models.

2 Results

We employ REM in two real world case studies on breast cancer for predicting imaging histological
subtypes based on mRNA expression data and predicting immunohistochemical (IHC) subtypes
based on a combination of clinical and mRNA expression data. The results of rule extraction are
evaluated from three quantitative perspectives: (i) predictive performance (i.e., accuracy and fidelity
of the ruleset), (ii) comprehensibility (i.e., size of ruleset and rules average length), and (iii) efficiency
of rule extraction (i.e., time and memory usage). We demonstrate that in a time and memory efficient
manner, REM extracts ruleset models that are accurate and comprehensible. In addition to these
quantitative measures, we show that the rulesets extracted are biologically relevant, calibratable based
on experts’ domain knowledge and easy to integrate with rules coming from other modalities and
models. In what follows, we first outline the two case studies.

2.1 Case Studies

Predicting histological subtypes of breast cancer from mRNA expressions Histological subtypes
of breast cancer aim to capture the heterogeneity of breast cancer based on the morphology evident in
the pathology images of tumours. Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma

1The repository will be available after review process. In the meantime, please contact the corresponding
author for related questions.
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b. Ruleset for
Cross-Modality Reasoning 

R1: If (CDH1 > 0.4 AND OTUD6B > 0.35) Then
IDC

R2: If (ABAT <= 0.24  AND RECQL4 <= 0.13 AND
MTUS1 > 0.5 AND CDH1 <= 0.33 AND AURKA <= 
0.12) Then ILC
….

a. Neural Network for Predicting 
Histological Subtypes

mRNA 1

IDC

ILC
mRNA 
1004

mRNA 2

• If (CDH1 > 0.32 AND IMPAD1 > 0.48 AND
PSMD7 > 0.58) Then IDC

• If (CDH1 > 0.25 AND TBPL1 > 0.4 AND 
IMPAD1 > 0.45) Then IDC

• If (CDH1 > 0.32 AND PSMD7 > 0.66) 
Then IDC

• If (GE_XPR1 > 0.56 AND CDH1 > 0.4 AND 
ARF1 > 0.2) Then IDC

c. Predict and Explain d. Inspect 

Top 10 features 
overall

Top 10 features 
for class IDC

Top 10 features 
for class ILC

CDH1
AURKA
FOXM1
PSMD7
HYOU1
GRB7
EDC4
CSPP1

PPP1R14B
CIAPIN1

CDH1
AURKA
FOXM1

NIP7
HYOU1
CIAPIN1

SRP9
MCM10
RFWD3
PEX11B

CDH1
FOXM1
PSMD7
AURKA
GRB7
EDC4
CSPP1

PPP1R14B
HYOU1

FAM91A1

Figure 2: Cross-modality reasoning. a. A neural network is trained to predict histological subtypes
of breast cancer based on 1004 mRNA expressions. b. Rules are extracted from the trained network
using REM-D. c. The explanation for predicting the histological type of a hypothetical patient
(generated by randomly sampling numbers between 0 and 1 to represent the input features) in the
form of specific rules used for this prediction. d. Top features appearing in the rules extracted
from the entire dataset to allow inspection of biological relevance of extracted ruleset using existing
bioinformatics tool.

(ILC) are the two most common histological subtypes of breast cancer identified from pathology
images, respectively. There is little known about the connection between genetic factors and these
histological subtypes [10, 6]. To reveal the connection between the two, we use what we refer to
as cross-modality reasoning: reasoning involved in predicting a target that is based on different
data modalities rather than those inputted to the model. Whilst cost consideration makes predicting
genetic targets with imaging more practical than the other way around, research wise, it is equally
informative to investigate the prediction of histological subtypes with genetic factors. To this end, we
predict the histological subtypes of IDC and ILC from mRNA expression profiles of patients in the
METABRIC dataset [7], using DNNs (Figure 2a). 1694 patients out of the total 1980 in METABRIC,
belong to one of these two subtypes. Using 80% of these 1694 records for training (1355 patients),
the predictive performance of a neural network is measured across five folds on the remaining 20%
(339 patients), when identifying IDC vs ILC subtypes from 1004 mRNA expressions.

Predicting IHC subtypes of breast cancer from mRNA expressions Apart from histological
subtypes, patients in the METABRIC dataset are assigned to various other groups, one of which is
coming from the two IHC subtypes (ER+ and ER-) that are very important in deciding treatment
options. Similar to previous scenario, using 80% of the METABRIC dataset for training (1584
patients), the predictive performance of neural network is measured across five folds on the remaining
20% (396 patients), when identifying patients IHC subtypes (1506 ER+ cases vs 474 ER- cases) from
1000 mRNA expressions (Figure 3a).

2.2 REM-D efficiently extracts accurate and comprehensible rules

Using REM-D, we extract rules from neural networks for both case studies above (Figure 2b and
Figure 3c). The results in terms of predictive performance, efficiency and comprehensibility are
reported in Table 1.
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R1: If (C0G7 <= 0.26 AND ARF1 <= 
0.42) Then ER-

R2: If (PYCRA > 0.22 AND CLNS1A <= 
0.13 AND STX10 > 0.46) Then ER+
…

R3: If (CT >  0.5 AND Grade > 2.5 
AND HT > 7.5) Then ER-

R4: If (Grade <= 2.5 AND
Age_At_Diagnosis <= 46.35 AND
CT > 3.5) Then ER+ 
…

b. Decision Tree for Predicting 
IHC Subtypes

c. Ruleset for 
Multi-Modality Reasoning

(data modalities)

a. Neural Network for Predicting 
IHC Subtypes

mRNA 1

ER-

ER+
mRNA 
1000

mRNA 2

R5: If (ER- AND Grade1 AND HER2+ AND
M1 AND N1 AND PR- AND T4) Then Stage4  

R6: If (ER+ AND Grade3 AND HER2- AND 
M0 AND Tis ) Then Stage0
…

e. Ruleset for 
Multi-Modality Reasoning

(data and knowledge modalities )

AJCC 8th Edition Stage
a Class
Comment: Breast Cancer 
Stage pertaining to AJCC
8th Edition Guidlines

Stage0
a Class
hasTreatmentOption: Radiation 
Therapy, Surgery
hasRecommendedTest: 
Mammogram

Stage4
a Class
hasTreatmentOption: Chemotherapy, 
Targeted Therapy, Whole Body Treatment
hasRecommendedTest: Hormone 
Receptor Test, Histologic Typing, Receptor 
Testing, Pathology Report, HER2 Test

sub-class of sub-class of

sub-class of

d. Cancer Staging Ontology for Determining Tomour Stage

CT <= 0.5
Entropy = 0.5

Samples = 1583

Grade <= 2.5 
entropy = 0.274
samples = 326  

Age_At_Diagnosis
<= 46.35

entropy = 0.499 
samples = 70

CT <= 3.5 
entropy = 0.342

samples = 17 

entropy = 0.0
samples = 4
Class = ER+ 

HT <= 1.5 
entropy = 0.198
samples = 256

Figure 3: Multi-modality reasoning. a. A neural network is trained to predict IHC subtypes of breast
cancer based on 1000 mRNA expressions. b. A decision tree is trained to predict IHC subtypes
of breast cancer based on 13 clinical variables. c. A combination of rules extracted from mRNA
expressions using REM-D and from clinical variables using REM-T gives rise to a ruleset for multi-
modality reasoning. d. An existing ontology formalises the medical guidelines in the latest AJCC
Cancer Staging Manual. e. Rules from data modalities can be integrated with rules from knowledge
modalities.

For the first case study, from predictive performance perspective, the extracted rules closely mimic
the decision of the neural networks (average fidelity of 88.4%). The average accuracy of the
rules when used for prediction is 88.6%, which is almost identical to the original neural network.
Comprehensibility remains high too, making the ruleset easy to audit and comprehensible for domain
experts: the median of the size of the ruleset is 137, while the median of the average length of rules is
4.3 (i.e., rules have between 4 to 5 conditions). With respect to efficiency, rules are extracted efficiently
in below 3 minutes (median) with memory consumption of 573.231 megabytes (median), using the
hardware stated in Section 4.2. Note that the standard deviation across folds for comprehensibility
and efficiency metrics can be high. Therefore, for these metrics we report the median instead of
average, which gives a clearer overview of the REM-D behaviour. We outline our hypothesis about
this observation in the Discussion section.

Regarding the second case study, the average accuracy and fidelity of the rules when used for
prediction are 92.1% and 92.6%, respectively. This means that replacing the neural network with the
ruleset compromises just over 3% of the accuracy. The median of the size of the ruleset is 103, while
the median length of rules is 5.1, ensuring a high degree of comprehensibility. The efficiency remains
high. It takes below 350 megabytes and 2 minutes to extract the rules, using the same hardware.

The extracted rulesets for each case study can be simulated easily to get a prediction for a new patient
for either of the targets. In addition, it can be explained why a prediction was made, where the
explanation is in the form of rules that were satisfied (i.e., the conditions in them were met) and
thus counted towards the prediction (e.g., Figure 2c). Having assessed the extracted ruleset from
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target DNN
accuracy

REM-D
accuracy

REM-D
fidelity

REM-D
duration (sec)

REM-D
memory (MB)

size of
ruleset

rules average
length

ILC/IDC 0.882 0.886 0.884 143.792 573.231 137 4.3
ER+/ER- 0.957 0.921 0.926 100.714 349.951 103 5.1

Table 1: Rule extraction from neural network when predicting ILC/IDC (row 1) and ER+/ER- (row 2)
using mRNA expressions. Results reported are average across five fold cross validation for accuracy
and fidelity, and median for the rest of metrics. Results for each fold for ILC/IDC and ER+/ER-
predictions are in Supplementary Tables 5 and 6, respectively.

quantitative perspective, in the next three sections, we focus on the qualitative aspects. Each aspect is
elaborated on for one of the case studies and can be applied to the other one in a similar fashion.

2.3 Extracted rules are biologically relevant

To investigate the biological relevance of the rules extracted for the first case study, we look at
the features (i.e., mRNA expressions) that appear most frequently in the rules extracted across all
folds. As a proof of principle, the top ten most occurring genes are listed in Figure 2d. The top
genes code for a variety of proteins that do not cluster in a unique functional group and have key
function in most of cell compartments, therefore promoting cancer as transcription factors, cell cycle
regulators, cell-cell contacts and cell-cell signalling disruption. They seem remarkably in synergy
with promoting the progression and sustainability of the cancer along all key steps [15]. CDH1 is the
most common feature. This gene codes for a cadherin involved in the key Wnt-mediated beta catenin
signaling. Close to 80% of the rules associated with class ILC that include this feature prescribe an
upper bound restriction for it, which is aligned with the reported association of ILC tumour and the
under-expression of CDH1 [10, 6]. In contrast, all the rules associated with class IDC that include
this feature restrict its lower bound. This means that these rules are more likely to get triggered and
therefore predict IDC for patients with over-expression of CDH1. In addition to CDH1, the three
features that are commonly used in rules for both classes are AURKA, FOXM1, HYOU1. They are
all protein coding genes. AURKA is a kinase and one of the most powerful regulators of the cell
cycle. All rules for class IDC restrict the lower bound for AURKA, FOXM1 and HYOU1. This is
likely to point towards the over-expression of these genes in IDC tumours. The opposite is true for
rules associated with class ILC: close to 99% and 95% of the rules limit the upper bound of AURKA
and FOXM1, respectively; as well as all the rules limiting the upper bound of HYOU1, making a
case for potential under-expression of FOXM1 and HYOU1 in ILC tumours. Apart from CDH1,
FOXM1 HYOU1, and AURKA, PSMD7 appears in the top half of the overall features. The variety
of functional roles and the different localisations of the proteins coded by these genes provide an
overview of different aspects of molecular and cellular functions involved, helping clinicians and
physicians to form an overall vision about the task in hand.

2.4 Extracted rules can be adjusted based on domain knowledge

Clinicians and physicians can use their expert knowledge to adjust the model by expressing which
features to focus on. This information can be used to impose a hierarchy on the ruleset by assigning
scores to rules, where the score takes into account the inclusion of the preferred expressed features.
We use an augmented hill climbing algorithm for scoring rules. In the base version [19] the algorithm
assigns a score to each rule based on its coverage, accuracy and length, where high accuracy and
coverage are rewarded, while high score for length is penalised. In the augmented algorithm, referred
to as personalised ranking [20], the rules that include features proposed by domain experts get
additional scores and are thus likely to rank higher in the hierarchy of rules (Equation 2, Methods).
To show the impact of scoring, we pick four genes at random (e.g., KCTD3, RARA, STARD3
and ERLIN2) and assume they are expressed as highly relevant by an expert when predicting IHC
subtypes using 1000 mRNA expressions (Figure 3a). The frequency of favourite features in the top
70% of the ruleset increases when using personalised ranking (purple bars, Figure 4) as opposed
to the ranking merely based on coverage, accuracy and length (blue bars, Figure 4), indicating that
the model is indeed adjusted in the direction of expert knowledge. ERLIN2 is the exception, where
the ranking does not make a difference. Potential reasons for this are the absence of more rules that
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Figure 4: The impact of personalised ranking on the increase in the number of higher rank rules (top
70% of the rules) including the preferred features expressed by domain experts.

data modality rule extraction
mode

rule extraction
accuracy size of ruleset rules average

length
mRNA REM-D 0.921 103 5.1
Clinical REM-T 0.81 29 4.6

mRNA + Clinical REM-D + REM-T 0.933 133 5.0

Table 2: Integration of rules extracted from mRNA data modelled using a neural network (mode
REM-D) with rules from clinical data modelled using a decision tree (mode REM-T), when predicting
IHC subtypes. Results reported are averaged across five fold cross validation, apart from size of
ruleset, where median is reported. Results for each fold are in Supplementary Tables 6, 7 and 8 for
mRNA, Clinical, mRNA + Clinical, respectively.

include ERLIN2. High specificity of the rules that include ERLIN2 could be another reason: although
the ranking favours the inclusion of this feature, it does not favour long rules that are highly specific.

2.5 Extracted rules can be integrated with rules from other modalities and models

Beside mRNA expressions, IHC subtypes can also be predicted from clinical data in METABRIC.
Unlike the genomic part of the data that tends to be high dimensional, the clinical part often consists
of a handful of variables. We predict the IHC subtypes from clinical data using a decision tree
(Figure 3b). The average accuracy of decision trees across the folds is 81%, while the median of the
ruleset size and rule length are 29 and 4.6, respectively, as presented in Table 2, second row.

To allow multi-modality reasoning, we combine the rules extracted from the decision tree, using
REM-T, with the rules from the network, using REM-D (Figure 3c). As displayed in Table 2, third
row, this increases the accuracy of the ruleset slightly over the five folds, in comparison with the
ruleset that relies on rules extracted from the neural network only. The size of the ruleset increases as
expected, while the median of the average length of the rules drops below that of the rules extracted
by REM-D. More important than the slight increase in the accuracy is the fact that rules from different
modalities and modelled with various models can indeed be integrated and contribute to one another
to increase the accuracy of predictions.
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3 Discussion

The majority of interpretability and explainability methods used in healthcare are local, pointing to
important input features that were most influential in the prediction [31, 30, 1, 3]. Recent user studies,
however, show that feature-based explanations do not necessarily increase human understanding of the
model and its prediction [17, 22]. In addition, minor adversarial perturbations to the input, or model
parameters, can conceal important aspects of the model’s decision making process, making feature
importance explanations unreliable [11, 9, 8]. Finally, feature importance methods, as most local
methods, are hard to scale since interpreting a single prediction requires the execution, or sometimes
even the retraining [24], of a local method. REM provides a global view of interpretability and
explainability simultaneously. The ruleset models extracted by REM give an overview of the original
underlying model (e.g., DNNs), while they remain usable for local explanation of the predictions.
They also highlight the similarities and differences between the rules of decision making in machine
and human experts, while easily integratable with rules coming from other sources. In addition, since
rulesets make the decision-making process more transparent, they enable complex human-in-the-loop
scenarios. For example, domain experts could manipulate the rules, impose hierarchy on rules, and
emphasise the subset of rules that may be more useful for a subgroup of patients (e.g., of certain
ethnicity).

The Majority of rule extraction methods from neural networks are limited to rule extraction from
networks with one hidden layer [26]. Zilke et al. [33] extract rules from networks with more than
one hidden layer (i.e., DNNs), however, the approach has scalability issues due to high memory and
time consumption [12, 33]. REM-D has few key differences with [33]: it uses a more efficient rule
extraction algorithm between layers. It merges the rules extracted between layers incrementally (e.g.,
rules extracted between layer 4 and 5 will be merged with rules extracted between layers 3 and 4 as
soon as the latter become available) as opposed to first extracting all layer-wise rules followed by a
final merge. This is crucial because rules can be subject to quality check after each step of merge
(see Section 4.3 for satisfiability and redundancy checking). This eliminates the need for considering
unsatisfiable rules as well as terms that are redundant, which in turns improve the time and memory
consumption. Kazhdan et al. [16] propose a decompositional approach to extract information from
Convolutional Neural Network (CNN)’s layers in the form of "concepts". Concepts, in the setting of
images, are high-level semantic units (e.g., lung opacity, foreign object) rather than individual input
features (e.g., pixels, or characters). These concepts may be used in combination with REM to form
rulesets containing high-level explanations for image-based data modalities.

REM embodies a set of functionalities that can be used for revealing the connections between
various data modalities (cross-modality reasoning) and integrating the modalities for multi-modality
reasoning, despite being modelled using a combination of methodological approaches (DNNs and
tree-based). The latter is particularly important when working with different data modalities. Instead
of using a single model for all modalities, each modality is modelled using the prediction model that
suits the data best, while the integration of rules extracted from each model allows multi-modality
reasoning. REM functionalities also allow direct incorporation of knowledge into data-driven
reasoning by catering for rule ranking based on the expertise of clinicians/physicians. Alternatively,
rules can be extracted from knowledge modalities (e.g., electronic health records and biomedical
ontologies) and integrated with data-driven rules. Figure 3 showcases such a scenario. Rules extracted
from data provide input to rules extracted from the Breast Cancer Staging Ontology [28], which is
based on the latest AJCC Cancer Staging Manual [2]. In a hypothetical scenario, where the IHC
subtypes and tumour stage of the patients are unknown, the former can be predicted from data
modalities (Figure 3d) and used in the prediction of the latter, assuming other variables required for
this latter prediction (i.e., Grade, HER2 status, PR status, T: severity of tumour size, N: severity of
the spread to the lymph nodes, M: metastasize status) are known and provided as facts.

We demonstrated the use of REM and its functionalities in two breast cancer case studies, making
this work the first, to the best of our knowledge, that integrates machine learning and reasoning in
oncology domain. In cross-modality case study we used genetic data to predict image-based targets.
Cost consideration, however, often makes accessing genetic data challenging. Applied in reversed
order, genetic components involved in targeted gene panel testing may be predicted based on widely
available imaging data. REM paves the way to investigate the rules of going directly from imaging
to panel testing and thus bringing target therapy to more patients in absence of genetic data. In
multi-modality reasoning we look at the complementariness of modalities (e.g., mRNA expression
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and clinical) for predicting certain targets (e.g., IHC subtypes), which can be exploited for examining
the importance of modalities for various prediction tasks.

We envision several exciting avenues for future work. Deep learning models often have multiple
optima of similar predictive accuracy, while their interpretability can vary considerably [13]. We
postulate that neural networks that give rise to smaller number of rules in a shorter span of time
and with less memory consumption, when subjected to rule extraction are those that are more
interpretable and hence easier to explain with a smaller number of symbolic rules. Our results
(Supplementary Table 5 and Table 6) also suggest that the larger rulesets tend to have longer
rules that are highly specific due to inclusion of several conditions and are therefore less suited to
generalise to unseen samples. Using optimisation techniques that focus on optimising deep models
for human-simulatability [32] is expected to encourage finding models whose decision boundaries
are well-approximated by small decision trees that in turn give rise to a small ruleset, which are less
likely to overfit. Further to quantity, the quality of the rules in terms of biological relevance can
extend to investigating the connection between proteins coded by genes in rules and sets of proteins
participating in known cancer pathways. While user studies need to verify this, we are positive that
accommodating such functionalities in REM has the potential to decrease the scepticism of clinical
community about ML systems [4, 21] even further.

4 Methods

4.1 Data, pre-processing and feature selection

For all experiments we use a public breast cancer dataset of 1980 patients, METABRIC [7], that aims
to characterise breast cancer subtypes based on genomic and imaging data as well as clinical.

Feature selection in cross-modality case study. The aim of this case study is to predict the two main
histological subtypes of breast cancer, IDC and ILC (1547 IDC vs 147 ILC cases), using mRNA
expressions. Feature selection from METABRIC for this task is done based on existing bioinformatics
findings: we use putative breast cancer genes identified in [7], the significance of which is validated
by revealing novel subgroups that have distinct clinical outcomes. These genes are identified based on
a landscape created by integration of copy number aberrations (CNA) and expressions that highlights
genomic regions which are likely to contain driver genes. The top 1,000 cis-associated genes across
the integrated CNA-expression landscape are identified as putative genes. Further bioinformatics
finding shows that in addition to distinct morphology, mRNA expression profiling of the two main
histological subtypes demonstrates distinct molecular differences [10]. The main differences include
the variant in expression of four genes: CDH1, MKI67, FOXA1 and PTEN. We add the mRNA
expression of these four genes to the 1,000 pre-selected ones (Figure 2(a)).

Feature selection in multi-modality case study. The aim of this case study is to predict the two main
IHC subtypes of breast cancer, ER+ and ER- (1506 ER+ vs 474 ER- cases), using mRNA expressions
and clinical data. Similar to the above case study, we use the mRNA expressions of the 1,000 putative
genes (Figure 3(a)). The clinical data (Figure 3(b)) used in combination with the genomic data
consists of 13 variables (age at diagnosis, tumour laterality, Nottingham Prognostic Index, menopause
status, number of positive lymph nodes, chemotherapy agent, hormone therapy agent, radiotherapy
agent, grade, tumour size, histological type, stage, cellularity) that are either continuous (e.g., age) or
categorical (e.g., menopause status).

There are no missing values in mRNA expressions. Expressions are normalised and scaled to [0,1]
prior to use. Occasional missing values in clinical part are replaced by mean value for continuous
variables. They are treated as a new category for categorical variables. After pre-processing, the data
is sampled into five-fold cross-validation splits based on the class distribution of the target.

4.2 Model selection

A fully connected neural network with two hidden layers is set up for the classification tasks of
predicting histological subtypes and IHC subtypes outlined above. We used Keras library [5] for
this. Tanh is used as the activation function for the hidden layers, and softmax is used for the
output layer. Adam optimiser [18] is used for training without any regularisation. The weight
of classes are considered too when fitting the model. Batch size, number of epochs as well as
the number of neurons in the two hidden layers are determined based on grid search as follows:
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batch-size = {16, 32, 64, 128}, epochs = {50, 100, 150, 200}, layer-1 = {16, 32, 64, 128} and layer-2
= {8, 16, 32, 64}. Best performance (i.e., average AUC of five-fold cross validation) is obtained with:
batch-size=16, epochs=50, layer-1=128, and layer-2=16 when predicting histological subtypes using
1004 mRNA expressions. Incidentally, he same applies to predicting IHC subtypes. When modelling
clinical data using decision tree (Keras library [5]), rules were extracted without limiting the depth of
the tree, as well as limiting trees to depths 5, 10 and 15 (max_depth={5, 10, 15}). The accuracy of
predicting IHC subtypes was highest when maximum depth of the decision tree was limited to 5. All
the experiments are done on a server with 66 GB RAM and 2 AMD 6367 processor.

4.3 REM-D rule extraction methodology

REM-D extracts rules (Algorithm 1) for a classification problem with n data points, ~x1, ~x2, ..., ~xn,
each with an associated class, yi ∈ {y1, y2, ..., yu}. Rules are extracted from a trained network with
k hidden layers, {h0, h1, ..., hk, hk+1}, where h0 and hk+1 are in fact the input and output layers.
Each layer hi has Hi neurons. The input layer, thus has as many neurons as the features available
for each data point: H0 = |~xi|. The number of neurons in the output layer equals to the number of
classes: Hk+1 = u. The activation values sampled at layer hi for data point ~xj are denoted as hi( ~xj).

Ruleset structure. Prior to outlining the methodology for rule extraction, we present the structure of
the ruleset extracted by REM-D:

• Total ruleset: Rtotal =
⋃u

i=1 R
i
total

• Ruleset for each class: Ri
total =

∨m
j=1 R

i
j

• Individual rules: Ri
j = If antecedent then i

• Antecedent:
∧n

k=1 tk

• Terms: tk : h <= threshold or tk : h > threshold

The total ruleset is the union of ruleset for each class. The ruleset for each class is a disjunction
of individual rules, each of which is a conditional statement with an antecedent and the class they
belong to as conclusion. The antecedent itself is a conjunction of conditional statements referred to
as terms that are conditions on the activation value of neurons.

Rule extraction algorithm. In order to extract rules of the form described above from the network,
REM-D first decomposes the trained network into adjacent layers and then uses a tree induction
algorithm to extract rules from pairs of layers in the network. In contrast to existing approaches [33],
instead of C4.5 [23], REM-D uses a more efficient tree induction and rule extraction algorithm, called
C5 [23]. C5 is faster than C4.5, while consuming less memory. Furthermore, C5 induces trees and
extracts rules from them that are more accurate.2

When generating the decision tree, in order to identify the features that lead to a split, C5 uses
entropy [29] for measuring purity. The information gain of a feature is calculated based on the
difference of entropy in the segment before the split and the partitions resulting from the split. The
features with higher information gain are then used for splitting the data in the decision tree. Once
the tree is generated, nodes and branches that have little effect on the classification errors are pruned.
Rules are then extracted from the pruned tree. The rules extracted by C5, from each two adjacent
layers, k and k + 1, use the features from layer k. Thus, except when k is the input layer, the rules
use hidden features in a hidden layer. To make sure that the final ruleset maps the input to the output,
rules are merged in a backward fashion, such that the hidden features in each rule are replaced by
features in the previous layer until the input layer is reached and all rules are expressed only in terms
of input features. Algorithmic details are as follows.

The algorithm starts by iterating over each class (line 1). For each class, a rule is defined that maps
the last hidden layer to the output classes (line 2). For example, if there are two classes, represented
by neuron 1, and 2 in the output layer, which we assume is the 5th layer, for the first one we have:
Rv

initial = IF h5,1 > 0.5 Then yv , where h5,1 refers to neuron 1 of layer 5. A total rule is introduced
for each class that only contains the initial rule to begin with (line 3). For the class in hand, each
layer preceding the output layer is considered in a descending order (line 4). For each layer and

2See https://rulequest.com/see5-comparison.html for comparison between C4.5 and C5 by the
author of both algorithms.
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Algorithm 1 REM-D
Input: Artificial neural network {h0, h1, ..., hk+1}, training data {( ~x1, y1), ..., ( ~xn, yn)}
Output: Ruleset approximating the neural network Rtotal

1: for class yv ∈ y1, y2, ..., yu do
2: Rv

initial ← {IF hk+1,v > 1/u THEN yv}
3: Rv

total = Rv
initial

4: for layer j = k, ..., 0 do
5: Ihj→hj+1 ← ∅
6: T = Set(getTermsFromRuleset(Rv

total))
7: ~x1

′, ~x2
′, ..., ~xn

′ ← hj( ~x1), hj( ~x2), ..., hj( ~xn)
8: for t ∈ T do
9: y1

′, y2′, ..., yn′ ← t(hj+1( ~x1)), t(hj+1( ~x2)), ..., t(hj+1( ~xn))
10: Ihj→hj+1 ← Ihj→hj+1 ∪ C5.0(( ~x1

′, y1
′), ( ~x2

′, y2
′), ..., ( ~xn

′, yn
′))

11: end for
12: Rv

total ← substitute(Ihj→hj+1 , R
v
total)

13: Rv
total ← deleteUnsatisfiableRules(Rv

total)
14: Rv

total ← deleteRedundantTerms(Rv
total)

15: end for
16: end for
17: Rtotal ← R1

total ∪R2
total ∪ ... ∪Ru

total

18: returns: Rtotal

its proceeding layer an intermediate empty ruleset is formed that is going to be populated with
rules extracted from this layer and the next one (line 5). Unique conditions (referred to as Terms)
that appear in the individual rules within the total ruleset are collected in a set (note that the set
implementation guarantees the uniqueness of these conditions, and avoids the need for looking for
redundancies and deleting them after the terms are collected) (line 6). These conditions are based on
hidden neurons in the proceeding layer and need to be replaced with conditions based on the neurons
in the current layer till we reach the input layer. For this first the activation values sampled from the
current layer are noted (line 7). Next, each condition collected (line 6), is applied to the activations
sampled from the proceeding layer to give a target value (line 9). Then in line 10, the values noted
in line 7 and targets from line 9 are passed on to C5.0 algorithm for rule extraction. In the same
line, the extracted rules will be added to the intermediate ruleset initiated in line 5. By substituting
(Algorithm 2) the updated intermediate rules into the total class ruleset, the rules for the class are
now described based on neurons in a layer one step closer to input layer (line 12). Merging rules
extracted from different layers may give rise to unsatisfiable rules that have contradictory conditions
(e.g., Age_At_Diagnosis > 65, Age_At_Diagnosis <= 46) or rules with redundant conditions (e.g.,
Age_At_Diagnosis > 65, Age_At_Diagnosis > 67). Unsatisfiable rules are deleted in line 13, followed
by deleting redundant conditions in line 14. For optimisation purposes, substitution, satisfiability and
redundancy checking is done after each step of merging. This results in a lower number of shorter
rules for the subsequent merge step, thereby improving time and memory usage. The procedure is
repeated until the input layer is reached and the rules for each class are based on input features instead
of neurons in the hidden layers. Finally, the rules that describe the behaviour of the network for each
class in terms of input features are combined to give the overall ruleset (line 17) that is returned as
output (line 18).

In order to make a prediction for a data point using the final ruleset, the majority vote is used: the
ruleset for each class has a vote for the prediction which is essentially the number of rules within the
class ruleset that are satisfied by the data point. The prediction for the data point is the class that has
the majority vote (highest number of rules satisfied).

C5 parameters. The default parameter values are used in C5 (Algorithm 1, line 10). “winnowing”
attribute is set to “True” and the number of “minCases” per leaf is determined by grid search.
Winnowing in C5 works by calculating a feature importance for each feature based on error rate
increase in the training set if the feature was excluded. When set to “True”, winnowing allows C5
to use only the important features for tree induction and rule extraction. The minCases parameter
stops the decision tree from splitting further if the number of samples in each node drops below the
set minimum number of cases after a split. For each experiment we extracted rules by setting the
minCases values to: minCases= {5, 10, 15, 20} and chose the value that gave the most accurate final
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Algorithm 2 Substitution Procedure
1: procedure SUBSTITUTE(Ihj→hj+1 , R

v
total)

2: Rv
temp ← ∅

3: for rule ∈ Rv
total do

4: a← []
5: for t ∈ getTermsFromRule(rule) do
6: a← a+ getAntecedent(Ihj→hj+1 , t)
7: end for
8: for C ∈ CartesianProduct(a) do
9: Rv

temp ← Rv
temp ∪ formRule(C)

10: end for
11: end for
12: Rv

total ← Rv
temp

13: returns: Rv
total

14: end procedure

u number of classes
k number of hidden layers
n number of data points
m number of features (i.e., neurons)
x maximum number of rules in each class ruleset
y maximum number of terms in each rule
z maximum number of substitutions for each term

Table 3: Notation used in complexity analysis.

ruleset. When predicting histological subtypes, this value was 10, while 5 was the best value when
predicting IHC subtypes.

Substitution algorithm. The substitution procedure replaces the terms in individual rules within a
class ruleset with the antecedent of the individual rules within the intermediate ruleset that have these
terms as conclusion. For example, if we have t AND t′ → y and within intermediate ruleset we
have the following two rules a → t and a′ → t′ the substitution gives rule a AND a′ → y. This
substitution essentially replaces the terms appearing in the rules of total ruleset with terms from a
previous layer. As a result, the rules for the class are now described based on neurons in a layer one
step closer to input layer.

The procedure starts with initiating a temporary ruleset for the class in hand (line 2). It then iterates
over individual rules in the class total ruleset (line 3). For each of them an empty list is initiated (line
4). For each term in the rule (line 5), the intermediate ruleset is searched for rules with this specific
term as conclusion. Those found are added to the list initiated earlier (line 6). If a rule has two terms
t1 and t2, there maybe several intermediate rules that have each term as conclusion, thus the list may
look like [{a11, a21}{a12, a22, a32}], where a11, a

2
1 are antecedents for t1 and a12, a

2
2, a

3
2 are antecedents

for t2. Cartesian product of antecedent sets gives all the combination possible when substituting
terms in rules within total ruleset (line 8). Each combination forms a new individual rule that is
added to the temporary ruleset for the class (line 9). Once this procedure is repeated for each rule, the
temporary ruleset replaces the total ruleset (line 12). The updated total ruleset is returned (line 13).

Complexity analysis. The theoretical complexity of REM-D (Algorithm 1) equals: number of classes
× (number of hidden layers + 1) × [(number of C5 calls × complexity of C5) + complexity of
substitution + complexity of satisfiability checking + complexity of redundancy checking]. The
notation used throughout this analysis is presented in Table 3.

Number of C5 calls (Algorithm 1): This number equals to the cardinality of set T defined in line 6.
Set T consists of terms in the rules extracted between two adjacent layers proceeding the current
layer j (line 4). In absence of pruning, the number of terms from the mentioned ruleset is the same as
the number of non-leaf nodes in the tree from which the rules were extracted. In order to calculate
the maximum number of non-leaf nodes, we first look at the maximum number of leaf nodes. In the
worst case scenario each tree induced between two layers has n leaves, where n is the number of data
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Algorithm 3 REM-T
Input: random forest rf , training data {( ~x1, y1), ..., ( ~xn, yn)}
Output: Ruleset Rtotal

1: for class yv ∈ y1, y2, ..., yu do
2: Rv

total ← ∅
3: for tree ∈ rf do
4: for branch ∈ tree do
5: if getLeaf(branch) == class then
6: Rv

total ← Rv
total ∪ createRule(branch)

7: end if
8: end for
9: end for

10: Rv
total ← deleteRedundantTerms(Rv

total)
11: end for
12: Rtotal ← R1

total ∪R2
total ∪ ... ∪Ru

total

13: returns: Rtotal

points. The total number of non-leaf nodes in a complete binary tree with n leaves is n− 1. Thus the
number of C5 calls made for each layer j is n− 1 in the worst case scenario.

Complexity of C5 (Algorithm 1): C5 is a binary tree induction algorithm the complexity for which
is known as m× n2 in the worst case scenario, where n is the number of data points and m is the
number of features for each data point. In REM-D m refers to the number of neurons in layer j (line
4).

Complexity of substitution (Algorithm 2): complexity of this procedure depends on the total number
of rules in a class (line 3) and the Cartesian product calculated in (line 8). Assuming that the maximum
number of rules in each class ruleset, terms in each rule and substitutes for each term are x, y and z,
respectively, the overall complexity of substitution procedure is x× zy .

Complexity of satisfiability and redundancy checking (Algorithm 2): We established x and y as
maximum number of rules in a ruleset and maximum number of terms within each rule, respectively.
Satisfiability and redundancy checking both require iterating through every term in a rule for every
rule, thus for each of this operations we have the complexity of x× y.

The overall complexity is thus: u × (k + 1) × [((n − 1) ×m × n2) + (x × zy) + (2 × x × y)].
Determined by the dominant factor, the substitution procedure, the complexity is exponential. While
interventions that restrict the number of terms that need substitution, such as limiting the depth of
trees between layers, helps with the empirical complexity, the high computational complexity remains
a limitation.

4.4 REM-T rule extraction methodology

REM-T extracts rules (Algorithm 3) for a classification problem with n data points, ~x1, ~x2, ..., ~xn,
each with an associated class, yi ∈ {y1, y2, ..., yu}. Rules are extracted from a trained random forest
or decision tree. Here we explain the rule extraction from random forest, the procedure for decision
tree is identical to that of random forest with a single tree.

The algorithm starts by iterating over each class (line 1). A total rule is introduced for each class
(line 2). For each tree in the random forest (line 3), the branches of the tree (line 4) are traversed. If
the branch ends at a leaf node that has the same label as the class (line 5), the algorithm creates a
rule from it by the conjunction of conditions in each node in the branch and adds the created rule to
the total ruleset for the class (line 6). Similar to Algorithm 1 (line 14) redundant terms are deleted
(line 10). The total ruleset for each class are combined to give the overall ruleset (line 12) that is
returned as output (line 13).
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Figure 5: The impact of personalised ranking on increase in the number of higher rank rules (top 70%
of the rules) that include the preferred features picked by domain experts, where x ranges from 1 to 5.

4.5 Rule scoring and ranking

The basis of personalised rule scoring and ranking is the score proposed by [19],

Rule − Score =
cc− ic

cc+ ic
+

cc

ic+ k
+

cc

rl
(1)

where cc and ic are the number of training samples covered by the rule and classified correctly and
incorrectly, respectively, by the rule. rl denotes the rule length. k is set to 4 as per original work
in [19]. However, other positive values can be used for k as its role is mostly to avoid the denominator
becoming zero, and no significant change in the results is observed by modifying k.

In the personalised rule scoring and ranking proposed by [20], where the assumption is that a list of
preferred features is in hand, the formula is extended as follows:

Personalised − Rule − Score =
cc− ic

cc+ ic
+

cc

ic+ k
+

cc

rl
+

x

i+ 2
(2)

where i refers to the feature’s index in the list of preferred features: the lower the index, the more
important is the feature. For a fixed x, the first feature (index 0) adds x/2 to the score, while the
second feature (index 1) adds less (x/3) and so on. The positive constant x can be tuned to give the
desired impact.

In the ranking imposed in multi-modality scenario (Figure 4) we assumed all features are equally
preferred (i.e., i = 0) and experimented with x ranging from 1 to 5 (Figure 5). Some values of x such
as 4 and 5 give the most consistent results across all features in terms of increasing the number of
rules that include the preferred features, while others are less consistent and may give more boost to
only a certain feature. The results presented in Figure 4 use x = 5 in personalised ranking.
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Supplementary Materials

Abbreviations and Essential Definitions

Abbreviations
ML: Machine Learning, DNN: Deep Neural Network, REM: Rule Extraction Methodology, REM-D: Rule Extraction
Methodology from Deep Neural Networks, REM-T: Rule Extraction Methodology from Trees

Essential Definitions
Interpretability: The degree to which “how” a model makes a prediction is understandable
Explainability: The degree to which “why” a model makes a prediction is understandable
Feature importance: Set of domain features (i.e. piece of data or evidence) that contributed the most to a prediction
Verifiability: The degree to which the biological relevance of a model can be determined
Simulatability: The ease of generating a prediction for an input by following the operation of a model
Reasoning: Applying rules towards making predictions
Accuracy: the degree of alignment between the predictions of an extracted ruleset model and ground truth
Fidelity: the degree of alignment between the predictions of an extracted ruleset model and the predictions of the

original model they are extracted from
Efficiency: time and memory consumed to extract ruleset models
Comprehensibility: the number of rules in a ruleset and their average length

Rule Extraction Details for Cross-Modality Reasoning Case Study

Table 4 shows that the neural network model outperforms the decision tree model and the random
forest model in terms of AUC, despite their high accuracy. The parameters used for the neural
network model were outlined in the Method section. The random forest model used 50 trees each
with maximum depth of 10 and half of the features considered at every split. The decision tree model
also used a maximum depth of 10. Class weights were considered in both, random forest and decision
tree models.

decision tree random forest neural network
fold accuracy AUC accuracy AUC accuracy AUC

0 0.897 0.718 0.918 0.639 0.903 0.811
1 0.879 0.723 0.918 0.609 0.906 0.813
2 0.846 0.666 0.929 0.617 0.870 0.804
3 0.876 0.698 0.905 0.589 0.908 0.731
4 0.885 0.624 0.914 0.578 0.825 0.78

average 0.877 0.686 0.917 0.606 0.882 0.788

Table 4: A performance comparison between Decision Tree, Random Forest and Neural Network
with 1004 mRNA expressions as input and ILC/IDC as output.

Table 5 displays the details of rule extraction using REM-D for cross-modality scenario reported in
the Results and Method sections.

fold nn
accuracy

REM-D
accuracy

REM-D
fidelity

REM-D
duration (sec)

REM-D
memory (MB)

size of
ruleset

rules
average length

0 0.903 0.888 0.903 143.792 573.231 155 4.3
1 0.906 0.885 0.891 32.06 146.538 6 1.8
2 0.870 0.867 0.861 143.881 642.576 137 7.7
3 0.908 0.902 0.929 59.239 227.721 18 2.4
4 0.825 0.888 0.837 157.059 630.239 240 6.6

average 0.882 0.886 0.884 107.206 444.061 111.2 4.6

Table 5: Rule extraction from neural network with 1004 mRNA expressions as input and ILC/IDC as
output.
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Rule Extraction Details for Multi-Modality Reasoning Case Study

Tables 6 and 7 show the details of rule extraction using REM-D and REM-T from mRNA and clinical
data as outlined in the multi-modality case study, while Table 8 displays the details of their integration.

fold nn
accuracy

REM-D
accuracy

REM-D
fidelity

REM-D
duration (sec)

REM-D
memory (MB)

size of
ruleset

rules
average length

0 0.950 0.927 0.932 103.31 699.958 178 5.1
1 0.955 0.942 0.952 101.202 349.951 103 5.1
2 0.955 0.949 0.944 100.714 466.281 182 5.4
3 0.957 0.896 0.919 37.186 301.164 14 2.9
4 0.97 0.889 0.884 37.762 117.204 17 3.0

average 0.957 0.921 0.926 76.035 386.912 99 4.3

Table 6: Rule extraction from neural network with 1000 mRNA expressions as input and ER+/ER- as
output.

fold REM-T
accuracy

size of
ruleset

rules
average length

0 0.768 28 4.6
1 0.788 30 4.7
2 0.803 29 4.6
3 0.848 29 4.6
4 0.841 30 4.4

average 0.81 29.2 4.6

Table 7: Rule extraction from decision tree with 13 clinical variables as input and ER+/ER- as output.

fold REM-D + REM-T
accuracy

size of
ruleset

rules
average length

0 0.927 206 5.0
1 0.952 133 5.0
2 0.952 211 5.3
3 0.922 43 4.0
4 0.911 47 3.9

average 0.933 128 4.7

Table 8: Rule integration from neural network and decision tree.
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