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Abstract 

Automated systems for identifying and removing non-neural ICA components are growing in 

popularity among adult EEG researchers. Infant EEG data differs in many ways from adult 

EEG data, but there exists almost no specific system for automated classification of source 

components from paediatric populations. Here, we adapt one of the most popular systems for 

adult ICA component classification for use with infant EEG data. Our adapted classifier 

significantly outperformed the original adult classifier on samples of naturalistic free play 

EEG data recorded from 10 to 12-month-old infants, achieving agreement rates with the 

manual classification of over 75% across two validation studies (n=44, n=25). Additionally, 

we examined both classifiers ability to remove stereotyped ocular artifact from a basic visual 

processing ERP dataset, compared to manual ICA data cleaning. Here the new classifier 

performed on level with expert manual cleaning and was again significantly better than the 

adult classifier at removing artifact whilst retaining a greater amount of genuine neural 

signal, operationalised through comparing ERP activations in time and space. Our new 

system (iMARA) offers developmental EEG researchers a flexible tool for automatic 

identification and removal of artifactual ICA components. 

 

 

Keywords 

EEG; Deep learning; Artifact correction; Independent component analysis (ICA); Event-

related potentials (ERP) 
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1.  Introduction 

The use of EEG in developmental cognitive neuroscience has led to a rich understanding of 

how the brain develops throughout early life. EEG has provided insights from birth into the 

development of skills such as face processing (e.g., Farroni, Csibra, Simion, and Johnson 

2002) attention (e.g., Xie, Mallin and Richards, 2018), memory (e.g., Jones, Goodwin, 

Orekhova, Charman Dawson, Webb, and Johnson, 2020) and social interaction (e.g., Wass, 

Noreika, Georgieva, Clackson, Brightman, Nutbrown, Covarrubias, and Leong, 2018). It has 

also been pivotal in identifying risk factors associated with developmental disorders (e.g., 

Orekhova, Elsabbagh, Jones, Dawson, Charman, Johnson & the BASIS team, 2014) and later 

emerging psychopathology (e.g., Jones and Johnson, 2017). However, the field is challenged 

by a lack of scalable, standardised tools for artifact correction. In this paper, we present one 

lossless approach tuned for naturalistic artifact correction. 

 

1.1. Traditional approaches to artifact removal 

Despite its value, EEG recorded from paediatric populations is particularly susceptible to 

artifact contamination and typically contains fewer sections of clean uninterrupted data due to 

lower recording tolerances (Gabard-Durham, Leal, Wilkinson, and Levin, 2018; Debnah, 

Buzzel, Morales, Bowers, Leach, and Fox, 2020). One common approach to deal with this is 

to manually remove sections of the continuous data that are contaminated with artifact. 

However, this method of data cleaning can be problematic. For example, artifact correction 

for large EEG datasets can be very time consuming, and as developmental neuroscience is 

growing and EEG datasets are becoming larger, automated pre-processing tools are needed to 
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efficiently process large-scale data, taking less time than manual cleaning (Webb, Bernier, 

Henderson, Johnson, Jones, Lerner, and Westerfield, 2015). Further manual cleaning is 

inherently subjective and there exist few comprehensive reviews to guide researchers (e.g., 

Chaumon, Bishop, and Busch, 2015). Recent studies have introduced methods for 

automatically identifying and removing segments of data contaminated by artifact in 

paediatric populations (e.g., Gabard-Durnham et al., 2018). These types of studies address the 

need for standardisation and speed but rely on complete removal of artifact-affected 

segments. Further, many of the currently available methods for paediatric EEG have 

procedures designed specifically for higher electrode density recordings, it is necessary to 

develop artifact correction approaches that are also flexible to low-density recordings, which 

are often used in infant EEG studies. 

 

Recently, there has been a drive towards the use of more naturalistic paradigms in EEG 

research (Risko, Richardson, and Kingstone, 2016; Wass, Whitehorn, Marriott Haresign, 

Phillips, and Leong, 2020; Holleman, Hooge, Kemner, and Hessels, 2020). However, 

naturalistic EEG recordings provide additional analytical challenges over traditional screen-

based tasks. For example, in traditional screen-based/ event-related tasks in which the child is 

passively exposed to a set of stimuli, artifacts are more randomly distributed with respect to 

stimulation. Removal of sections containing significant artifact can in this context be 

potentially beneficial, as visual experience during these sections might also be different (e.g., 

at its simplest the child might be fussing and not be attending to the image on the screen). 

However, in naturalistic paradigms, removal of whole sections of data is particularly 
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problematic because data segments contaminated by artifact often covary with cognitive/ 

attentional processes of interest. Specifically, in naturalistic paradigms, the 'stimulation' is 

often child-controlled (e.g., the child turning to the parent in a naturalistic interaction), and so 

artifacts are more likely to be time-locked to neural signals of interest; the removal of artifact 

is thus likely to also affect the analysis of neural signals. Thus, we need approaches to the 

correction of artifact that remove artifactual signals from the EEG recording throughout the 

session, rather than removing whole segments of both signal and noise – so-called lossless 

pipelines. 

 

1.2. Lossless approaches 

Independent components analyses (ICA) applied to EEG data separates the contributing 

sources to the scalp EEG (Rutledge and Bouveresse 2013), which allows researchers to 

examine what mixture of pure source signals and their respective contributions make up each 

row of the data matrix (e.g data at each electrode) and to consider how these different source 

signals are weighted topographically (Makeig, Bell, Jung, and Sejnowski, 1996). By 

decomposing the EEG into its source components, researchers can inspect and remove 

components associated with artifact from the data and then remix the remaining components 

and project back into the original data format. This is a lossless approach as it does not 

involve the removal of entire sections of the data. 

 

We note only one other attempt to provide a system for automatic ICA classification 

appropriate for paediatric EEG data. The adjusted-ADJUST program (Leach, Morales, 
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Bowers, Buzzell, Debnath, Beall, and Fox, 2020) provides developmental researchers with an 

excellent framework for automating ICA classification from typical repeated stimulus EEG 

data. Leach and colleagues’ system achieved classification agreement with human coders of 

>85% with EEG recorded from 6-month-old infants. Whilst this is an impressive system, we 

feel that its application is limited for developmental EEG practitioners. Firstly, the adjusted-

ADJUST program is set up to primarily deal with stereotypical eye movement artifact. Three 

of the five categories it sorts ICA-components into are related to ocular motor activity. 

Second, it is designed for event-locked paradigms with a repeated stimulus and is not able to 

incorporate continuous EEG data, such as the non-event locked paradigms, which are 

frequently used to study neural entrainment in parent-infant interactions (Wass et al., 2020). 

Third, validations of the system focused on the percentage of trials rejected, which further 

emphasises its suitability only for trial-based, pre-epoched data. In this manuscript we offer 

an alternative solution, that is flexible to continuous and event-locked data. 

 

 

1.3. The MARA classification system 

Many researchers perform manual classification to identify which of the components 

identified by ICA arise from genuine neural sources, and which are artifact. Other researchers 

have, however, attempted to automate this process. In this paper, we focus on one automated 

method, the Multiple Artifact Rejection Algorithm (MARA). This was originally designed 

for classification and rejection of non-neural/ artifactual ICA-components in adult EEG data 

(Winkler, Haufe, & Tangermann, 2011). The MARA classification system is grounded in the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2021. ; https://doi.org/10.1101/2021.01.22.427809doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running head: Automated infant ICA classification 

 

7 

 

use of a binary linear classifier, whereby solving the equation (finding a separating 

hyperplane (H)):  H = sign (w·x+b) {-1,1}                                                   (1)                                     

Where w is a weight vector obtained from samples of labelled training data, x is a feature 

vector and b is a bias term, classification of ICA- components as neural or artifact is 

achieved. The MARA classifier was originally trained using 690 ICA-components from an 

adult EEG reaction time study (n = 23 datasets), which had been manually classified as 

artifact/neural. The accuracy of the classifier was then tested on 1080 additional components 

from the same study. Accuracy was tested by comparing the results of the automatic ICA 

classification to manual ICA classification. The system achieved agreement rates of 

approximately 91%, (i.e., 9% of components were classified differently when comparing the 

automatic and manual classification). Accuracy was then further tested on new data from two 

other studies; an auditory event-related potential (ERP) paradigm (n=18 datasets); and a 

motor imagery BCI paradigm (n = 80 datasets), both with different channel setups and 

participants. Testing the performance of the classifier on the additional data revealed 

agreement/error rates between the automatic and manual classification of 85/15% (Winkler et 

al 2011). 

 

Despite its popularity within adult EEG research, MARA has not received much attention 

within paediatric EEG research. This is perhaps because ICA itself is not widely used within 

traditional paediatric ERP research as a pre-processing tool. One previous study quantified 

the performance of MARA with paediatric EEG data. Gabard-Durnham and colleagues 

incorporated the classifier as part of their pre-processing tool kit (HAPPE- Gabard-Durnham 
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et al., 2018), applying it to samples of high density (128 channels) resting-state EEG from 

infants and children aged 3-36 months. The authors reported extremely high rates of rejection 

(>85%) of ICA components when used as part of a conventional EEG pre-processing pipeline 

(e.g., including referencing, filtering, channel rejection/interpolation and trial/ continuous 

data rejection). The lack of objective tools for automated EEG preprocessing is a problem as 

developmental cognitive neuroscience is growing in scale and robustness (Debnah et al., 

2020;  Desjardins, Van Noordt, Huberty, Segalowitz, and Elsabbagh, 2020). In the present 

study, we aim to address this need for systems for automatic ICA cleaning of infant EEG data 

that can be incorporated among other standard pre-processing procedures. 

 

1.4. The need to tune artifact-removal approaches to infant EEG data 

Infant EEG has unique properties, requiring the design of specific tools for processing. EEG 

recorded from infants differs from that of children (Lepage, Jean�François, and Théoret, 

2006) and adults (Strogenova, Orekhova, and Posikera, 1999). For example, the canonical 

frequency bands e.g., delta (1-4Hz), theta (4-8Hz), alpha (9-13Hz) etc observed in adult EEG 

are observed at lower frequencies in infant EEG (Orekhova, Stroganova, Posikera, and Elam, 

2006). Peaks in the power density spectrum that are associated with alpha activity typically 

observed in the 9-13Hz range in adults can be seen clearly between 6 and 9Hz in one-year-

old infants (Strogenova et al., 1999) and are lower still in younger infants (Marshall, 

Bar’Haim, and Fox 2002). We also know that infant EEG tends to show greater power at 

lower (<6Hz) frequencies and that during development there is an observable increase in 

power at higher frequencies (Marshall et al., 2002). Whilst these differences have been 
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observed in scalp level EEG data and not at a source level, this evidence highlights 

differences in the distribution of power at lower frequencies and the overall composition of 

the 1/f power density curve for infant vs adult EEG. 

 

There is also evidence to suggest that the spatial properties of infant EEG differ from those 

typical of adult EEG. For example, we know that infant alpha activity projected onto central 

scalp electrodes is present only in later stages of infant development, presumably 

accompanying advances in motor skills (Cuevas, Cannon, Yoo, and Fox, 2014), although the 

sources of these scalp activations are yet to be identified. Further, at the source level infant 

EEG is often more bilaterally symmetrical than adults (Piazza, Cantiani, Miyakoshi, Riva, 

Molteni, Reni, and Makeig, 2020), although strong spatial asymmetry or localisation to a 

specific spatial point can be a good indication of artifactual source components (Chaumon, et 

al., 2015). This evidence highlights that infant EEG source components do contain spatially 

distinct properties to those of typical adult EEG. Overall, the evidence highlights the 

differences between adult and infant EEG data both at the scalp and source level. It should be 

clear from reviewing these studies that attempting to classify infant ICA components using 

training data from adult EEG would lead to sub-optimal results.  
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1.5 Current study: motivation and goals 

In this study, we examine the performance of MARA when applied to samples of 32-channel 

infant EEG data acquired during naturalistic social interactions. We then adapt the MARA 

system to better fit the characteristics of infant EEG data. We do this in two ways; (1) by 

adapting the relevant time-frequency properties derived from the ICA used in classification; 

(2) by retraining the base classifier using data from infant EEG recordings. From here on we 

refer to the retrained classifier as iMARA. 

 

To validate the performance of iMARA, we first looked at the inter-rater agreement of ICA 

components between three expert hand coders. Specifically, we looked at inter agreement 

between expert manual coders by calculating the Mean Square Error (MSE) on an n=15 

subsample of infant and adult ICA-components from dataset 1. We then compared MARA 

and iMARA to the validated manually labelled infant ICA components across two validation 

studies: first (classifier validation 1), we tested the two classifiers’ agreement with ICA-

components manually classified by rater 1 on the full n=44, 1180 component dataset (again 

using MSE). Second (classifier validation 2), we tested the two classifiers’ performance on 

infant ICA components from an unseen dataset (n=25, 670 components) obtained during a 

different recording session. In our final validation (classifier validation 3), we looked at ERP 

data generated using different methods to examine in greater detail their ability to remove 

specific types of artifact. In validation 3, differences in performance were quantified by 

comparing peak amplitude potentials across four conditions: i) data cleaned using iMARA; 
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ii) data cleaned using MARA; iii) data cleaned using manual classification; iv) data not 

cleaned using ICA (‘raw’). 

 

Evidence from co-registered EEG and eye-tracking studies using free viewing experimental 

paradigms has shown that when visual responses (e.g. a stimulus appearing on-screen) co-

vary with eye movements (e.g. horizontal/ vertical saccades) separation of these signals is 

possible based on their time and spatial properties (Plöchl, Ossandon and Konig, 2012). For 

example, some types of eye movement artifacts e.g., vertical and horizontal eye movement 

transients (i.e., only lasting ~200ms) peak at ~100ms post saccade onset and have anteriorly 

dominated topographies, whereas visual components tend to peak 100-200ms after the peak 

of the artifact and have occipitally dominated topographies (Plöchl et al., 2012). Based on 

these findings and inspection of our data time-locked to saccade onsets, we set up our 

comparison between the four cleaning methods described above as follows. For comparison 

of removal of eye movement artifact time-locked to saccade onset, we compared peak 

amplitudes of potentials over frontal pole electrodes (FP1, FP2, AF3 and AF4) in the time 

window -100 (saccade onset) to 100ms (see also figure 3 for visual representation). For 

comparison of retention of visual response (i.e., the neural signal of interest) we compared 

peak amplitudes of potentials in the 200-300ms time window over occipital electrodes (PO3, 

PO4, O1, O2, O3). We also compared amplitudes in the 200-300ms time window over 

central electrodes (C3, CP1, CP5, CP6, CP2, C4, Cz) to examine how these signals 

propagated across the scalp. 
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2.  Methods 

2.1. Ethics statement 

This study was approved by the Psychology Research Ethics Committee at the University of 

East London. Participants were given a £50 shopping voucher for taking part in the project. 

 

2.2. Participants 

The same experimental paradigm was used for all validation dataset’s, but recordings were 

taken from different sessions (weekly sessions 1 and 8 as part of a broader, 8-week 

programme of research).  

 

Dataset 1 (Validation 1), 44 healthy (23 F, 21 M) infants participated in the study along with 

their mothers. Infants were aged mean 10.72 months, std=1.31. Dataset 1 was taken from the 

infant's visit 1 data. 

 

Dataset 2 (Validation 2), 25 healthy (12 F, 13 M) infants contributed data. Infants were aged 

mean 12.60 months, std=1.27. Dataset 2 included the same infants with data taken from visit 

8. 
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Dataset 3 (Validation 3), 36 healthy (17 F, 18 M) infants contributed data. Infants were aged 

10-12 months (mean 10.70 months, std = 1.08). Dataset 3 is a subset of dataset 1.  

 

2.3. Experimental set-up and procedure 

Infants were positioned immediately in front of a table in a highchair. Adults were positioned 

on the opposite side of the 65cm-wide table, facing the infant. Adults were given toys to play 

with across a tabletop and asked to “play with their infant as they would normally do at 

home”. Adults were also asked to lower the volume of their vocalisations to reduce the level 

of speech-related contamination in the EEG. Dual EEG was continuously acquired from the 

parents and infants for the approx. 25 min duration of the play session. For this study, we 

used only the infant’s EEG. 

 

2.4. EEG data acquisition 

EEG signals were obtained using a dual 32-channel Biosemi system (10-20 standard layout). 

EEG was recorded at 512 Hz with no online filtering using the Actiview software.  

 

 

 

 

2.5. EEG artifact rejection and pre-processing 
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A fully automatic artifact rejection procedure was adopted, following procedures from 

commonly used toolboxes for EEG pre-processing in adults (Mullen 2012; Bigdely-Shamlo, 

et al., 2015) and infants (Gabard-Durham et al., 2018; Debnath et al., 2020). This was 

composed of the following steps: first, EEG data were high-pass filtered at 1Hz (FIR filter 

with a Hamming window applied: order 3381 and 0.25/ 25% transition slope, passband edge 

of 1hz and a cutoff frequency at -6db of 0.75hz). Although there is debate over the 

appropriateness of high pass filters when measuring ERP’s (see Widmann and Schröger, 

2012), we aimed to obtain the best possible ICA decomposition. The parameters we used 

were set up following recent work (e.g., Dimigen 2020) that examined the removal of eye 

movement artifacts from free viewing EEG using ICA. Second, line noise was eliminated 

using the EEGLAB (Delorme and Makeig 2004) function clean_line.m (Mullen 2012). Third, 

the data were referenced to a robust average reference (as described in Bigdely-Shamlo et al., 

2015). Fourth, noisy channels were rejected, using the EEGLAB function pop_rejchan.m. 

Fifth, the channels identified in the previous stage were then interpolated back, using the 

EEGLAB function eeg_interp.m. The mean number of channels interpolated in this way was 

4.2. In some datasets, channel interpolation reduced the overall rank of the data leading to a 

fewer number of components than channels as is the norm with ICA. Interpolation is 

commonly carried out either before or after ICA cleaning but in general, has been shown to 

make little difference to the overall decomposition (Delorme and Makeig 2004). Sixth, the 

data were low-pass filtered at 20Hz, again using an FIR filter with a Hamming window 

applied identically to the high-pass filter. (In the SM we also report a comparative analysis in 

which data were low pass filtered at 40Hz instead of 20Hz (see SM section 1.5)). Seventh, 

continuous data were automatically rejected in a sliding 1s epoch based on the percentage of 
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channels (set here at 70% of channels) that exceed 5 standard deviations of the mean channel 

EEG power. For example, if more than 70% of channels in a given 1-sec epoch exceed 5 

times the standard deviation of the mean power for all channels then this epoch is marked for 

rejection. This step was applied very coarsely to remove only the very worst sections of data 

(where almost all channels were affected), which can arise during times when infants fuss or 

pull the caps. This step was applied at this point in the pipeline so that these sections of data 

were not inputted into the ICA. The average amount of data retained in this way was 88% 

(std 0.1).  Data were then concatenated and ICAs were computed on the continuous data 

using the EEGLAB function runica.m. The mean amount of data entered into the ICA was 

21.2 minutes. In the raw data condition, we followed the same procedure but without any 

ICA correction. 

 

2.6. Video coding 

Video recordings were made using Canon LEGRIA HF R806 camcorders recording at 50fps 

positioned next to the child and parent respectively. Video recordings of the play sessions 

were coded offline, frame by frame, at 50 fps. This equates one frame to a maximum 

temporal accuracy of ~20ms. Coding of the infant’s gaze was performed by two independent 

coders. Cohen’s kappa between coders was >85%, which is high (McHugh, 2012). For our 

ERP analysis, EEG was time-locked to the onset of gaze/ saccade offline based on the video 

coding using synchronized LED and TTL pulses.  

 

2.7. Hand identification of components for the training set 
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A full description of how components were identified as either neural or artifactual by human 

coders is given in Appendix A. Briefly, components were judged first on their topography, 

second on their power spectrum, and third on their time course, using similar principles to 

those suggested for adult EEG data (e.g., Chaumon et al, 2015). Components were marked as 

artifact/ rejected only under the null hypothesis – which in this case is that the component is 

not considered to contain notable amounts of the neural signal. Where a researcher was in 

doubt over whether a component contains real EEG (neural) we opted to retain that 

component.  

 

2.8. Inter expert reliability 

As within any classification system, performance is measured concerning a criterion 

representing 'true value' or 'perfect classification'. There exists no gold standard upon which 

to test any classifiers performance. As manual classification is the typical approach for ICA 

data correction (Chaumon et al., 2015) and has been used as a platform to test automatic 

classification in previous studies (Winkler et al., 2011), we tested the MARA and iMARA 

systems performance against manual ICA classification. To validate our manual coding we 

asked 3 experts to independently rate ICA-components from infant and adult EEG data (see 

Table S1). We examined whether similar levels of agreement between coders could be 

achieved for infants ICA components as compared to those in adult data. Results are reported 

in section 3.1. Previous research using automated classification methods with adult data from 

screen-based tasks have reported an error in inter expert agreement levels of ~10-13% MSE 

(Winkler et al., 2011). 
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The measure of performance we use in this study is mean square error (MSE), as has been 

used in previous automatic classification studies (Halder, Bensch, Mellinger, Bogdan, 

Kübler, Birbaumer, and Rosenstiel, 2007; Winkler et al., 2011). In its simplest interpretation, 

MSE is a measure of error rate between systems. For example, an MSE of 0.25 would 

indicate that the automatic and manual classifiers differed on 25% of the components 

examined.  

 

2.9. Set-up and paradigm for validation dataset 3 (ERP Analysis) 

To further test the performance of the different classifiers, we contrasted the different 

systems’ ability to remove stereotypical artifact from an ERP analysis. This analysis 

examines event-locked changes relative to infants’ spontaneous gaze shifts during a free-

flowing naturalistic interaction. Specifically, we examined moments where infants shifted 

from looking at a puppet, held at the same height as their mother’s face, c.10° from the 

midline (counterbalanced between left and right) to looking at their mother’s face, who was 

always positioned directly in front of the infant. To boost trial count, we concatenated epochs 

of gaze shifts when the adult was already looking at their infant (i.e., the infant looks to direct 

gaze) and when the adult was looking at the puppet (i.e., the infant looks to averted gaze) as 

both are time-locked to a shift in infant attention. For this analysis, we extracted epochs from 

the continuous data that are time-locked (time 0) to the infant’s fixation onset (saccade onset 

at -100ms). Epochs were taken from 1.5s before the fixation onset to 1.5s after. Mean (39.4) 

std (12.9) gaze shifts were included per participant.  
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ERPs were compared over frontal, central and occipital scalp regions. Details of which 

electrodes were used in each cluster can be found in the supplementary materials section (SM 

section 1.3, Table S3). We compared the peak amplitudes of potentials over frontal pole 

electrodes in the time window -100 (saccade onset) to 100ms (following Plöchl et al., 2012). 

For comparison of retention of visual response (i.e., the neural signal of interest), we 

compared peak amplitudes of potentials in the 200-300ms time window over occipital 

electrodes. We also compared amplitudes in the 200-300ms time window over central 

electrodes to examine how these signals propagated across the scalp. These comparisons 

were repeated for all four methods of data cleaning (e.g., iMARA, MARA, manual cleaning, 

and raw). 

 

Differences in peak amplitude were quantified using the adaptive mean approach. This 

process involves identifying the peak latency of the ERP potential on a subject-by-subject 

basis using a broad (100ms) time window, centred around the time window of interest. For 

example, in our analysis, we were interested in activity in the -100 to 100ms time window. In 

this case, the adaptive mean approach looks for the latency of the data point with the 

maximum amplitude +/- 50ms around the centre of the time window (0ms). Once the peak 

latency has been identified we took an average of the activity in a 20ms window around the 

peak (e.g. as described by Hoorman, Falkenstein, Schwarzenau, and Hohnsbein 1998). This 

approach is preferred over the more basic comparison of absolute peak amplitudes which 

would be more susceptible to spurious noise spikes and/or unrepresentative data (Cohen, 
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2014). All ERP data were baseline corrected using data from the time window -1000 to -

700ms pre gaze onset.  

 

2.10. The MARA system for automatic classification of neural/ artifactual components 

The MARA classification system identifies artifactual source components from samples of 

EEG data. For a detailed explanation and the original source code, please refer to 

(https://irenne.github.io/artifacts/). In brief, Winkler and colleagues (2011) trained a binary 

linear classifier to separate neural and artifactual ICA decompositions based on a training 

dataset of manually labelled ICA components. The comparison between neural and 

artifactual components was conducted by examining six features derived from the ICA time-

frequency properties (see Figure 1).  
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Fig. 1.  Examples (taken from the present study) of artifactual and neural ICA components 

identified by iMARA. A) Examples of components identified as artifact by iMARA. B) 

Examples of components identified as neural by iMARA. For both, the first column shows 

five-second segments of the component’s time course; the second shows the component 

power spectral density; the third shows the topographical activations; and the fourth their 

scores for the six features used in classification. Detailed descriptions of the six features are 

given in section 2.11.     

 

2.11. Feature selection  

In the original paper, the following six features were selected for use in the MARA system. 

These were originally chosen through an embedded feature selection process (e.g., integrated 

as part of the learning algorithm) whereby the authors obtained rankings of importance/ 

effectiveness of 38 different time/frequency/spatial features of the data (for more details see 

Winkler et al., 2011). This revealed that inclusion of additional features (beyond the six 

included) did not increase classification performance. 

 

The following two features relate to the component spatial distribution: 

 

Current Density Norm (CDN) - estimation of source position of a component concerning 

x,y,z spatial coordinates. This process involves dipole fitting the source components (using 
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functionality contained with EEGLAB) and applying an appropriate forward head model (we 

considered 2142 locations arranged in a 1 cm spaced 3D-grid) and seeking the source 

distribution with minimal l2-norm (i.e., the ‘simplest’ solution, Winkler et al., 2014). 

Components with a high CDN indicate likely artifact. For example, it can be seen that on 

Figure 1a) component two, three and four all have a relatively high CDN score. These can be 

compared with components one, two and three of Figure 1b, which all have a relatively low 

CDN score and were classified as neural. This feature was unchanged from the original 

study. 

 

Range Within Pattern - the absolute difference between the minimum and maximum of a 

component’s pattern (spatial distribution) - i.e., how localized the activation is to one 

position/ electrode. Comparing components two and four in Figure 1a and 1b, we see that 

artifactual components have a relatively higher range within pattern indicating that these 

sources are more localized to a singular point, which is taken as an indication of an artifactual 

component to the classifier. This feature can arise, for example, from poor contact between 

the surface of the electrode and the scalp. This feature was unchanged from the original 

study. 

 

The following two features relate to the component-time series: 
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Mean Local Skewness (MLS) - the mean absolute local skewness of an ICA-component time 

series, taken in a 1 and 15s (two separate features) sliding time window and then averaged. 

The idea being that blink components for example would contain epochs with very high 

amplitude data. This data would be more skewed than a typical alpha generator in which you 

would expect amplitude to be comparatively unchanged across epochs.  

 

For example comparing components one, two and three in Figure 1a and 1b, we see that a 

relatively high MLS indicates artifact, as this component’s time series might contain more 

high amplitude noise spikes than components with a low MLS. High MLS might arise from 

faulty electrodes, but is also an indication of an ocular motor artifact. For example, in Figure 

1a component one, a stereotypical blink component has a relatively high MLS and contains 

frequent high amplitude spikes in the time series.  This feature was unchanged from the 

original study. 

 

The following two features relate to the component spectral distribution: 

 

Lambda and Fit Error- the deviation of a components power spectrum from a pseudo 

1/frequency curve, created by three points of the log spectrum: (1) value at 2 Hz, (2) local 

minimum in the band 5- 13 Hz, (3) local minimum in the band 33-39 Hz. The spectrum of 

muscle artifacts, characterized by unusually high values in the 20-50 Hz range, is thus 

approximated by a comparatively steep curve with high lambda and low fit error. Lambda 
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and fit error are independent features; whereas lambda is a measure of the deviation from the 

pseudo curve just in the alpha and beta ranges (i.e., steepness of transition between the two), 

fit error is a measure of the deviation of the components 1/f curve from the entire pseudo 1/f 

curve between delta to beta.  

 

For example from component two in Figure 1a and 1b, we can see that low lambda (i.e., a 

less steep curve between alpha and beta) indicates a neural component, whereas high lambda 

(i.e., a steeper upward curve between alpha and beta) indicates artifact. We can also see that 

fit error does not always distinguish well between neural and artifactual components in these 

examples. This is because a neural component with a high alpha peak and an artifact 

component with a steep upward curve between alpha and beta would both give a high fit 

error, which can make classification using fit error alone difficult. We adjusted the frequency 

features to better fit the characteristics of infant EEG data. For fit error instead of taking 

values at 2hz, 5-13hz and 33-39hz as used in MARA, we take values at 2hz, 5-9hz and 12-

19hz. Further for lamda instead of comparing activity in the 8-15hz range to the pseudo 1/f 

curve as used in MARA, we compared activity in the 6-13Hz to the pseudo 1/f curve. 

 

Alpha Power – The average log band power of the alpha band (8–13 Hz).  

 

From components one and four in Figure 1a and 1b, we can see that high alpha band power 

indicates a neural component, whereas low alpha power indicates artifact. Instead of taking a 
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value for alpha power in the 8-13hz range as used in MARA, we take a value for alpha power 

in the 6-9hz range. 

 

We retrained the MARA system using 617 ICA components from infant EEG data taken 

from dataset 1 (n=25 datasets, each contributing on average 25 ICA components) and using 

the six features, with the amendments that we have described above.  

 

3.  Results 

First (section 3.1) we validated our manual classification by comparing it with manual 

classification from two other independent experts. Then, we perform three validation studies 

to test the performance of iMARA on infant data: first (classifier validation 1, section 3.2), 

we tested iMARA and MARA’s agreement with manually classified ICA-components by 

rater 1. Second (classifier validation 2, section 3.3), we test iMARA and MARA’s 

performance on ICA components from an unseen dataset. Third (classifier validation 3, 

section 3.4), we examine ERP data generated using the different methods to examine in 

greater detail their ability to remove specific types of artifact.  

 

3.1. Inter-rater validation 

To first validate our coding, we asked three experts independently to classify random 

subsamples of infant (n=15 datasets, average 25.6 ICs, taken from dataset 1) and adult (n=15 
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datasets, average 28.4 ICs, taken from dataset 1) EEG data. Full comparison details are given 

in SM section 1.2, Table S2. Between the 3 experts, the average disagreement rate for infant 

data was 18% (range across three all three experts 14-22%), whereas for adult data it was 

15% (range across three experts 12-18%), which is in line with previous reports of human-

human error rates for adult EEG data of 10-13% (e.g., Winkler et al., 2011). An independent 

sample test revealed no significant differences in the average agreement between adult and 

infant ICA-components t(14) = 0.98, p = 0.42. 

 

3.2. Classifier validation 1 

We tested the retrained classifiers performance against manually classified ICA components 

from validation dataset 1. This resulted in an averaged MSE between iMARA and the manual 

classification of 26.59% (sd = 9.93%, range = 54.11%). In comparison, when using the 

original MARA training data and the original feature extraction routine on dataset 1, the 

MARA classifier performed with an MSE of 38.35% (sd=15.01%, range = 60.19%). A paired 

samples t-test comparing the percentage of correctly identified components from validation 

dataset 1 for iMARA vs MARA indicated that MARA had a significantly lower level of 

agreement with the manual classification than iMARA t(43) = -5.94, p = <0.01. The effect 

size for this analysis was d=0.92. 

 

3.3. Classifier validation 2 
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We then tested iMARA on an unseen dataset (dataset 2). Classification of the (645) unseen 

components led to an averaged MSE between iMARA and manual classification of 24.80% 

(std=8.22%, range=55.43%). In comparison, MARA performed with an MSE of 38.13% 

(std=8.12%, range=26.63%). A paired samples t-test comparing the percentage of correctly 

identified components from validation dataset 2 for iMARA vs MARA indicated that the 

original MARA had a significantly lower level of agreement with manually classified ICA 

components than iMARA t(24) = -4.50, p = <0.01. The effect size for this analysis was 

d=1.63. 

 

 

 

Fig. 2. Classification performance for original (MARA) and retrained (iMARA) systems on 

‘seen’ and ‘unseen’ data. A) Mean Squared Error (MSE) between original (‘MARA’ - yellow) 

and retrained (‘iMARA’ - blue) classifiers and manually classified ICA components for 

validation one (seen data) for each participant (n=44) of dataset one. B) MSE between 

A B 
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iMARA/MARA and the manual classification for validation two (blind data) for each 

participant (n=25) of dataset two. 

 

 

 

 

Fig. 3. Application of different ICA classification systems to ocular artifact correction in a 

visual processing ERP study. A) Two-sample frames from which the time-locked gaze shift (-

100ms) were identified, and a schematic showing the experimental set up in which mothers 

were asked to perform a puppet show with their infants. B)Grand average ERPs over frontal 

pole, central and occipital scalp regions. Different lines show data cleaned by the different 

systems, e.g., iMARA- retrained infant classifier, MARA- original classifier, Manual 
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classification and also uncleaned 'raw' data. C)Topoplots of ERP amplitudes, comparing the 

different cleaning methods to the raw data. 

 

 

 

3.4. Classifier validation 3. Application to ERP study  

For validation 3 (ERP analysis) we contrasted peak amplitudes (calculated on participant-

level data) for each of the four methods of cleaning data (e.g., iMARA, manual cleaning, 

MARA, ‘raw’) (see Figure 3). In the SM section 1.7 we present the same analysis, but with 

time-frequency analyses rather than ERPs.  

We used the Tukey procedure to correct for multiple comparisons in the ERP comparisons. 

Summary tables for all ANOVAs can be found in SM1.1 Table 1. Results from the one-way 

ANOVAs revealed that peak amplitudes for frontal pole ERPs in the -100 to 100ms time 

window were significantly lower for all ICA cleaning methods as compared to the raw un-

ICA cleaned data. Peak amplitudes for iMARA were lower than for MARA, indicating that 

more of the ocular artifact had been removed, but this difference was not significant after 

correcting for multiple comparisons. For central and occipital ERPs, peak amplitudes for 

MARA were lower than those observed following manual cleaning and cleaning with 

iMARA, indicating that MARA had removed more genuine neural data. This effect was 

significant when examining the relationship between MARA and the raw data, but the 

difference between MARA and iMARA was not significant after correcting for multiple 

comparisons (p=.10/.11 for central/occipital).  
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4.  Discussion 

We retrained the popular MARA system for binary (i.e., neural or artifact) classification of 

ICA-components, to be more sensitive to the types of stereotypical artifacts produced during 

naturalistic EEG recordings acquired from infants. Our retrained ‘iMARA’ classifier 

classified artifactual and neural ICA-components from samples of infant EEG with 

significantly greater levels of agreement with expert manual classification than the original 

MARA classifier. We examined how well iMARA’s performance generalised to an 

additional blind dataset as well as its ability to remove ocular-related artifacts in a simple 

ERP study. Through this, we aimed to provide a tool for developmental EEG researchers 

wanting to implement automatic ICA cleaning.  

 

4.1. Summary of retrained classifier’s performance 

In our first validation study, we tested MARA’s and iMARA’s performance against ICA-

components manually classified by an expert rater on the full n=44 dataset. Here iMARA 

achieved a mean classification error rate of 26% (24% with outliers removed), performing 

significantly better than MARA with a mean error rate of 38%. In the second validation, we 
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tested iMARA on an unseen dataset, collected using the same experimental setup. In this 

second validation study, iMARA achieved a mean classification error rate of 25%, again 

significantly outperforming MARA at 38%. Overall, the differences between iMARA and 

MARA’s agreement with the manual classification and the inter-rater agreement between 

humans were marginal (7-8% lower average agreement for automatic classification) relative 

to the overall error rates of either system (25% MSE for automatic and 18% for manual). This 

is consistent with the error rates between classifier-human and human-human in previous 

studies (e.g., 5-6% in Winkler et al., 2011). Our retrained iMARA classifier provides, 

therefore, a more suitable alternative for classifying paediatric ICA-components than the 

current ‘gold standard’ of manual classification. Additionally, as manual cleaning relies on a 

large degree of familiarity with ICA and EEG data generally, less experienced researchers 

using this tool can gain insight into the types of ICA components that are commonly 

identified as artifacts in paediatric EEG data. 

 

4.2. Application of classifiers performance in ERP study 

We also compared the performance of the iMARA and MARA to manual classification in a 

simple ERP study. We examined how well each classifier was able to clean the ERP data, 

focusing in particular on the removal of activity over frontal pole electrodes at the onset of a 

saccade (gaze shift) and activity over occipital electrodes after a gaze fixation. Our analysis 

indicated that all methods of ICA cleaning removed statistically similar amounts of frontal 

pole activity from the raw (un-ICA-cleaned) data, but that neither the data cleaned manually 

nor iMARA removed all of the frontal pole activity associated with the eye movement 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2021. ; https://doi.org/10.1101/2021.01.22.427809doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running head: Automated infant ICA classification 

 

32 

 

artifact. This is consistent with previous research on adults, which found that standard ICA 

cleaning methods do not entirely remove all frontal EEG activity associated with eye 

movement artifacts (Plöchl et al., 2012). This is an important point which should be born in 

mind in interpreting the results of EEG studies.  

 

Results of validation 3 also show that the post-fixation (gaze onset) visual responses (ERPs) 

were lower in data cleaned using MARA than for the other types of cleaning, indicating that, 

while the original MARA classifier did successfully remove comparable amounts of the 

ocular artifact, it also removed significant amounts of the visually evoked potential (neural 

signal of interest). This is supported by further analyses (see SM section 1.4, Table S4) which 

showed that on average MARA removed 64% of components compared to iMARA which 

removed 39% suggesting that MARA removed more of the total EEG variance. This effect 

was observed less strongly in the iMARA group, indicating that iMARA had retained more 

of the original signal than MARA, but this effect was not significant after correcting for 

multiple comparisons.  

 

4.3. Limitations of the current study 

There are two explanations for the higher error rates obtained with the current dataset 

(compared to error rates achieved by Winkler and colleagues 2011). First, the classification 

of ICA components is notably poorer when applied to lower density electrode montages. In a 

follow-up study, Winkler and colleagues (2014) found using the original MARA classifier 
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that classification error rates increased from 9% to 32% when comparing 104 to 16 channel 

electrode setups (although for 32 channel setups it was still comparably lower ~13%) (see 

also SM section 1.6). This is likely due to the worsening performance of the current density 

norm feature with lower density setups as this feature relies on estimations of source activity 

and use of algorithms that are generally only recommended and applied on higher (>64) 

density electrode setups.  

 

The second reason for the poorer performance compared to previous applications could be 

due to the increased ambiguity when classifying ICA-components from infant compared to 

adult EEG. This may be one of the reasons why ICA is not as widely applied within 

paediatric EEG research as it is within adult EEG research. In our data, we found that 

averaged across multiple independent coders, infant source components could only be 

classified with an inter-coder error rate of 18%, compared with 15% for adult data. Similar 

rates were also achieved when we asked the same coder (coder 1) to classify the same 

samples of ICA-components at a later time point. Here the agreement between coder 1 (first 

and second time rating the same 384 infant ICA components) was 17%. Therefore, we 

suggest that ICA-components from infant EEG (particularly recorded using naturalistic 

paradigms) are fundamentally more ambiguous because they are more likely to contain a 

mixture of neural data and artifact, and thus are more difficult to classify binarily.   

 

4.4. Recommendations for future research  
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Future research might explore the iMARA’s ability to separate artifact and neural signals at 

different frequencies. For example, In SM 1.7 we explore the time-frequency properties of 

the ERP-responses shown in classifier validation 3. From these plots, it is clear that the 

classifiers are removing (with varying success) signal that is broadband (i.e., not frequency 

specific). This may be interesting for future research to explore as eye movements are 

commonly characterised in time or topographically, but are less often characterised in time-

frequency space. Having a clear picture of how ocular artifact in naturalistic data manifests in 

time-frequency space, as well as, having appropriate tools to identify/ remove it will be of 

high value to the field going forward. Additionally, it might be useful for future research to 

integrate iMARA as part of a fully automated EEG pre-processing pipeline either especially 

for paediatric EEG data or one that is flexible to adult and/or paediatric EEG data. 

 

5. Conclusions 

This paper presents an automatic ICA classification tool that was specifically tailored to work 

with infant EEG datasets and EEG data collected during naturalistic parent-infant 

interactions. We show that the retrained iMARA classifier achieved low classification errors 

and was better at cleaning stereotypical artifact from a simple visual attention ERP study than 

the original MARA, adult-trained classifier.   
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