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Abstract 21 

Mobile element insertions (MEIs) are a major class of structural variants (SVs) and have been 22 

linked to many human genetic disorders, including hemophilia, neurofibromatosis, and various 23 

cancers. However, human MEI resources from large-scale genome sequencing are still lacking 24 

compared to those for SNPs and SVs. Here, we report a comprehensive map of 36,699 non-25 

reference MEIs constructed from 5,675 genomes, comprising 2,998 Chinese samples (~26.2X, 26 

NyuWa) and 2,677 samples from the 1000 Genomes Project (~7.4X, 1KGP). We discovered 27 

that LINE-1 insertions were highly enriched at centromere regions, implying the role of 28 

chromosome context in retroelement insertion. After functional annotation, we estimated that 29 

MEIs are responsible for about 9.3% of all protein-truncating events per genome. Finally, we 30 

built a companion database named HMEID for public use. This resource represents the latest 31 

and largest genomewide study on MEIs and will have broad utility for exploration of human 32 

MEI findings. 33 

Introduction 34 

Transposable elements (TEs), also known as transposons or mobile elements, comprise a 35 

significant portion in mammalian genomes (Smit 1999; Deininger et al. 2003; Cordaux and 36 

Batzer 2009), approximately half of the human genome (Lander et al. 2001). Most TEs are 37 

transposition incompetent due to accumulated interior mutations and truncation or various host 38 

repression mechanisms (Goodier 2016). In humans, Alu, long interspersed nuclear element 1 39 

(L1), SINE-VNTR-Alu (SVA), and HERV-K (also known as HML-2) are four families of TEs 40 

which are still active and capable of creating new insertions (Mills et al. 2007; Huang et al. 41 
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2012), termed mobile element insertions (MEIs). The transposition events have the potential to 42 

disrupt normal gene function and alter transcript expression or splicing at the sites of integration, 43 

contributing to disease (Payer and Burns 2019). For example, over 120 TE-mediated insertions 44 

have been associated with various human genetic diseases, including hemophilia, Dent disease, 45 

neurofibromatosis and various cancers (Hancks and Kazazian 2016). Apart from the impact 46 

through insertion events, intrinsic sequence properties of TEs endow some MEIs with 47 

functional effects on the host (Payer and Burns 2019), making MEIs differ qualitatively from 48 

typical forms of SVs like copy number variants (CNVs). Another important question related to 49 

MEIs is the integration site preference, which are usually non-random and influenced by 50 

various factors such as DNA sequences and chromatin context (Sultana et al. 2017). 51 

However, despite these important functions, integrated resources for polymorphic TEs in 52 

human genomes is still lacking (Goerner-Potvin and Bourque 2018), which could offer a large 53 

pool of MEIs to explore TE diversity and serve as bedrock for phenotype-variant association 54 

studies. And MEIs are not routinely analyzed in most population-scale whole-genome 55 

sequencing (WGS) projects (The 1000 Genomes Project Consortium 2015; Wu et al. 2019, 56 

2019; Cao et al. 2020). To date, the largest and most recent population study of MEIs using 57 

WGS remains the one conducted by the 1KGP, which included 2,504 genomes across 26 human 58 

populations (Sudmant et al. 2015; Gardner et al. 2017). However, the sequencing depth of the 59 

1KGP is low, which may limit the MEI detection sensitivity and accuracy (Rishishwar et al. 60 

2016). In addition, current MEI genetic resources are mainly from European ancestry cohorts, 61 

and the lack of Chinese cohort genomic study on MEIs is a critical part of the missing diversity. 62 

In this study, we employed WGS of 5,675 members from newly sequenced Chinese 63 
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samples and the 1KGP to construct a resource for non-reference MEIs. Although the 1KGP 64 

dataset has already been investigated for MEIs (Sudmant et al. 2015; Gardner et al. 2017), we 65 

included it here to increase population diversity and build a comprehensive MEI map. The 66 

NyuWa dataset has been used to study spectrum of small variant and build reference panel 67 

(Zhang et al. 2020), and the MEIs were not explored yet. Combining two cohorts enabled us to 68 

systematically analyze the genomic distribution, mutational patterns, and functional impacts of 69 

MEIs. From these analyses, we found that L1 MEIs were highly enriched in centromere regions, 70 

and we determined that MEIs represent about 9.3% of all protein-truncating events per 71 

individual, emphasizing the importance of detecting MEI routinely in WGS studies. We have 72 

built a companion database named HMEID (available at http://bigdata.ibp.ac.cn/HMEID/) for 73 

polymorphic MEIs, which could be explored for new insights into MEI biology. 74 

Results 75 

A Comprehensive Map of Non-reference Human MEIs 76 

To generate a comprehensive map of MEIs from human genomes, we jointly analyzed two 77 

WGS datasets using MELT (Gardner et al. 2017), the low-coverage 1KGP dataset consisting of 78 

2,677 individuals sequenced to ~7.4X coverage (Sudmant et al. 2015) and the high-coverage 79 

NyuWa dataset including 2,998 Chinese samples sequenced to ~26.2X coverage (Table S1) 80 

(Zhang et al. 2020). After site quality filtering, a total of 36,699 non-reference MEIs were kept, 81 

including 26,553 Alus, 7,353 L1s, 2,667 SVAs and 126 HERV-Ks (Table 1). Most Alu and L1 82 

MEIs were well-supported by split reads (Fig. S1A) and target site duplications (TSDs) (Fig. 83 

S1B). Using Hardy-Weinberg equilibrium (HWE) metrics as a rough proxy of genotyping 84 
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accuracy, we found that about 87% autosomal MEI sites did not violate the HWE, and when 85 

restricted to the NyuWa dataset, almost all MEIs (97%) on autosomes had high genotyping 86 

accuracy (Fig. S2). 87 

Table 1. MEI discovery in this study. 88 

 

Total sites 

Mean sites per donor Standard deviation 

NyuWa 1KGP NyuWa 1KGP 

Alu 26,553 1,035 884 25.3 153 

LINE-1 7,353 145 119 8.35 19.3 

SVA 2,667 44.4 28.8 4.83 9.9 

HERVK 126 11 8.23 1.86 2.12 

Total 36,699 1,236 1,040 30 178 

On average, we detected 1,236 MEIs with each genome in the NyuWa dataset and 1,040 89 

MEIs in the 1KGP dataset (Table 1), which were expected as increased sequencing depth 90 

provides more power for MEI detection (Fig. S1C). The smaller correlation between MEI 91 

number and sequencing coverage in the NyuWa dataset than that of the 1KGP dataset reflected 92 

that MEI detection sensitivity was close to saturation in ~30X genomic coverage, consistent 93 

with the previous evaluation by the authors of MELT (Gardner et al. 2017). The distribution of 94 

MEI numbers per individual, MEI allele frequencies and length estimates largely fit the findings 95 

of previous studies (Fig. 1) (Gardner et al. 2017, 2019). About 70.7% MEIs are very rare (allele 96 

frequency < 0.1%), with over 30% singletons of all four MEI types (Fig. 1C; Fig. S1D). Since 97 

a large proportion of MEIs were individual-specific, we next sought to evaluate MEI discovery 98 

by increasing sample size. Through randomly down-sampling to different sizes with 100-99 
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sample intervals, we estimated the total MEI variants and the increase of variants at different 100 

sample sizes (Fig. S1E-I). As expected, we found that the number of all four MEI types 101 

continued to rise with the increasing sample size, but the growth rate decreased. When looking 102 

at the subfamilies of MEIs, we found that the distributions of active Alu and L1 MEIs were in 103 

line with previous observations in humans (Gardner et al. 2017; Bennett et al. 2008; Stewart et 104 

al. 2011; Hormozdiari et al. 2013), e.g. AluYa5 and AluYb8 were found to be the most abundant 105 

two Alu subfamilies (Fig. S3), indicating their high retrotransposition activity in modern 106 

humans. 107 

 108 

Fig. 1. The MEI call set. (A) Histograms of the number of MEIs identified per genome in the NyuWa 109 

dataset. (B) Histograms of the number of MEIs identified per genome in the 1KGP dataset. (C) 110 

Distribution of allele frequency of MEIs of four types: Alu, L1, SVA, and HERVK. “Total” combined 111 

the four types of MEIs. (D) Distribution of insert size estimated by MELT. 112 
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 113 

Compared to the previous MEI findings of 1KGP samples (Gardner et al. 2017), the total 114 

number of non-reference MEIs we detected has increased 55.4%, with 45.2% and 74.0% 115 

increase for Alu and L1 insertions respectively (Fig. S4A). In addition, large proportions of 116 

MEI calls detected by previous study were repeatedly identified in this study, and the allele 117 

frequency for overlapping sites also showed high consistency (Fig. S4B; Pearson’s correlation 118 

coefficient = 0.95). Nonetheless, we noticed that many MEIs identified by Gardner et al. 119 

(Gardner et al. 2017) were missed in our call set. We conjectured that this may be due to 120 

differences of software version, reference genome build, and the way how the BAM files were 121 

generated etc. To test this, we performed three runs using three sample sets: 1) 100 samples 122 

from the 1KGP with reads mapping to the GRCh37 genome build; 2) 100 samples from the 123 

1KGP with reads mapping to the GRCh38 genome build; 3) 100 samples from the 1KGP and 124 

100 samples from the NyuWa, with reads mapping to the GRCh38 genome build. We found 125 

that more MEIs could be detected by using the GRCh38 genome build and/or by combining 126 

more samples (Table S2). This is also in line with the model used by MELT (Gardner et al. 127 

2017), combining the 1KGP dataset with the high-coverage NyuWa dataset would improve 128 

MEI detection sensitivity as well as accuracy, with finer resolution of MEI break points. 129 

Collectively, our MEI call set represents a high-quality map of non-reference MEIs for humans. 130 

Enrichment of Non-reference L1 insertions in Centromeres 131 

It has been long noted that L1s occur preferentially in AT-rich regions but Alus show the 132 

opposite trend (Lander et al. 2001). As expected, we also observed this tendency for MEIs (Fig. 133 
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S5A). In addition, the GC content of flanking DNA for Alus and L1s were lower than 134 

background, while SVAs and HERV-Ks prefer DNA sequences with much higher GC content. 135 

We next compared the GC composition of rare MEIs (allele frequency < 1%) and common 136 

MEIs (allele frequency >= 1%) due to the reported bias shift in GC bias for older and younger 137 

short interspersed nuclear elements (SINEs) (Smit 1999; Hormozdiari et al. 2013; Medstrand 138 

et al. 2002; Waterson et al. 2005). Significant difference was only observed for HERV-K: rare 139 

HERV-K insertions occurred in much higher density at GC-rich regions (Fig. S5B). We did not 140 

observe marked bias for Alus and SVAs, likely because most insertions we identified were 141 

already fixed in population. 142 

We next sought to investigate the distribution of MEIs throughout the genome, like 143 

previously Collins et al. had done for common SVs (Collins et al. 2020). Interestingly, L1s were 144 

predominantly enriched at centromeric regions, whereas SVAs and HERV-Ks were enriched at 145 

telomeres (Fig. 2 A and B; Fig. S6). For comparison, similar analysis was applied to TEs in the 146 

reference genome, but no such patterns for L1s were found (Fig. S7B). Even in the latest 147 

telomere-to-telomere assembly of the human X chromosome, only a single L1 insertion was 148 

detected at the centromere region (Miga et al. 2020). When restricted to singleton L1 MEIs, we 149 

could still detect the enrichment in centromeres (Fig. 2C). Importantly, this finding was well-150 

supported by non-reference L1s from euL1db (Fig. 2D) (Mir et al. 2015), which curated human 151 

polymorphic L1s from 32 different studies. Considering the reduced detection power of short-152 

read WGS in repetitive regions, the enrichment of L1 insertions at centromeric regions could 153 

be still underestimated. The enrichment of non-reference L1 insertions at centromeric DNA 154 

could be partly attributed to lower GC content, as centromeres contain massive AT-rich alpha 155 
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satellites (Manuelidis and Wu 1978). Also, active TEs have been found in neocentromere 156 

regions, and may contribute to centromere ontogenesis (Klein and O’Neill 2018; Contreras-157 

Galindo et al. 2013; Zahn et al. 2015). The reasons for the dramatic enrichment of L1s in 158 

centromere regions are intriguing and further studies are needed in the future. 159 

 160 

Fig. 2. Chromosome-level Distribution of MEI Density. (A) Smoothed enrichment of different types 161 

of MEIs ascertained in this study. The values were calculated per 100 kb window across the average of 162 

all autosomes and normalized by the length of chromosome arms (as “meta-chromosome”). (B) 163 

Enrichment of MEIs by class and chromosomal context. The dots are the mean values and point ranges 164 

represent 95% confidence intervals (CIs). P-values were computed using a two-sided t-test and adjusted 165 

using the Bonferroni method. *, p ≤ 0.05. C, centromeric; I, interstitial; T, telomeric. The way to compute 166 

the chromosomal enrichment and to represent data was from the gnomAD SV paper (Collins et al. 2020). 167 

(C) Smoothed enrichment of singleton L1s (L1 MEIs found in single genome) ascertained in this study. 168 

(D) Smoothed enrichment of non-reference L1s from euL1db database (Mir et al. 2015). 169 
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Strong Correlations between MEI Diversity and SNP Heterozygosity 170 

Since mutations are ultimate sources of genetic innovation and significant causes of human 171 

birth defects and diseases, knowledge of mutation rate is a general population genetics question 172 

(Kumar and Subramanian 2002; Feusier et al. 2019). Here we employed the commonly-used 173 

Waterson’s estimator (Watterson 1975) of Θ to estimate the mutation rate of each MEI type and 174 

found that mutation rates varied markedly by MEI class (Table S3). Since MEI detection and 175 

genotyping power is profoundly influenced by sample coverage (Gardner et al. 2017), we 176 

conducted the analysis separately for the NyuWa and the 1KGP datasets. The resulting 177 

calculation provided very close estimates of between 3.21710-11 (NyuWa) and 2.92810-11 178 

(1KGP) de novo MEIs per bp per generation (μ), or roughly one new MEIs genome-wide every 179 

11-16 live births, which is largely concordant with prior reports (Sudmant et al. 2015; Gardner 180 

et al. 2019). 181 

The availability of SNP genotyping (both the NyuWa and the 1KGP dataset) for the same 182 

samples given us an opportunity to investigate the correlation between MEI diversity and SNP 183 

heterozygosity for each population. SNP heterozygosity was computed as the ratio of 184 

heterozygous SNPs across the individual’s genome (Prado-Martinez et al. 2013) and was 185 

compared to the average MEI differences between samples in a given population (Hedges et al. 186 

2004). The diversity for all types of MEIs showed strong correlation with SNP heterozygosity 187 

(R2: 0.64~0.95), with African populations showing the highest MEI diversity and SNP 188 

heterozygosity (Fig. 3) — consistent with previous study (Stewart et al. 2011). 189 
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 190 

Fig. 3. Correlation between SNP heterozygosity and MEI diversity. SNP heterozygosities and 191 

diversity of (A) Alu MEIs, (B) L1 MEIs, (C) SVA MEIs and (D) HERV-K MEIs were compared in 192 

different populations. SNP heterozygosity was computed as the ratio of heterozygous SNPs across the 193 

individual’s genome and MEI diversity was computed as the average allele difference in each population. 194 

Points were colored by super populations. AFR, African super population; AMR, American super 195 

population; EAS, East Asian super population; EUR, European super population; SAS, South Asian 196 

super population. 197 

MEI Functional Properties 198 

Via the local impacts by transposition events or more global post-insertion influence (Klein and 199 

O’Neill 2018), MEIs can disrupt normal gene functions and be disease-causing (Payer and 200 

Burns 2019; Hancks and Kazazian 2016). In principle, any MEIs can result in predicted loss-201 
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of-function (pLoF) by altering open-reading frames. To assess the functional impacts of MEIs, 202 

we annotated the MEI calls using Variant Effect Predictor (VEP) and BEDtools (see Methods). 203 

The vast majority (82.7%) of detected MEIs was in intergenic and intronic regions, while only 204 

~2.7% MEIs impacted the coding sequences (CDS) (Fig. 4A). Varying enrichment levels on 205 

different genomic features were observed for different MEI types (Fig. 4B). For example, L1, 206 

SVA and HERV-K MEIs were significantly depleted in CDS and non-coding gene exons; L1 207 

MEIs were enriched in coding introns and gene flanking regions; SVA and HERV-K sites were 208 

enriched in intergenic and non-coding introns. Focusing on protein-truncating variants (PTVs), 209 

each genome contained a mean of 24.8 MEIs (12.6 Alu, 7.4 L1, 1.3 SVA and 2.4 HERV-K) 210 

directly disrupting CDS, including 1.1 rare pLoF MEIs (allele frequency < 1%) (Fig. 4C; Table 211 

S4). By comparison, Karczewski et al. estimated 98.9 pLoF short variants (SNVs and InDels) 212 

per genome (Karczewski et al. 2020), and Collins et al. observed 144.3 pLOF SVs per genome 213 

(Collins et al. 2020). We thus estimated that MEIs account for about 9.3% (24.8/268) of all 214 

PTVs, among small variants and large SVs in each human genome. 215 

Examining the degree to which evolutionary forces acting on coding MEI loci is important 216 

to understand the relationships between MEI variation and coding genes. Here we used three 217 

different metrics to investigate selective constraints: 1) the proportion of singleton variants 218 

(variants observed in only one individual), an established proxy for selection strengths (Lek et 219 

al. 2016); 2) the proportion of MEIs in genes with high probability of loss-of-function 220 

intolerance (pLI) (Lek et al. 2016); 3) the loss-of-function observed/expected upper bound 221 

fraction (LOEUF) of MEI-containing coding genes, where higher LOEUF scores suggest a 222 

relatively higher tolerance to inactivation for a given gene (Karczewski et al. 2020). HERV-K 223 
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MEI was not included in this analysis due to the relatively small number found in coding genes. 224 

Higher singleton proportions for Alu and L1 MEIs were found in CDS than that of introns (Fig. 225 

4D; χ2 p < 0.05), while we did not find a statistically significant bias for SVA MEIs, though 226 

there were 166 and 949 SVA insertions found in CDS and coding introns, respectively. Likewise, 227 

lower proportions of Alu/L1 MEIs detected in genes with high pLI score (> 0.9) were found in 228 

CDS than that of intronic regions (Fig. 4E; χ2 p < 0.05). Observations from the perspective of 229 

enclosing genes fit these results: higher LOEUF score were found for genes with Alu/L1 MEIs 230 

(Fig. 4F, Wilcoxon p < 0.05). Our results sustained and expanded previous findings on human 231 

exome data (Gardner et al. 2019), in which Gardner et al. reported that exonic MEIs were under 232 

purifying selection. 233 
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 234 

Fig. 4. MEI functional properties. (A) Predicted functional consequences for each type of MEI: (left) 235 

cumulative proportion, and (right) cumulative number. (B) Log2 fold enrichment of the MEI call set 236 

compared against the MEIs permutated. The permutation test was repeated 1000 times, and empirical p-237 

values were commutated together with the enrichment values. The enrichment values were scaled row-238 

wise. ns, not significant (p-value > 0.05). (C) Box plots of counts of predicted PTVs by MEI: (left) all 239 

the MEIs identified in this study, and (right) rare MEIs (allele frequency < 1%) in this study. (D) 240 

Proportions of singleton MEIs in CDS and coding introns for Alu, L1 and SVA. Error bars indicate 95% 241 

CIs based on population proportion. P-values were computed using chi-squared test. (E) Proportions of 242 
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high pLI genes (pLI > 0.9) for genes with MEIs in the CDS and genes with MEIs intron regions. Error 243 

bars represent 95% CIs based on population proportion. P-values were computed using chi-squared test. 244 

(F) Box plots of LOEUF scores of genes with MEIs in the CDS and genes with MEIs in their introns. 245 

Wilcoxon rank sum test was used to compute p-values. Figure D-F used the same legend beneath. ns, p 246 

≥ 0.05; *, p < 0.05; **, p < 0.01. 247 

 248 

Although researchers have long noted that most of reference LTR elements and L1s in 249 

gene introns are in the antisense orientation with respect to the host genes (Smit 1999; 250 

Medstrand et al. 2002), possibly due to ill effects on transcript processing of sense-oriented 251 

elements (van de Lagemaat et al. 2006; Zhang et al. 2011), there are no established conclusions 252 

about the orientation tendency of non-reference MEIs (Gardner et al. 2019; Hormozdiari et al. 253 

2013). Our large collection of MEIs found in genes allowed us to closely examine the strand 254 

bias of different MEIs. Although a bias for Alu, L1 MEIs and SVA MEIs to be in an antisense 255 

orientation when found within genes was observed (Hormozdiari et al. 2013), we did not find 256 

a statistically significant bias for L1 insertions (Fig. S8A). Conversely, Alus were found to have 257 

strong strand bias when being inserted into protein-coding genes, non-coding genes, protein-258 

coding introns, and non-coding introns (Fig. S8; χ2 p < 0.05). For SVA MEIs, protein-coding 259 

genes, protein-coding exons, and protein-coding introns were regions where insertion 260 

orientation biases were detected (Fig. S8; χ2 p < 0.05). Considering that Alu and SVA elements 261 

are non-autonomous TEs that are trans-mobilized by the L1 retrotransposition machinery 262 

(Dewannieux et al. 2003; Raiz et al. 2012), there may be some post-insertion selection forces 263 

on Alu/SVA elements which influence these patterns (Sultana et al. 2017). The genes themselves 264 
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which had MEIs in sense or antisense strand in introns did not show clear differences in terms 265 

of selective constraints, by comparing the LOEUF scores of these two kinds genes (Fig. S8F). 266 

In addition, no significant orientation tendency against the neighboring genes were detected 267 

when MEIs were in gene upstream regions (Fig. S8I). 268 

Alu MEIs have been found to be enriched in regions of genome associated with human 269 

disease risk, suggesting their potential effects on common diseases (Payer and Burns 2019; 270 

Payer et al. 2017). To identify MEIs potentially associated with human trait or disease, we 271 

mapped MEIs to regions in linkage disequilibrium (LD) with trait- or disease-associated loci 272 

identified by genome-wide association study (GWAS) (P < 10−8) (Buniello et al. 2019). We 273 

found that 6,457 (about 17.6%) of the MEIs (17.5% for Alu, 15.3% for L1, 24.4% for SVA, and 274 

16.6% for HERV-K) were in these regions that tagged by at least by one GWAS SNP (Table 275 

S5), with allele frequency of 738 MEIs over 1%, suggesting the remarkable potential for MEIs 276 

to contribute in disease and the utility of our MEI set in future phenotype-variant association 277 

studies. 278 

L1 3’ Transduction and 5’ Inversion 279 

Some L1 elements can bring a 3’ readthrough transcript to the offspring insert site, which is 280 

called 3’ transduction (Goodier et al. 2000). These L1 elements are usually near a strong Poly(A) 281 

sequence. Transcription of these L1 elements is not terminated by the original weak Poly(A) of 282 

the L1 element but by the stronger poly(A) sequence downstream. With the flanking sequences 283 

downstream L1 elements, we extracted the correspondence between L1s in different genomic 284 

positions. Totally, 446 offspring MEIs derived from 57 source MEIs were identified in our 285 
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samples. These MEI relationships are both interchromosomal and intrachromosomal (Fig. 5A). 286 

Compared with L1 transduction source sites identified by 1KGP study (Gardner et al. 2017), 287 

we found most of the sites were overlapped (Fig. 5B). Among these sites, 2 of the 3 most active 288 

source sites (chr6:13190802, chr1:118858380) were also found in this study, while the site 289 

L1RE3 (chr2: 155671336) is in a low complexity region and was filtered in the site filtering. 290 

Most of the sources transducts less than 20 offspring whereas site chrX:11713279 has 186 291 

offspring (41% of all offspring detected). Source and offspring MEIs were distributed into 292 

families and population frequency was calculated (Fig. 5C and D). Most transduction classes 293 

were EAS specific. Comparing frequencies among subpopulations of EAS, we noticed 14 294 

transduction classes only detected in Chinese people. Inside these classes, 5 classes only appear 295 

in samples of Northern Han Chinese (CHB, CHN) and 4 classes only appear in Southern Han 296 

Chinese (CHS, CHS.1KGP) (Table S6). 297 

 298 

Fig. 5. L1 3’ Transduction and 5’ Inversion. (A) 3’ transduction source-offspring relations across the 299 

whole genome. (B) Venn plot of 3’ transduction sources found by our study and the 1KGP study (Gardner 300 

et al. 2017). (C) Source (bottom) and offspring (top) element frequencies in super populations. AFR, 301 

African super population; AMR, American super population; EAS, East Asian super population; EUR, 302 
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European super population; SAS, South Asian super population. (D) Source (bottom) and offspring (top) 303 

element frequencies in Asian subpopulations. CDX, Chinese Dai in Xishuangbanna; CHB, Han Chinese 304 

in Beijing; CHN, Northern Han Chinese, China; CHS, Southern Han Chinese; CHS.1KGP, Southern Han 305 

Chinese from the 1KGP; JPT, Japanese in Tokyo; KHV, Kinh in Ho Chi Minh City. (E) L1 length 306 

distribution within our call set. The length was estimated by MELT. (F) 5’ inversion position distribution 307 

among all inverted sites. (G) Correlation plot between the distributions shown in (E) and (F). Full length 308 

L1 element was excluded in this comparison. 309 

 310 

5’ end of the L1 sequence can be inverted during insertion (Ostertag and Kazazian 2001). 311 

We extracted the 5’ inversion information from the MELT result, and 1,606 L1 insertions were 312 

detected with a 5’ inversion end. The nearest distance from the 5’ inversion site to the 3’ end of 313 

the L1 insertion is 602 bp, which is consistent with the 1KGP study (590 bp) (Gardner et al. 314 

2017). It seems that inversion does not occur in the first ~600 bp from the 3’ end, which may 315 

indicate that the inversion process requires at least ~600 bp DNA sequence. In the previous 316 

study, the distribution of the 5’ inversion positions highly correlated with the distribution of L1 317 

MEI lengths. MEIs in our study also showed this trend (R2 = 0.696; Fig. 5E-G). We next 318 

calculated the percentage of 5’ end inverted MEIs within each 3’ transduction offspring class. 319 

The inversion rate across different classes varied and did not correlate with the class size (Table 320 

S7). For the biggest class which derived from chrX:11713279, only 25.3% of the offspring had 321 

5’ inversion while a class which only includes 15 offspring had a 40% inversion rate. 322 
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A Database for Polymorphic MEIs 323 

Currently, resources for polymorphic TE findings in human genomes are in high demand 324 

(Goerner-Potvin and Bourque 2018). There were two dedicated databases for polymorphic 325 

human MEIs: dbRIP (Wang et al. 2006) and euL1db (Mir et al. 2015). However, the former had 326 

not been updated since 2012 and the latter was only for human-specific L1 insertions. To fill 327 

this gap, we have designed a companion database named HMEID to archive MEIs identified in 328 

this study, and to comprehensively catalog the variants on allele frequencies in the NyuWa 329 

dataset and the 1KGP dataset. Besides, variant quality metrics and functional annotations are 330 

also presented. Compared to dbRIP, HMEID contained more MEIs; the number of L1 insertions 331 

in HMEID was comparable with that of euL1db (Fig. 6). Importantly, HMEID contained MEIs 332 

detected from samples of Han Chinese, which is the largest ethnic group in the world. We 333 

anticipated that this resource would facilitate the exploration of TE polymorphisms and benefit 334 

future researches on TEs as well as human genetics. 335 

 336 

Fig. 6. Comparing HMEID with other MEI Databases. (A) Comparison the MEI set in the HMEID 337 

with that of from the dbRIP database (Wang et al. 2006). (B) Comparison the L1 MEIs in the HMEID 338 

with non-reference L1s from the euL1db database (Mir et al. 2015). 339 
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Discussion 340 

MEIs, an endogenous and ongoing source of genetic variation, have not been investigated in 341 

many population-scale WGS projects. Here we leveraged 5,675 genomes from the NyuWa 342 

(Zhang et al. 2020) and the 1KGP (The 1000 Genomes Project Consortium 2015) dataset to 343 

identify non-reference MEIs. After describing the frequency spectrum of variants, we focused 344 

on the insertion site preference and functional impacts of MEIs. We provided an important 345 

resource of non-reference MEIs in humans. 346 

We identified 36,699 non-reference MEIs for four types of TEs and determined that 347 

individuals harbour a mean of over 1,000 non-reference MEIs, mostly contributed by Alu 348 

insertions. In line with previous reports (Gardner et al. 2017, 2019; Stewart et al. 2011), most 349 

MEIs were rare and individual-specific, which was also observed for SNVs (The 1000 350 

Genomes Project Consortium 2015) and SVs (Collins et al. 2020). With the newly sequenced 351 

2,998 genomes from China, this study established a large-scale MEI resource for the genetics 352 

of Chinese as well as East Asians. Comparing to the previous study conducted by the 1KGP 353 

(Gardner et al. 2017), the number of MEIs detected by us has increased about 55%, representing 354 

what is to our knowledge the most comprehensive set of human non-reference MEIs. 355 

We found that non-reference MEIs have non-random distributions along chromosomes, 356 

implicating the role of chromosome context in TE insertion. Of note, we found that non-357 

reference L1 MEIs were drastically enriched in centromere regions, which was also supported 358 

by independent data from the euL1db (Mir et al. 2015). The genomic distribution of TEs is a 359 

result from insertion site preference and post-insertion selection on the host (Sultana et al. 2017). 360 

On the one hand, human centromeres are full of AT-rich alpha satellites (Manuelidis and Wu 361 
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1978), which could confer insertion preference for L1s, since the target specificity of L1 362 

insertion machinery is TTTT/A (Feng et al. 1996). Certain centromeric histones and other 363 

centromeric proteins may also serve as preferred targets for TEs, as suggested by a study in 364 

maize (Schneider et al. 2016). Additionally, studies on HIV integration into the host genome 365 

implied that proximity to the nuclear periphery of centromere may facilitate TE targeting (Lelek 366 

et al. 2015; Marini et al. 2015). On the other hand, incorporation of L1s may facilitate the 367 

recurring evolutionary novelty of centromeres (Klein and O’Neill 2018). In support of this, 368 

Chueh et al. reported that RNA transcripts from a full-length L1 are the essential structural and 369 

functional components in the regulation of a human neocentromere (Chueh et al. 2009). 370 

Evidences were also found in the tammar wallaby (Macropus eugenii), where dramatic 371 

enrichment of L1s and endogenous retroviruses was found in a latent centromere site (Longo 372 

et al. 2009), and Equus caballus, where evolutionarily new centromeres locate in LINE- and 373 

AT-rich regions (Nergadze et al. 2018). In addition to centromere ontogenesis, a LINE-like 374 

element (G2/jockey3) contributes directly to the organization and function of centromeres of 375 

D. melanogaster (Chang et al. 2019). This is also likely true for the non-reference SVA, for 376 

which we found an enrichment in telomeres, as TEs were found to be essential in maintaining 377 

the telomere length homeostasis in insects (Pardue and DeBaryshe 2011). However, another 378 

plausible explanation for both the enrichment of non-reference L1 MEIs in centromere and non-379 

reference SVA MEIs in telomere is that these regions contain few protein-coding genes, limiting 380 

insertional mutagenesis by TEs (Sultana et al. 2017). The reasons for this phenomenon are 381 

fascinating, and our study post an important question about the relationship between TEs and 382 

centromeres. 383 
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Knowing the functional impact of MEIs is fundamental to our understanding the impact 384 

of MEI with respect to human disease or trait and evolution (Goerner-Potvin and Bourque 2018). 385 

We have estimated that MEIs accounted for about 9.3% of all protein-truncating variants per 386 

genome, among small variants (Karczewski et al. 2020) and SVs (Collins et al. 2020). Our 387 

estimation was much higher than that determined by whole exome sequencing data (Gardner et 388 

al. 2019), possibly due to the limitation of exome baits. We found that a significant portion of 389 

polymorphic MEIs mapping to loci implicated in trait/disease association by GWAS, as 390 

increasingly recognized by recent studies (Payer et al. 2017; Wang et al. 2017). While previous 391 

GWAS have mainly focused on small variants (Visscher et al. 2017), future association studies 392 

should consider and evaluate the effects of MEIs in common disease. We anticipate that the 393 

HMEID will serve as a basis for such studies. 394 

Our study is limited in that only one tool was used to identify MEIs. Though the overall 395 

performance of MELT outperformed existing MEI discovery tools (Gardner et al. 2017) and it 396 

has been successfully used in several large-scale studies (Gardner et al. 2017, 2019; Feusier et 397 

al. 2019; Werling et al. 2018; Torene et al. 2020), but the detection power could be compromised 398 

by modest sequencing depth and incompetence in complex genomic regions of short-read WGS 399 

etc. In addition, the overall genotyping accuracy by MELT v2 was 87.95% for non-reference 400 

Alus (not excluding MEIs in low complexity regions), when compared with PCR generated 401 

genotypes (Goubert et al. 2020). As such, we have tried to ensure the site quality by strict 402 

filtering. In the future, we would consider combining different MEI identification and 403 

genotyping tools to improve the quality, which has been proved useful in previous reports 404 

(Ewing 2015; Goerner-Potvin and Bourque 2018; Rishishwar et al. 2016; Feusier et al. 2019). 405 
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Also, long-read WGS is promising in detecting MEIs, especially for genomic regions refractory 406 

to approaches using short-read sequencing technologies (Audano et al. 2019; Chaisson et al. 407 

2019; Zhou et al. 2020). Another limitation of our MEI dataset is that reference MEIs (MEIs 408 

detected as deletions) were not included yet, for which the detection is underway and the results 409 

would be integrated into the HMEID for public use. 410 

Methods 411 

Experimental design 412 

Data in this study were from two sources: low-coverage (~7.4X) WGS samples from the 1KGP 413 

(The 1000 Genomes Project Consortium 2015) and high-coverage (~26.2X) WGS samples 414 

from the NyuWa dataset (Zhang et al. 2020). For the 1KGP dataset, CRAM-format files of 415 

2,691 individuals were downloaded from 416 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/, which 417 

were aligned to human genome build GRCh38 (Lowy-Gallego et al. 2018). The CRAM files 418 

were then converted to BAMs using SAMtools v1.9 (Li et al. 2009). The NyuWa dataset 419 

contained 2,999 individuals including diabetes and control samples collected from different 420 

provinces in China (Zhang et al. 2020), and this cohort was sequenced using the Illumina 421 

platform. The processing from raw FASTQs to BAMs was according to the GATK Best 422 

Practices Workflows germline short variant discovery pipeline (Poplin et al. 2018), as described 423 

in (Zhang et al. 2020). The median depth of the NyuWa samples after genome alignment 424 

(GRCh38 human genome build) and removal of PCR duplicates was about 26.2X. 425 
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Generation of MEI call set 426 

MELT v2.15 (Gardner et al. 2017) was run with default parameters using “SPLIT” mode to 427 

identify non-reference MEIs, which detects a wide range of non-reference Alu, L1, SVA and 428 

HERV-K insertions. To get the BAM coverage for MELT analysis, we used goleft v0.1.8 429 

(https://github.com/brentp/goleft) “covstats” function to estimate the genomic coverage for 430 

each sample. After initial generation of a unified VCF file by MELT “MakeVCF” function, 431 

variants that did not pass the following criteria were filtered to get a high-quality MEI call set: 432 

1) not in low complexity regions; 2) be genotyped in greater than 25.0% of individuals; 3) split 433 

reads > 2; 4) MELT ASSESS score > 3; and 5) VCF FILTER column be PASS. 2,998 of 2,999 434 

samples in NyuWa and 2,677 of 2,691 samples in 1KGP were successfully analyzed, with the 435 

final call set consisting of 36,699 MEIs from 5,675 genomes. Subfamily characterization for 436 

Alu MEIs and L1 MEIs was done using MELT’s CALU tool. 437 

Detection of L1 3’ transduction and 5’ inversion 438 

Following the generation of a high-quality MEI call set, MELT v2.15 was used to detect L1 3’ 439 

transduction. We followed the instruction of MELT 3’ transduction identification pipeline and 440 

extracted the METRANS and MESOURCE field in the resulting VCF manually. The 441 

population frequency was calculated with the AC/AN (for offspring MEI set, we used the sum 442 

of AC and AN) and normalized across different populations. 443 

The MELT VCF provided the position of a 5' inversion site (from the 3’ end) through the 444 

“ISTP” field. We subtracted it from the full length of L1 (6,019 bp) to obtain the coordinate of 445 

the inversion site from the 5’ end. While comparing the inversion coordinate and the length of 446 
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L1, we removed the full-length L1 elements from the comparison set. Sites were distributed 447 

into 100 bins across the full length of L1. We compared the distribution of sequence length and 448 

inversion site position among these bins and calculated the Pearson correlation value. 449 

Analysis of Hardy-Weinberg equilibrium 450 

To evaluate the genotype distributions of each MEI under the null expectations set by the 451 

Hardy-Weinberg equilibrium (HWE), we tabulated genotype distributions of autosomal MEIs 452 

per dataset and performed exact tests by “HWExactStats” function in R package 453 

HardyWeinberg v1.6.3 (Graffelman 2015). While disequilibrium may indicate disease 454 

association or population stratification, it may be the result of confusion of heterozygotes and 455 

homozygotes. We thus used the HWE test for gross quality-check of genotyping accuracy (Fig. 456 

S2), as described in (Collins et al. 2020). 457 

Comparison with the 1KGP MEI call set 458 

To compare with the MEIs generated by the 1KGP (Gardner et al. 2017), we downloaded the 459 

GRCh38 version call set from the dbVar database (Lappalainen et al. 2013). Then non-reference 460 

MEIs were extracted and compared with the MEIs identified in this study, using “window” 461 

function from BEDtools v2.26.0 (Quinlan and Hall 2010). When a site was located in ±500 bp 462 

of another site, it was considered as a hit. 463 

Testing MELT for different genome build and joint calling 464 

To test MELT’s performance on different genome build, we randomly generated 100 samples 465 

from the 1KGP dataset, and we got the alignment files for both GRCh37 and GRCh38 version 466 
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for these samples. After which we ran MEIL v2.15 on the two dataset and filtered sites as 467 

mentioned above. Finally, we compared the results using the function “intersect” from 468 

BEDtools v2.26.0 (Quinlan and Hall 2010). 469 

To test MELT’ performance with respect to sample size (joint calling), we randomly 470 

generated 100 samples from the NyuWa dataset and combined with the 100 random samples 471 

from the 1KGP above. Then we identified MEIs using the same pipeline as before on these 200 472 

samples. After which we compared the call set with the MEIs detected from the 100 samples 473 

from the 1KGP with BEDtools “intersect”. 474 

Functional annotation 475 

Variant Effect Predictor v99.2 (VEP) (McLaren et al. 2016) with Ensembl database version 99 476 

(Zerbino et al. 2018) was used to annotate MEIs, with parameters “--pick --canonical --distance 477 

1000,500”. MEIs were also intersected with enhancers from GeneHancer database (Fishilevich 478 

et al. 2017) using BEDtools v2.26.0 “intersect” function (Quinlan and Hall 2010). Only one 479 

functional consequence was kept for each MEI, and enhancers were given higher priority when 480 

a MEI was also found in non-coding genes and intergenic regions. 481 

Mapping MEIs to the GWAS signals was done as described in a previous study (Payer et 482 

al. 2017). GWAS SNPs and their related traits were obtained from GWAS Catalog v1.0.2 483 

(Buniello et al. 2019). We first defined the LD block region for each GWAS SNP by its proxy 484 

SNPs (r2 > 0.8). The LD between all the SNPs was calculated using the SNP call set generated 485 

by 1KGP phase III (The 1000 Genomes Project Consortium 2015), with plink v2.00a1LM 486 

(Chang et al. 2015). If there was no LD SNPs found in either side of the GWAS SNP, we used 487 
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the median length of all predicted LD regions as the block length, centered by the target SNP. 488 

Then BEDtools v2.26.0 “intersect” function (Quinlan and Hall 2010) was employed to identify 489 

MEIs falling into these LD block regions. The complete set of these MEIs could be found in 490 

Table S5. 491 

To qualify the enrichment of MEIs across different genomic features (Fig. 4B), we 492 

permuted 1,000 times for each MEI type with the same number as the real calls using GAT 493 

v1.3.4 (Heger et al. 2013). Each permutation set was annotated with VEP and BEDtools using 494 

the same rules as above. After counting the MEIs in each genomic feature, log2 fold changes 495 

and empirical p-values were computed. We repeated 3 times of the permutation procedure to 496 

verify the results. 497 

Chromosome-level analyses of MEI density 498 

To check the distribution of MEIs throughout the genome, we used the method described by 499 

Collins et al. (Collins et al. 2020) and we repeated it here for clarity. Focusing on 22 autosomes, 500 

each chromosome was segmented into consecutive 100kb bins and bins overlapped with 501 

centromeres were removed. For each MEI type (Alu, L1, SVA and HERV-K), the number of 502 

variants in each bin was recorded to get a matrix of MEI counts per 100kb bins per autosome. 503 

To smooth the MEI counts for each MEI type, an 11-bin (~1Mb) rolling mean per chromosome 504 

was computed. Each bin was then assigned to a percentile based on the position of that bin on 505 

its respective chromosome arm relative to the centromere. Specifically, a value of 0 506 

corresponded to the centromere, and a value of -1 and 1 corresponded to the p-arm telomere 507 

and q-arm telomere, respectively. Finally, to compute “meta-chromosome” density shown in 508 
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Fig. 2, the normalized bin positions (i.e., -1 to 1) were cut into 500 uniform intervals, and values 509 

across all autosomes based on the normalized interval position were averaged. For the 510 

comparison of chromosome contexts (Fig. 2), normalized positions within the outermost 5% of 511 

each chromosome arm were considered as “telomeric”, the innermost 5% as “centromeric” and 512 

the other 90% of each arm as “interstitial”. Visualization of density of different MEIs on each 513 

chromosome shown in Fig. S6 was done using RIdeogram v0.2.2 (Hao et al. 2020). 514 

Mutation rates 515 

Before estimating mutation rate, we exclude the MEIs failed in the HWE test (adjusted p < 516 

0.05). MEIs in low complexity regions (Li 2014) and in reference TE sequences were also 517 

filtered, due to the inability of MELT in these regions. Watterson’s Theta (Watterson 1975) was 518 

then used to estimate the genome mutation rate of each MEI type: 519 

θ�̂� =
𝐾

∑
1
𝑖

𝑛−1
𝑖=1

 520 

where 𝐾 is the number of MEI site observed per MEI type in given population, and is the total 521 

number of chromosomes assessed. Then mutation rates were estimated as: 522 

θŵ  =  4𝑁e 523 

with an effective population size (i.e. 𝑁𝑒) of 10,000, consistent with previous studies (Sudmant 524 

et al. 2015; Gardner et al. 2019; Collins et al. 2020). To estimate mutation rates worldwide, the 525 

average mutation rate across all five continental populations was computed, with 95% 526 

confidence interval surrounding the mean based on t distribution (Collins et al. 2020). 527 
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SNP heterozygosity and MEI diversity 528 

As described in a previous study (Hormozdiari et al. 2013), SNP heterozygosity was computed 529 

as the ratio of heterozygous SNPs over the length of the genome, and the mean value was used 530 

when multiple samples were considered. MEI diversity was defined as the average number of 531 

MEI differences between individuals in a population. For the NyuWa dataset (Zhang et al. 2020), 532 

high-quality SNP calls generated by the GATK v3.7 cohort pipeline (DePristo et al. 2011; 533 

Poplin et al. 2018) were used. For 1KGP3 samples, SNP calls on the human genome build 534 

GRCh38 of the were downloaded from 535 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20536 

190312_biallelic_SNV_and_INDEL/. Number of heterozygous SNPs was computed by 537 

VCFtools v0.1.15 (Danecek et al. 2011) and MEI diversity by “gtcheck” function in BCFtools 538 

v1.3.1 (Danecek and McCarthy 2017). 539 

Database construction 540 

We constructed the database with Bootstrap and Django. For each population, we calculated 541 

allele frequency of each MEI. All the data can be browsed in the database and downloaded from 542 

the “Download” page. 543 

Statistical analysis 544 

All statistical analyses in this study were briefly described in the main text and performed using R 545 

v3.6.2 (http://CRAN.R-project.org/). 546 
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Data Access 547 

Complete MEI call set and other related information such as allele frequency and functional 548 

annotation are available in the companion database HMEID (available at 549 

http://bigdata.ibp.ac.cn/HMEID/). 550 
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