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Abstract

Acute myeloid leukemia is an aggressive cancer of the blood forming system. The malignant cell

population  is  composed  of  multiple  clones  that  evolve  over  time.  Clonal  data  reflect  the

mechanisms governing treatment response and relapse. Single cell sequencing provides most direct

insights into the clonal composition of the leukemic cells, however it is still not routinely available

in clinical practice. In this work we develop a computational algorithm that allows identifying all

clonal hierarchies that are compatible with bulk variant allele frequencies measured in a patient

sample. The clonal hierarchies represent descendance relations between the different clones and

reveal the order in which mutations have been acquired. The proposed computational approach is

tested using single cell sequencing data that allow comparing the outcome of the algorithm with the

true structure of the clonal hierarchy. We investigate which problems occur during reconstruction of

1

10

20

25

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427897doi: bioRxiv preprint 

mailto:anna.marciniak@iwr.uni-heidelberg.de
https://doi.org/10.1101/2021.01.23.427897


clonal hierarchies from bulk sequencing data. Our results suggest that in many cases only a small

number of possible hierarchies fits the bulk data. This implies that bulk sequencing data can be used

to obtain insights in clonal evolution. 

Keywords:  Computational algorithm, acute myeloid leukemia, clonal evolution, clonal hierarchy,

clonal pedigree, phylogenetic tree, bulk sequencing, stem cell.

Introduction

Acute  myeloid  leukemia  (AML)  is  an  aggressive  cancer  of  the  blood  forming  system.  It  is

characterized by expansion of malignant cells and impairment of healthy blood cell formation [1-3].

AML originates from a small population of malignant stem-like cells, referred to as leukemic stem

cells (LSC) or leukemia initiating cells (LIC). A hallmark of AML is its poor prognosis and the high

rate of relapse [1-3]. 

The main reason for the high risk of relapse is the clonal heterogeneity of the disease. Sequencing

studies reveal that the AML cell population is composed of multiple clones. Contributions of the

individual clones to the total malignant cell burden vary over time [4-8]. Due to the high number of

different clones, the probability is high that a subset of clones has a low sensitivity to chemotherapy,

survives treatment and initiates relapse [4-9]. 

The clinical course of the disease shows a significant among-patient variability which can only be

partially predicted based on currently existing risk-stratifications [1, 2, 9-12]. To better understand

the mechanism of relapse and to identify patients at risk, a quantitative understanding of clonal

dynamics is required [4-9, 13, 14]. 
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Next-generation sequencing studies have revealed a high number of genetic hits involved in AML

pathogenesis. Genetic variability among different patients is considerable and new mutations are

acquired in disease evolution [4-8]. Correlation of mutations with clinical outcome has resulted in a

genetics-based risk-stratification [1, 3, 15]. However, the effect of many mutations on cell dynamics

remains unclear [6, 16].  

Relating  genetic  data  to  patient  prognosis  and  malignant  cell  properties  is  challenging,  since

different genetic hits may enhance or inhibit each other [2, 8, 9, 15-17]. Furthermore, potentially

unknown  or  undetected  hits  may  impact  the  aberrations  that  are  observed  in  clinical  routine.

Mathematical  and  computational  models  are  important  to  link  genetic  data  to  functional  cell

properties  such  as  proliferation  and  self-renewal  of  leukemic  stem cells,  both  of  which  are  of

prognostic relevance [9, 11, 12, 13, 14, 18, 19].

Such models allow to estimate which leukemic cell properties correspond to the clinical course of

an individual patient and to link the estimates to mutation data [9, 11, 12]. This provides insights

into the impact of different mutations and leads to new hypotheses about the underlying biological

mechanisms and genotype-phenotype correlation.

Leukemic stem cell dynamics are governed by two key properties: proliferation rate and fraction of

self-renewal. The proliferation rate describes how often LSC divide per unit of time. Upon division

a LSC gives rise to two progeny, which can either be LSC or of a more differentiated progenitor

type. The fraction of self-renewal corresponds to the fraction of LSC among the progeny [20, 21].

Mathematical and computational models suggest that stem cell properties at diagnosis differ from

those  at  relapse.  Particularly,  LSC at  diagnosis  are  characterized  by  an  increased  self-renewal

fraction and a higher proliferation rate compared to healthy cells. LSC at relapse are characterized
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by a slow proliferation rate and a further increase of the self-renewal fraction [9, 19]. Computer

simulations  and  model  analysis  indicate  that  increased  self-renewal  leads  to  a  competitive

advantage of the respective clones and that clones appearing later in the course of the disease have a

higher self-renewal compared to clones emerging earlier [9, 13, 14, 19, 22]. 

Single  cell  sequencing technology allows  to  detect  mutations  that  are  present  in  a  single  cell.

Sequencing of a sufficiently large number of single cells allows to reconstruct the order of mutation

acquisition and to visualize it as a so-called clonal hierarchy, clonal pedigree or phylogenetic tree

[7,  23].  Computational  models  have  led  to  the  hypothesis  that  the  position  of  a  clone  in  the

phylogenetic tree correlates with its fraction of self-renewal [19]. Therefore, phylogenetic trees may

contain important information about cell properties that could be used to decipher the impact of

mutations on the malignant cell kinetics.

In contrast to the single cell sequencing approach, bulk sequencing analyses a mixture of DNA of

multiple cells, to which each cell contributes its specific (either mutated or non-mutated) alleles.

Since in most cases each cell carries two versions of each allele, the bulk sample from n cells is a

mixture of  2n allele versions. The so-called variant allele frequency (VAF) is the percentage of

allele versions that is mutated. Bulk sequencing quantifies the frequency of a mutated allele in a cell

population  however  does  not  determine  how the  detected  mutations  are  distributed  among the

different clones [23, 24, 25].

Single cell sequencing is a relatively new and costly technology that so far is not used in clinical

routine [25]. To deduce clinically relevant knowledge from genetic data large patient groups have to

be  studied  due  to  the  high  inter-individual  heterogeneity  of  the  detected  mutations  and  their

unknown interaction. For this reason, it is a relevant question whether clonal hierarchies can be
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deduced from bulk sequencing data which are routinely obtained after initial diagnosis of AML [24,

25], although most of the diagnostic sequencing is targeted on limited panels of “typical” driver

mutations.

In this work we propose an algorithm that systematically constructs all phylogenetic trees that are in

agreement with bulk sequencing data of an individual patient. This algorithm provides a tool to

better understand the ambiguity of such reconstructions and their sensitivity to measurement errors.

To test our approach, we choose a recently published set of single cell sequencing data as a gold

standard (ground truth) [7]. Based on the single cell sequencing data we calculate the variant allele

frequency of the different mutations in a bulk sequencing sample and test whether the ‘real’ clonal

pedigree, i.e., the pedigree deduced from single cell sequencing data, can be reconstructed from it.

We investigate how the correctness and uniqueness of the reconstruction depend on sampling and

measurement errors.  

Materials and Methods

Aim

We use variant allele frequencies from bulk sequencing as input data. The output we want to obtain

are all clonal hierarchies that are compatible with the input data.

Assumptions

We assume that each mutation is only acquired once. Variant alleles cannot mutate back to wild type

alleles.  We  only  consider  heterozygous  mutations.  We rescale  the  measurements  such  that  the

variant allele frequency of the most abundant mutation is equal to 100%. 
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Computational Methods

The method is summarized in Fig. 1. Assuming that each mutation is irreversible and only acquired

once, clonal pedigrees have the structure of labelled rooted trees. An (unrooted) tree is a undirected

acyclic connected graph [26]. If one node of the tree is designated as root, a rooted tree is obtained.

In a rooted tree we naturally assign directions to the edges pointing from the root towards the

leaves. If a unique label is assigned to each node, the tree is referred to as a labelled tree [26]. The

root of the tree corresponds to a genetic trait that is present in all clones. If the disease originates

from a single founding mutation that is present in all malignant cells, the root can be identified with

the founding mutation. This configuration applies to most leukemic patients. If there exist multiple

founding mutations the root of the tree corresponds to the healthy phenotype. Each node in the tree

corresponds to one clone. The label assigned to a node indicates the mutational events that gave rise

to  the  clone.  The edge pointing  towards  the  node indicates  which  ancestor  clone  acquired  the

mutational event indicated by the label.

Figure 1: Computational approach. Clonal hierarchies are rooted trees. The root of the tree either corresponds
to wild type cells or to the AML founder clone. The coloured dots represent different alleles or mutations.
From bulk sequencing the allele frequencies bi in the sample are known. The frequencies xi of the different
clones  are  unknown.  The  tree  structure  is  represented  by  a  triangular  matrix.  The  measured  data  is
compatible with the tree structure if the system Ax=b has a non-negative solution. 

The tree structures can be mapped to matrices. We consider a tree with n nodes, corresponding to n

clones denoted by clone 1 to clone n. Since each clone differs from its ancestor by exactly one new
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mutation, there exist n different mutations, which we number from 1 to n. Denote by  A1≤i,j≤n a

matrix. We set  aij=1 if clone  j carries mutation  i, otherwise we set  aij=0. We number the clones

starting from the root (=clone  1) and proceed with increasing depth, i.e. if the depth of  clone i is

higher than the depth of clone j, then j<i.  We denote the founding mutation as mutation 1 and the

mutation that is present in  clone j  but not in its direct ancestor as  mutation j.  Then  A1≤i,j≤n is an

upper triangular matrix, with aii=1, and aij from the set {0,1}. 

We aim to solve  the  linear  system of  equations  Ax=b,  where  bi is  the  measured  frequency of

mutation i in the bulk sample and xi is the abundance of clone i in the sample. We note that A has

determinant  1  and  therefore  this  system  of  equations  has  a  unique  solution.  The  solution  is

biologically feasible if  all  xi are non-negative.  The existence of a non-negative solution can be

easily checked since the solutions of Ax=b are given by xn=bn, xj=bj-ajj+1 xj+1 - … - ajnxn.    We say

that the dataset b is compatible with the clonal hierarchy represented by matrix A if Ax=b has a non-

negative solution.

The founder mutation is denoted as mutation 1. It is  present in all clones and, therefore, is the most

abundant mutation in the bulk sample. This implies that a1j=1 for 1≤j≤n. Since we normalized the

frequency of the most abundant mutation to 100% it holds b1=100. This implies that the sum over

the xi is equal to 100.

To  systematically  generate  all  possible  trees,  we use  Pruefer  sequences,  a  classical  concept  to

bijectively map unrooted trees with n nodes to sequences of length n-2 [27]. Each unrooted labelled

tree with n nodes then corresponds to a sequence of length n-2 with elements from {1, …, n}. This

implies that there exist nn-2 unrooted labelled trees. Since each of the n nodes can be designated as

root, there exist nn-1 labelled rooted trees. 
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Interpretation 

If a biologically feasible solution of the system Ax=b exists, the measured bulk allele frequencies b

can be explained by the tree structure that corresponds to the matrix  A. This means that the bulk

allele  frequencies  b are  obtained  by  mixing  the  different  clones  from  the  tree  in  appropriate

proportions (the abundance of  clone i has to equal  xi). For each pair  A, b a biologically feasible

solution can exist or cannot exist. For example, a tree with founder mutation  X (i.e., each clone

carries mutation X) cannot match to samples where the abundance of X in non-maximal. 

Measurement Errors

If  the  measured  data  b are  exact,  non-existence  of  a  biologically  feasible  solution  indicates  a

mismatch of the tree structure and the allele frequencies. In case of experimental data, the non-

existence of a biologically feasible solution can alternatively arise from measurement errors. For

this reason it may be necessary to also consider solutions fulfilling ||Ax-b||<ε for an appropriate ε,

where ||.|| denotes e.g., the Euclidean norm.

To  find  such  solutions,  especially  in  the  case  where  no  biologically  feasible  (i.e.,  exact  non-

negative) solutions exist, we use an optimization approach to obtain a non-negative solution that

reproduces the data as good as possible. For each matrix A that corresponds to a tree structure we

minimize ||Ax-b|| under the constraints  xi≥0 (i=1,...n), x1+...+xn=100. If the measured VAF have

different confidence intervals, we minimize the weighted error function ||W(Ax-b)||, where W is a

diagonal matrix with entries related to the confidence intervals.

Solving the minimization problem for each possible tree structure allows to rank the tree structures

based on the mismatch ||Ax-b|| and to identify which tree optimally fits to the data. A solution is

referred to as exact if ||Ax-b||<10E-16. We say that the tree structure corresponding to matrix Ã is
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optimal if it holds  ||Ãx-b||≤|Ax-b|| for all matrices  A that represent a suitable tree and vectors  x

fulfilling xi≥0 (i=1,...n), x1+...+xn=100. The optimization was carried out using the python cvxopt

package [28]. 

Data

We plan  to  investigate  if  it  is  possible  to  reconstruct  clonal  hierarchies  from bulk  sequencing

samples. This requires that the “true” clonal hierarchy is known, so that we can compare the result

of our algorithm with reality. To know the “true” hierarchy we use single cell sequencing data from

ref. [7]. We understand the clonal hierarchy and the clonal frequencies obtained from the single cell

sequencing as ground truth. Since for the samples analysed in [7] no bulk data are available, we

calculate the bulk allele frequencies based on the single cell data. For simplicity we assume that the

considered sample only contains leukemic cells and we exclude all sequenced wild type cells from

the data. We calculate the bulk VAF of variant allele i as ai1f1+...+ainfn , where fi is the frequency of

clone i in the single cell data set and aij=1 if clone j carries variant allele i and 0 otherwise. Since we

consider a purely leukemic sample, the calculated VAF are normalized such that the frequency of

the  most  abundant  variant  allele  is  100%.  We  consider  all  patients  from  ref  [7]  that  carry

heterozygous mutations and for whom data at diagnosis and relapse is available.

Results

Exact input data often result in unique clonal hierarchies

As gold standard we use the single cell sequencing data from ref. [7], which provide the true clonal

hierarchy and hence can be used to test the proposed algorithm. Based on the single cell data we

calculate the variant allele frequencies in the bulk sample. The first question we ask is how many

clonal hierarchies are compatible with the bulk variant allele frequencies of a given patient. Fig. 2

shows for each patient which hierarchies exactly fit to the data at diagnosis. We observe that, for 5
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out of 6 patients, only one hierarchy exactly fits the bulk data. For one patient 6 hierarchies are

consistent with the bulk data.  

Figure 2: Clonal hierarchies compatible with the bulk allele frequencies measured at diagnosis. For each
considered  patient  all  clonal  hierarchies  are  depicted  that  are  compatible  with  the  bulk  variant  allele
frequencies measured at diagnosis. The root of the tree corresponds to the founder mutation that is present in
all leukemic cells. The percentages indicate the frequencies of the respective clones that have to be mixed to
obtain the measured bulk VAF. We observe that in most cases the hierarchies are unique.

Similar observations hold for the relapse samples of the considered patients, Fig 3. Here all samples

lead to unique tree configurations. In the next step we combine the diagnosis and relapse sample of

each patient. For each patient Fig. 4 shows the tree configurations that are compatible with the data

at both time points. Again, we have uniqueness in all except one case. 
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Figure  3:  Clonal  hierarchies  compatible  with  the  bulk  allele  frequencies  measured at  relapse.  For  each
considered patient the Figure shows which clonal hierarchies are compatible with the bulk variant allele
frequencies measured at relapse. The root of the tree corresponds to the founder mutation. We observe that in
all cases the hierarchies are unique.

Sampling error has little impact on the uniqueness of clonal hierarchies

If the frequency of different clones in a large population is estimated based on a small sample,

sampling  errors  can occur.  To study the  impact  of  sampling errors  on the  reconstructed clonal

hierarchies we again use the single cell sequencing data from [7]. We assume that the single cell

data reflect the true frequencies of the clones in the malignant cell bulk of the respective patient. For

an arbitrary patient k we know the total number nk of sequenced leukemic single cells. Furthermore

we know the frequencies fi,k of each clone that has been detected (here fi,k  denotes the frequency of

clone  i in the sample of patient  k).  To study the impact of sampling on the bulk variant allele

frequencies and on the reconstructed hierarchies for patient  k,  we draw 1000 random samples of

size  nk from a multinomial distribution with probabilities  pi=fi,k.  This approach is referred to as

resampling [29]. 
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Figure 4: Clonal hierarchies compatible with the bulk allele frequencies measured at diagnosis and relapse.
For each patient the Figure shows all clonal hierarchies that are compatible with the bulk VAFs measured at
diagnosis and relapse. The root of the tree corresponds to the founder mutation. We observe that in case of
patient 6 the number of hierarchies compatible with the data is reduced compared to Figure 2. For patients 1-
5 the reconstructed hierarchies coincide with the result from single cell sequencing. For patient 6 Possibility
3 corresponds to the true configuration. 
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For each of these 1000 random samples we calculate the bulk variant allele frequencies and apply

our algorithm to reconstruct the clonal hierarchies. The results are shown in Fig 5. In all cases

except  one  the  hierarchies  fitting  exactly  to  the  data  remain  unique  and  are  identical  to  the

hierarchies obtained based on the exact data. For one patient in some of the resampled datasets the

number of hierarchies matching the data increases by one. These results imply that  the sampling

error has a negligible impact on the clonal pedigrees that fit to the data. 
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Figure 5: Impact  of sampling error on the reconstructed hierarchies.  For each patient  we generate 1000
random pairs of  diagnosis and relapse samples from a multivariate distribution.  The probabilities of  the
multivariate distribution equal the clonal frequencies in the single cell data. The size of the samples equals
the number of sequenced leukemic cells. We recorded for each pair of randomly generated diagnosis/relapse
samples the number of clonal hierarchies compatible with the resampled diagnosis and relapse data. The
vertical axis shows how many of the 1000 samples were compatible with 1, 2, 3, … hierarchies respectively.

Impact of measurement errors on reconstruction of clonal hierarchies

Inaccuracies  in  sequencing  are  another  possible  source  of  error.  To  study  their  impact  on  the

reconstructed clonal hierarchies, we add a normally distributed error to the bulk frequency of each

allele.  Such errors can have different  impacts  on the reconstructed clonal  hierarchies.  For each

patient  we  considered  1000  randomly  perturbed  versions  of  the  original  data.  If  the  standard

deviation of the error distribution is 0.5% (i.e., in 68% of cases the error is less or equal 0.5%, in

95% of cases the error is less or equal to 1%) the reconstruction algorithm works reliably in the

sense that the true configuration is an optimal configuration, see Fig 6. In 5 out of 6 considered

patients the optimum is unique.  We repeated the simulation for a normally distributed error with a

standard deviation of 5%, i.e., in 95% of cases the error is less than 10%, see Fig 6. For an error of

this magnitude the true configuration not always remains an optimal configuration. This especially

applies to patients in whom the frequency of the founding clone is small (i.e., patients 2, 3 and 6). If

the error is larger than the frequency of the founder clone it becomes impossible to reliably detect

which hit occurs first.  However, also in a single cell sequencing approach, rare clones can remain

undetected due to sampling or sequencing errors, implying that the first hit remains unknown. In

terms of variant allele frequencies this implies that trees cannot be reliably reconstructed if the

difference between the two most abundant allele frequencies is of the order of magnitude of the

sequencing error. In patients with many clones, our algorithm can often rule out most of the possible

hierarchies and identify a small number of configurations fitting the data. In case of Patient 5 the

true configuration is always among the upper 12% of the best fitting configurations (i.e., the best or

second best), and in patient 6 among the upper 3.3% of the best fitting configurations (i.e., 4 out of
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125). In case of small clone numbers such as for patients 2 or 4, the true configuration is always

among the two best fitting hierarchies. 

Figure 6: Impact of measurement errors on the reconstructed hierarchies. For each patient we generate 1000
randomly perturbed pairs of diagnosis and relapse samples. The additive random perturbations were drawn
from a normal distribution with mean zero and standard deviation 0.5 or 5 respectively. Perturbations leading
to a VAF of less than zero or more than 100% were excluded.   For each of the perturbed diagnosis/relapse
pairs we reconstructed all compatible clonal hierarchies. The Figure indicates for how many of the 1000
perturbed  samples  the  true  hierarchy  optimally  fits  the  perturbed  data  (compared  to  all  other  existing
hierarchies), whether the true hierarchy can exactly reproduce the perturbed data and whether the optimal
configuration is unique.

An example of a patient with two founder clones

We now consider an example of a patient with two different founder clones. This scenario either

corresponds to the rare case where the AML cell population originates from clones with different

initial mutations or it corresponds to the case where the common founding mutation has not been

detected.  The  latter  may  especially  occur  in  the  setting  of  targeted  sequencing,  where  only  a

predefined subset of mutations is considered. Such a scenario occurs if in a purified AML sample

(i.e., in a sample without healthy cells) all bulk VAF are significantly different from the expected

maximum  of  50%  (for  heterozygous  mutations)  or  100%  (for  homozygous  mutations).  The

proposed algorithm can take this scenario into account by considering healthy cells as the root of
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the tree. This means a healthy reference allele that is present in all cells is added to the list of variant

allele frequencies, to obtain a single tree with a unique root.  Fig 7 shows all tree structures that are

compatible with the measured data. The tree structures can be divided into two classes. In the first

class of solutions, the frequency of healthy cells is zero at diagnosis and relapse (possibilities 1-2),

in the second class the frequency of the healthy cells is positive (here 15%) at at least one time point

(possibilities 3-7). Solutions of the first class imply that there exist  two founding clones (or an

undetected unique founder  mutation),  solutions  of  the  second class  may imply  that  the sample

contains a mixture of healthy and leukemic cells. If we can be sure that the experimental procedures

prevent healthy cells from being sequenced (e.g., by FACS sorting for a leukemia specific surface

marker before sequencing), only two possible tree structures remain.

Figure 7: Example of a patient with multiple founder clones. In this Figure the root corresponds to wild type
cells. The two founding events are indicated by yellow and orange circles. The Figure shows all hierarchies
that are compatible with VAFs at diagnosis and relapse. Possibility 1 coincides with the hierarchy obtained
from single cell sequencing.
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As for the other patients the sampling error only leads to small changes in the numbers of clonal

hierarchies that  fit  the data,  Fig 8 (A).  However,  already small  errors added to the bulk VAFs

(normally distributed with a standard deviation of 0.5%) imply that in a majority of cases the true

solution is no longer optimal, Fig 8 (B, C). 

Figure 8: Impact of errors on the reconstructions for a sample with two founders.  (A) Impact of sampling
error on the number of clonal hierarchies compatible with diagnosis and relapse data. The vertical axis shows
how many of the 1000 multinomial resamplings were compatible with 1, 2, 3, … hierarchies respectively. (B,
C) Impact of measurement errors on the reconstructed hierarchies. We considered 1000 perturbed versions of
the original data. Additive perturbations of the VAF were drawn from a normal distribution with mean zero
and standard deviation 0.5 (B) or 5 (C). We observe that in the majority of cases the true configuration is not
optimal.

The reason for this observation is as follows (see Fig. 9). In the exact scenario there exist two

founder mutations.  The frequencies  of both founder mutations add up to 100%. In presence of

errors it can happen that the frequencies of both founder mutations do not add up to exactly 100%.

If  their  sum  is  slightly  less  than  100% the  true  hierarchy  still  leads  to  an  exact  solution  (to

compensate for the error the exact solution contains a small number of healthy cells). If due to the

random error the sum over both sub-trees is slightly more than 100%, an exact solution is no longer

possible.  To circumvent  this  we can relax the dataset  by artificially  adding a  small  number of

healthy cells, e.g., x% to the dataset. In this case, for measurements where the frequencies of both

founding clones add up to less than 100%+x% the true configuration still is an exact solution. We

see in Figure 10 that this relaxation increases the number of cases where the true solution is an

optimal solution.
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Figure 9: Relaxation of measurements. This Figure demonstrates how relaxation of the VAF can help to
make the true configuration an optimal configuration. (A) True configuration with two founder clones. Wild
type cells are added to the tree to have a unique root. Since the sample only contains leukemic cells the
frequency of wild type cells equals zero. The frequencies of the two founder clones add up to 100%.  (B)
Variant  allele  frequencies  are  perturbed  by  a  measurement  error.  The  frequencies  of  the  two  founding
mutations no longer add up to 100%. Therefore the true hierarchy is no longer an optimal hierarchy. (C) By
multiplying the frequencies of mutated alleles with 0.95 we artificially add 5% of healthy cells to the sample.
If  we  reconstruct  the  clonal  hierarchies  for  the  modified  data  the  true  hierarchy is  among the  optimal
hierarchies.

Figure 10: Clonal hierarchies fitting the relaxed dataset. Here we consider the relaxed version of the dataset
from Patient 7. The relaxation makes the reconstruction more robust to errors. In comparison to Fig. 8 B, C
the true hierarchy is in many cases an optimal hierarchy. 
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Discussion

The aim of this study is to investigate the ambiguity of clonal hierarchies that are reconstructed

from bulk sequencing data.  For this  purpose,  we develop an algorithm that systematically tests

which subset of all clonal hierarchies optimally fits a given dataset. We test this algorithm using

bulk  VAFs  that  have  been  calculated  based  on  cell  sequencing  data  sets.  Since  single  cell

sequencing reveals the true clonal hierarchy this approach enables us to compare the output of our

algorithm to the real configuration [23, 25].

First, we assume that the input data is exact, i.e., neither sampling nor measurement errors occur.

Then for most of the considered patient samples exactly one clonal hierarchy optimally fits the bulk

VAF. This clonal hierarchy is identical to the hierarchy obtained from single cell sequencing. In two

of the considered patients, even for exact input data more than one clonal hierarchy is compatible

with the bulk allele frequencies. The true hierarchy obtained from single cell sequencing is among

them. This finding implies that even in absence of measurement error, the clonal hierarchy may not

be uniquely defined by the bulk VAF. 

When  drawing  multiple  samples  from  the  same  malignant  cell  population  the  variant  allele

frequencies may differ from one sample to another. This may be caused by sampling error, or it may

reflect inhomogeneity of the tumor. Assuming the tumor to be homogeneous, we aim to quantify the

impact  of  sampling  error  on  the  reconstructed  hierarchies.  For  each  patient,  the  number  of

sequenced leukemic single cells  n and the frequencies  fi of  the different  clones are  known. To

simulate the sampling error, for each patient we generate 1000 random samples of size  n drawn

from a multinomial  distribution  with  probabilities  pi=fi.  For  each of  these random samples  we

calculate  the  bulk allele  frequencies  and construct  all  clonal  hierarchies  compatible  with  them.
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Based on results of this exercise we conclude that the sampling error has a negligible impact on the

obtained clonal hierarchies, at least for the data at our disposal.

We test  the  robustness  of  the  reconstruction  by adding normally  distributed  errors  of  different

amplitude to the bulk VAFs calculated from the single cell sequencing data. This takes into account

potential  misreads  during  the  sequencing,  amplification  errors  or  impurities  of  the  sample.  We

observe that for errors of about 5-10% the true hierarchy not necessarily remains optimal. This

especially  applies  to  data  sets  where  the  frequency  of  the  founding  clone  is  of  the  order  of

magnitude of the error. However, even in this case, the true clonal structure is among the upper 3-

15% of the best fitting hierarchies. This implies that also in the presence of relevant errors, our

algorithm allows to rule out most tree configurations and results in a small subset of possible clonal

hierarchies fitting to a data sample.

Mathematical models indicate that tree characteristics,  e.g.,  the depth of the tree, correlate with

clonal properties such as self-renewal and proliferation rate [19]. In this context is can be sufficient

to have an estimate of the depth of the true clonal hierarchy to draw conclusions about the effect of

a mutation on cell kinetics or patient prognosis. This implies that in the case of non-unique clonal

hierarchies, biological conclusions can be drawn if the potential hierarchies are sufficiently similar

to each other. 

Having measurements of bulk VAFs provided, our computational approach can be used to rank all

possible clonal hierarchies based on their compatibility with the data (i.e.,  the smaller the error

when fitting the dataset to a given hierarchy, the better the rank of the respective hierarchy). For all

datasets  considered in  this  study the real  hierarchy is  among the upper 3-15% of this  ranking.

Taking into account that in case of n clones nn-1 possible hierarchies exists our algorithm allows to
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rule out a significant number of them. Our algorithm can also be applied to scenarios in which the

disease is derived from multiple founding clones. 

Our computational approach can be used to study how sensitive the reconstructed hierarchies are to

perturbations  of  the  input  data.  By  adding  random errors  to  the  input  data  obtained  from an

experiment and by repeating the reconstruction with the perturbed input data it turns out that some

datasets are robust with respect to the perturbations. This means that the obtained optimal clonal

hierarchies do not change if the input data is perturbed.  For other datasets perturbations of the input

data leads to a change of the reconstructed hierarchies, indicating that the reconstruction may be

affected  by  measurement  errors.  The  robustness  of  a  given  dataset  can  be  checked  using  our

proposed framework. It is straightforward to take into account that the measured frequencies may

have different confidence intervals. In principle our approach can also be applied to clustered single

nucleotide variants (SNVs). Since the number of detected SNVs is usually high, the variants are

grouped into clusters according to their allele frequencies. Each cluster comprises all SNVs with a

similar allele frequency. The cluster center is defined as the average allele frequency of all SNVs

that  belong to  the respective  cluster.  In  this  setting  our  algorithm can be applied using cluster

centers as input data.

Mechanistic mathematical models allow to extract relevant information from clonal hierarchies,

such as estimates of proliferation rates and self-renewal of the different clones [19, 30]. Correlating

these estimates with detected mutations and clinical observations may provide new insights into

AML pathophysiology [9, 19]. The proposed framework is a first attempt to quantify the ambiguity

emerging  during  reconstruction  of  clonal  hierarchies  from bulk  sequencing  data.   It  allows  to

identify  when such reconstructions  are  reliable  and can  be  used  as  input  data  for  mechanistic
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models. This knowledge helps to make available routine clinical data to studies that require clonally

resolved input [31].
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