
RESEARCH ARTICLE

Open Access

Open Peer-Review

Open Data

Open Code

Cite as: Rogers, A.R. (2021) An efficient
algorithm for estimating population
history from genetic data. bioRxiv,
2021.01.23.427922, ver. 5 peer-reviewed
and recommended by Peer community
in Mathematical and Computational
Biology.
https://doi.org/10.1101/2021.01.23.427922

Posted: 20 May 2021

Recommender:
Matteo Fumagalli

Reviewers:
Fernando Racimo and one anonymous
reviewer

Correspondence:
rogers@anthro.utah.edu

An Efficient Algorithm for Estimating
Population History from Genetic
Data

Alan R. Rogers

Department of Anthropology, 260 Central Campus Dr, University of Utah, Salt Lake City, UT 84112,
USA

This article has been peer-reviewed and recommended by
Peer Community In Mathematical and Computational Biology

(DOI: https://doi.org/10.24072/pci.mcb.100003)

Abstract
The Legofit statistical package uses genetic data to estimate parameters describing population
history. Previous versions used computer simulations to estimate probabilities, an approach
that limited both speed and accuracy. This article describes a new deterministic algorithm,
which makes Legofit faster and more accurate. The speed of this algorithm declines as model
complexity increases. With very complex models, the deterministic algorithm is slower than
the stochastic one. In an application to simulated data sets, the estimates produced by the
deterministic and stochastic algorithms were essentially identical. Reanalysis of a human data
set replicated the findings of a previous study and provided increased support for the hypothe-
ses that (a) early modern humans contributed genes to Neanderthals, and (b) a “superarchaic”
population (which separated from all other humans early in the Pleistocene) was either large
or deeply subdivided.

Keywords: Population genetics; algorithms; statistical inference; population history; admixture; archaic hominins

Peer Community In Mathematical and Computational Biology 1 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

mailto:rogers@anthro.utah.edu
https://dx.doi.org/https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

1 Introduction

Legofit is a publicly-available statistical package that uses genetic data to estimate the history
of size, subdivision, and gene flow within a set of populations.1 Because it ignores the within-
population component of genetic variation, it avoids the need to estimate parameters describing
recent population history and is able to focus on a deeper time scale. It operates by fittingmodels
of history to the frequencies of “nucleotide site patterns,” which describe the sharing of derived
alleles by subsets of populations. In recent publications, it has shown that Neanderthals and
Denisovans separated earlier than previously thought, that their ancestors endured a bottleneck
in population size, and that these ancestors interbred with a preexisting “superarchaic” popula-
tion, which had inhabited Eurasia since early in the Pleistocene. It has also confirmed a variety of
results first obtained by other methods [20–22].

Legofit’s estimation procedure evaluates the fit of model to data at many sets of parameter
values. In previous versions of Legofit, each evaluation required a lengthy computer simulation.
These calculations were feasible because they could be done in parallel. Nonetheless, Legofit was
most useful on high-performance computing clusters. This stochastic algorithm also limited the
accuracy with with models could be fit to data.

This article describes a new deterministic algorithm, which increases both speed and accuracy.
With the simulated data discussed below, the deterministic algorithm is over 1600 times as fast
as the stochastic one. Because of its greater accuracy, it also provides a better fit of model to data
and improves Legofit’s ability to discriminate among models.

2 Methods

The new algorithm involves two novel components. The first of these involves a well-known
Markov chain [8, 23, 26] that is seldom used because of the numerical difficulties. Below, sec-
tion 2.3 shows a way around these difficulties. The new algorithm also relies on two results de-
scribing how descendants are partitioned among ancestors. One of these (Eqn. 7) is old and the
other (Eqn. 8) new. Before discussing these, however, let us review the basics of Legofit. As in pre-
vious publications, I use capitalization to distinguish the Legofit package from the legofit program
within that package.

1https://github.com/alanrogers/legofit

Peer Community In Mathematical and Computational Biology 2 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://github.com/alanrogers/legofit
https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

X Y N D
yn: 0 1 1 0

ynd: 0 1 1 1

...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.............
.............
..........

...............
...............
...............
...............
...............
...

...............
...............
...............
...............
...............
...............
...............
................
...............
...............
...............
...............
...............
...............
...............
...............
........

.............
.............
.............
.............
.............
.............
.............
.............
................
...............
...............
......

.............
.............
.............
.............
.............
.............
.............
.............
.......

.............
.............
.............
.............
.............
.............
.............
.............
.......

.............
.............
.............
.............
.............
.............
.............
.............
................
...............
...............
...............
...............
...................
...................

...................
...................

...................
...................

...................
..............
.............
.............
.....

..

..
...

α

ε.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
............
.
..........
...
.

.............
.............

.............
............
............
.

...........
..
...........
..
...........
..
............
...........
...........
...........
...........
.............
.............
.............
..............
.............
.............
..........

...........
..
...........
..
...........
..
...........
..
...........
..
...........
...

............
.............

.............
................

...............
...............

...............
...............
.......

Figure 1. Population network with embedded gene tree. A mutation on the solid red branch
would generate site pattern yn (shown in red at the base of the tree). One on the solid blue
branch would generate ynd. “0” and “1” represent the ancestral and derived alleles. Key: X ,
Africa; Y , Eurasia;N , Neanderthal;D, Denisovan. After Rogers [20, Fig. 1].

2.1 Model of population history

Fig. 1 shows a gene tree embedded within a network of populations. In Legofit, the population
network is modeled as a set of connected segments, each with a simple history. Each segment
describes a single randomly-mating population, during an interval of constant population size.
The root segment has no parent, and tip segments have no children. All other segments have at
least one parent and one child. Segments that receive gene flow have two parents: one for native
ancestors and the other for immigrants. Most segments have finite length, but the root segment
is infinite.

The population history in Fig. 1 could bemodeled using the network of segments in Fig. 2. Note
that the branch ending at Y in Fig. 1 has three segments (y, y1, and y2) in Fig. 2. This is because
that branch is interrupted by two episodes of gene flow, and gene flow can occur only at the
ancient end of a segment. Thus, segment y extends from the present back to the first episode
of gene flow, y1 extends from the first episode to the second, and y2 extends from the second
episode back to the separation of populationsX and Y .

The size of population Y cannot be estimated, because there is never more than a single lin-
eage within Y . At time zero, there is a single haploid sample, because Y is a population that
has been sampled. This lineage may derive from segment d0, from n2, or from y2. But there is

Peer Community In Mathematical and Computational Biology 3 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

x y

y1

y2

n

n2

d0

d

ndxy

xynd

Figure 2. Network of segments used in legofit analysis. Squares represent segments from which
we have “observed” (i.e. simulated) data. Arrows indicate ancestor-descendant relationships, and
dashed lines represent gene flow. Segments in the same row need not be contemporary.

no way, under this model of history, for any of the segments that compose Y to contain more
than one lineage. Consequently, no coalescent events are possible within Y , and its population
size does not affect site pattern frequencies. This population size is therefore treated as a fixed
constant rather than a parameter to be estimated.

On the other hand, segment n2 may contain either 1 or 2 lineages. It will always contain at
least 1 lineage, which is ancestral to the lineage sampled in segment n. In addition, it may contain
the lineage sampled in segment y. Consequently, population size in segment n2 is an estimable
parameter.

In order to reduce the parameter count, it is possible to specify that several segments share a
single population-size parameter.

2.2 Nucleotide site patterns

Legofit works with the frequencies of nucleotide site patterns, which are illustrated in Fig. 1. A
nucleotide site exhibits the yn site pattern if random nucleotides drawn from populations Y and
N carry the derived allele, but those drawn from other populations carry the ancestral allele.
Fig. 1 shows the gene genealogy of a particular nucleotide site, embedded within the network of
populations. A mutation on the red branch would generate site pattern yn, whereas one on the
blue branch would generate ynd. Mutations elsewhere would generate other site patterns. The

Peer Community In Mathematical and Computational Biology 4 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

gene genealogy will vary from locus to locus, so averaging across the genome involves averaging
across gene genealogies. We are interested in the properties of such averages.

LetBi represent the length in generations of the branch generating site pattern i. I employ the
“infinite sites” model of mutation [10], which assumes that the mutation rate is small enough that
we can ignore the possibility of multiple mutations on any given branch. Under this assumption,
a polymorphic site exhibits pattern i with probability

Pi =
E[Bi]∑
j∈ΩE[Bj]

(1)

where E[Bi] is the expected length of the branch generating site pattern i, and Ω is the set of
site patterns under study [20, Eqn. 1]. Previous versions of Legofit used coalescent simulations
to estimate these expectations. The sections that follow describe a deterministic algorithm.

2.3 The matrix coalescent

The new algorithm is based on a model that calculates the probability that there are k ancestral
lineages at the ancient end of a segment, given that there are n descendant lineages at the recent
end. This model also calculates the expected length of the interval within the segment during
which there are k lineages, where 1 ≤ k ≤ n. The model employs a continuous-time Markov
chain, which begins with n haploid lineages at the recent end of the segment. As we trace the
ancestry of this sample into the past, the original sample of n lineages falls to n− 1, then n− 2,
and so on until only a single lineage is left, or we reach the end of the segment.

The number, n, of descendants equals 1 for tip segments. For ancestral segments, nmay take
several values with different probabilities. The legofit program sums across these possibilities,
weighting by probability.

This Markov chain is well known [23, appendix I; 8; 26] but seldom used, because accurate
calculations are difficult with samples of even modest size. Legofit, however, is designed for use
with small samples. Furthermore, it is possible (as shown below) to factor the calculations into
two steps, one of which can be done in exact arithmetic and only needs to be done once at the
beginning of the computer program. Numerical error arises only in the second step, and as we
shall see, that error is small.

Within a segment, the population has constant haploid size 2N , although 2N can vary among
segments. (“Haploid” population size is twice the number of diploid individuals.) It will be conve-
nient tomeasure time backwards from the recent end of each segment in units of 2N generations.
On this scale, time is v = t/2N , where t is time in generations. Let x(v) denote the column vec-
tor whose ith entry, xi(v), is the probability of observing i lineages at time v, where 1 ≤ i ≤ n.

Peer Community In Mathematical and Computational Biology 5 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

I ignore the absorbing state x1, so that indices of arrays and matrices range from 2 to n. Be-
cause there are n lineages at time zero (the recent end of the segment), the initial vector equals
x(0) = [0, . . . , 0, 1]T . At time v [26, Eqn. 8],

x(v) = CE(v)Rx(0) (2)

Here, E(v) is a diagonal matrix of eigenvalues whose ith diagonal entry is e−βiv , where βi =

i(i − 1)/2. C = [cij] andR = [rij] are matrices of column eigenvectors and row eigenvectors,
both of which are upper triangular. They are calculated by setting diagonal entries equal to unity,
and then applying [26, p. 1642],

ci,j = ci+1,j ×
(

i(i+ 1)

i(i− 1)− j(j − 1)

)
, i = j − 1, . . . , 2

ri,j = ri,j−1 ×
(

j(j − 1)

j(j − 1)− i(i− 1)

)
, j = i+ 1, . . . , n

Letm(v) denote the vector whose kth entry,mk(v), is the expected duration (in units of 2N

generations) of the interval during which the segment contains k lineages, within a segment of
length v. This vector equals

m(v) = B−1(x(v)− x(0)) (3)

where

B =

−β2 β3

−β3
. . .
. . . βn

−βn

Eqn. 3 holds not only for finite segments, but also when v → ∞. In the infinite case, x(∞) = 0,
because we are considering only the transient states (x2, . . . , xn), which disappear in the long
run. Eqn. 3 is easy to calculate, becauseB−1 has a simple form. For the case of n = 4,

B−1 =

−1/β2 −1/β2 −1/β2

−1/β3 −1/β3

−1/β4

 .

This model presents challenging numerical issues. To deal with these, let us re-organize the
calculations to do as much as possible in exact arithmetic. I illustrate this re-organization using

Peer Community In Mathematical and Computational Biology 6 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

the case of n = 3, for which Eqn. 2 becomes

x(v) =

(
1 −3/2

0 1

)(
e−β2v 0

0 e−β3v

)(
1 3/2

0 1

)(
0

1

)

=

(
1 −3/2

0 1

)(
e−β2v 0

0 e−β3v

)(
3/2

1

)

=

(
1 −3/2

0 1

)(
3/2 0

0 1

)(
e−β2v

e−β3v

)

=

(
3/2 −3/2

0 1

)(
e−β2v

e−β3v

)
= Gw(v) (4)

wherew(v) = (e−β2v, e−β3v)T is a vector of eigenvalues,G = C diag(Rx) is a matrix of column
eigenvectors with columns scaled by the entries of vectorRx(0), and diag(Rx(0)) is a diagonal
matrix whose main diagonal equals the vector Rx(0). The matrix G can be calculated in exact
rational arithmetic. This is done at the beginning of the computer program for each possible
value of n, and the resulting values are stored for later use.

Next, substitute (4) into (3) to obtain

m(v) = z + Hw(v) (5)

where z = −B−1x(0) = (1/β2, . . . , 1/βn)T , andH = B−1G, both of which can be calculated in
advance for each possible value of n, using exact arithmetic. For example, if n = 3,

m(v) =

(
1

1/3

)
+

(
−3/2 1/2

0 −1/3

)(
e−β2v

e−β3v

)
In an infinite segment, Eqn. 5 is simplym(∞) = z.

This algorithm calculates xk(v) and mk(v) only for k = 2, 3, . . . , n. Values for k = 1 are
obtained by subtraction: x1(v) = 1 −

∑n
k=2 xk(v), and m1(v) = v −

∑n
k=2mk(v). Finally, to

re-expressmk(v) in units of generations, define

Lk(t, 2N) = 2Nmk(t/2N) (6)

where t is the length of the current segment in generations, and 2N is its haploid population
size. Lk(t, 2N) is the expected duration in generations of the interval during which the current
segment contains k lineages.

Several of the quantities in this algorithm—G,H, and z—are calculated in exact rational arith-
metic. Although there is no roundoff error, these calculations will overflow if n is too large. With

Peer Community In Mathematical and Computational Biology 7 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

32-bit signed integers, there is no overflow until n > 35. This is more than enough for Legofit,
which requires that n ≤ 32, so that site patterns can be represented by the bits of a 32-bit integer.

Roundoff error does occur in this algorithm, because all quantities are eventually converted to
double-precision floating point during the calculation of Eqns. 4 and 5. To assess the magnitude
of this error, I compared results to calculations done in 256-bit floating-point arithmetic, using
the Gnu MPFR library [7]. I considered values of v ranging from 0 to 9.5 in steps of 0.5, and also
v → ∞. The maximum absolute error is 3.553 × 10−15 when n = 8; 2.700 × 10−13 when
n = 16; and 1.543× 10−8 when n = 32. These errors are all much smaller than those of Legofit’s
stochastic algorithm.

The theory just described allows us to calculate the probability that n descendants have k ≤ n
ancestors in some previous generation. To relate this theory to the frequencies of site patterns,
we must discuss how the coalescent process partitions descendants among ancestors.

2.4 Partitioning descendants among ancestors

A “segment” is an interval within the history of one subpopulation. Let n represent the number
of descendant lineages at the recent end of the segment, and let k ≤ n represent the number of
ancestral lineages at some earlier point within the segment. The theory in section 2.3 calculates
the probability of k at any time within the segment and also provides the expected length of the
subinterval containing k lines of descent.

For all segments except the root, we need both of these quantities. We need the expected
lengths of subintervals, because these lengths measure the opportunity for mutation. In addi-
tion, we need to assign a probability to each of the ways in which the set of descendants can be
partitioned among ancestors at the ancient end of the segment. These partitions and probabili-
ties are used in calculations on earlier segments within the network.

For the root segment, we still need the expected lengths of subintervals. But because there
are no earlier segments to worry about, we don’t need to assign probabilities to partitions. This
is fortunate, because the number of set partitions increases rapidly with the size of the set [11,
p. 418], and the set of descendants is largest in the root segment.

To address these needs, I present two algorithms. One sums across partitions of the set of
descendants and is used in all segments except the root. The other avoids this sum and is used
only at the root.

2.4.1 Summing across set partitions

Section 2.3 calculated the expected length of the interval duringwhich there are k ancestors, given
that there are n descendants at the recent end of the segment. If a mutation strikes one ancestor,

Peer Community In Mathematical and Computational Biology 8 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

Table 1. Set partitions, integer partitions, and their probabilities, for the case in which n = 4 and
k = 2. Under “set partitions,” the value in position j of each string is the index of the ancestor of
descendant j. Thus, “1122”means that descendants 1 and 2 descend fromone ancestor, whereas
3 and 4 descend from another. Ancestors are numbered in order of their appearance in the list
of descendants. Integer partitions are discussed in section A.2 of the appendix.

Set Integer
partitions Pr partitions Pr
1112 1/6 3 + 1 2/3

1121 1/6

1211 1/6

1222 1/6

1122 1/9 2 + 2 1/3

1212 1/9

1221 1/9

it will be shared by all descendants of that ancestor. The subset comprising these descendants
corresponds to a nucleotide site pattern.

Suppose that at some time in the past there were k ancestors. These ancestors partition the
set of descendants into k subsets. Let x1, x2, . . . , xk denote the sizes of the k subsets, i.e., the
numbers of descendants of the k ancestors. The conditional probability, given k, of such a parti-
tion is [3, theorem 1.5, p. 11]

A = k!

(
n− 1

k − 1

)−1(
n

x1, . . . , xk

)−1

(7)

The left side of table 1 shows all ways of partitioning a set of 4 descendants among 2 ancestors
alongwith the probability of each partition. The descendants of each ancestor define a nucleotide
site pattern. For example, the first partition is “1112,” which says that the first three descendants
share a single ancestor. A mutation in this ancestor would be shared by these descendants, and
so the descendants correspond to a site pattern.

This result is used in an algorithm that calculates (a) all possible partitions of descendants at
the ancient end of the segment along with their probabilities, and (b) the contribution of the
current segment to the expected branch length of each site pattern. The algorithm loops first
across values of k, where 1 ≤ k ≤ n. For each k, it loops across set partititions using Ruskey’s
algorithm [11, pp. 764–765]. The probability that a given partition occurs at the ancient end of a
segment, given the set of descendants at its recent end, is the product of xk(t/2N) (Eqn. 2) andA
(Eqn. 7). Each partition also makes a contribution to the expected branch length associated with

Peer Community In Mathematical and Computational Biology 9 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

k site patterns—one for each ancestor. That contribution is the product of Lk(t, 2N) (Eqn. 6)
and A (Eqn. 7). These contributions are summed across partitions and segments to obtain the
expected branch length of each site pattern.

2.4.2 A faster algorithm for the root segment

Consider the event that a particular set of d descendants (and no others) descend from a sin-
gle ancestor in some previous generation, given that there were k ancestors in that generation.
This event is of interest, because a mutation in this ancestor would be shared uniquely by the d
descendants. The probability of this event is

Qdk =

1 if k = 1

k
(
n−d−1
k−2

)(
n−1
k−1

)−1(n
d

)−1 if k > 1
(8)

To justify this result, consider first the case in which k = 1. This requires that all n descendants
descend from a single ancestor, so d must equal n. There is only one way this can happen, and
because the probability distribution must sum to 1, it follows that Qdk = 1. The result for k > 1

is derived in appendix A.

Example 1 Suppose k = n. In this case, each ancestor has 1 descendant, so d = 1, and Q1,n

must equal 1. Equation 8 agrees:

Q1,n = n

(
n− 2

n− 2

)(
n− 1

n− 1

)−1(
n

1

)−1

= n× 1× 1× 1

n
= 1

Example 2 Suppose that k = n − 1. In this case, we are reckoning descent from the previous
coalescent interval, in which there were n − 1 ancestors. Consider first the case in which d = 1.
Among the n descendants, 2 derive from an ancestor that split, and n − 2 derive from one that
did not split. This implies that Q1,n−1 equals (n − 2)/n, the probability a random descendant
derives from an ancestor that did not split.

The case of d = 2 is also easy. There are
(
n
2

)
ways to choose 2 descendants from n, and

only one of these pairs derives from a single ancestor in the previous coalescent interval. Thus,

Peer Community In Mathematical and Computational Biology 10 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

Q2,n−1 =
(
n
2

)−1. Equation 8 confirms both of these results:

Q1,n−1 = (n− 1)

(
n− 2

n− 3

)(
n− 1

n− 2

)−1(
n

1

)−1

= (n− 1)× (n− 2)× 1

n− 1
× 1

n
= (n− 2)/n

Q2,n−1 = (n− 1)

(
n− 3

n− 3

)(
n− 1

n− 2

)−1(
n

2

)−1

= (n− 1)× 1× 1

n− 1
×
(
n

2

)−1

=

(
n

2

)−1

Example 3 We can also evaluate Eqn. 8 by comparing its results to Eqn. 7. Table 1 shows all
partitions and their probabilities for the case in which k = 2 and n = 4. Notice that subsets of
sizes 1, 2, and 3 have probabilities 1/6, 1/9, and 1/6. Eqn. 8 yields identical values:

Q1,2 = 2

(
2

0

)(
3

1

)−1(
4

1

)−1

= 2× 1× 1

3
× 1

4
= 1/6

Q2,2 = 2

(
1

0

)(
3

1

)−1(
4

2

)−1

= 2× 1× 1

3
× 1

6
= 1/9

Q3,2 = 2

(
0

0

)(
3

1

)−1(
4

3

)−1

= 2× 1× 1

3
× 1

4
= 1/6

In the root segment, the program uses the following algorithm: Loop first across values of k,
where 1 ≤ k ≤ n. For each k, loop across values of d. If k = 1, then d = n. Otherwise, d can
take any integer value such that 1 ≤ d ≤ n − k + 1. For each d, calculate Qdk using Eqn. 8, and
loop across ways of choosing d of n descendants, using algorithm T of Knuth [11, p. 359]. Each
such choice corresponds to a nucleotide site pattern. AddQdkLk(t, 2N) to the expected branch
length associated with this site pattern.

2.5 Simulated data sets

To evaluate the new algorithm, I used 50 data sets simulated with msprime [9], using the model
in Fig. 1, which is identical to that used in a previous publication [20]. Each simulated genome
consisted of 1000 chromosomes, each with 2 × 106 nucleotide sites. Each simulated data set
consisted of 4 genomes, one each from populationsX , Y ,N , andD, which represent the African,
European, Neanderthal, and Denisovan populations. XY is the population ancestral toX and Y ,
ND is that ancestral toN andD, andXYND is that ancestral toX , Y ,N , andD. The mutation
rate was 1.4× 10−8 per base pair per generation, and the recombination rate was 10−8 per base
pair per generation.

Peer Community In Mathematical and Computational Biology 11 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

The time parameters in the simulation model, expressed in generations, are as follows:

TXYND = 25920 separation ofXY andND
TND = 15000 separation ofN andD
TXY = 3788 separation ofX and Y
TD = 1734 age of Denisova fossil
TA = 1760 age of Altai Neanderthal fossil
Tα = 1897 time of Neanderthal admixture
Tε = 1896 time of Denisovan admixture

Admixture proportions are:

mα = 0.05 fraction of segment y2 derived from n2
mε = 0.025 fraction of segment y derived from d0

Population sizes are expressed as “haploid” counts, which represent twice the number of diploid
individuals. These parameters are:

2NXYND = 64964.1 ancestral populationXYND
2NXY = 44869.2 population ancestral toX and Y
2NND = 5000 population ancestral toN andD

2NN = 9756.8 Neanderthal population,N
2ND = 5000 Denisovan population,D
2NX = 20000 modern African population,X
2NY = 20000 modern European population, Y

Simulation code is in section S1 of Supplementary Materials. Simulation results are in the
archive (doi:10.17605/OSF.IO/74BJF).

2.6 Analysis of simulated data

The data analysis pipelines for the deterministic and stochastic algorithms are detailed in supple-
mentary section S2. In both cases, the analysis was based on a model of history specified by the
input file a.lgo (supplementary section SB.1). This file defines the network of segments shown
in Fig. 2.

Several of the parameters of the simulation model were treated as fixed constants, because
their values have no effect on expected site pattern frequencies: 2NX , 2NY , Tα, and Tε. Another
parameter, TXYND , was fixed at its true value to calibrate the molecular clock. The remaining 11
parameters were estimated.

Peer Community In Mathematical and Computational Biology 12 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

doi:10.17605/OSF.IO/74BJF
https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

mα

0.
02

6
17

50
19

50
40

00
14

60
0

46
00

52
00

0.040

0.026

mε

TA

1884 1896

1750 1950

TD

2NN

6500 9500

4000

2ND

TXY

2000 6000

14600

TND

2NXY

40000

4600 5200

2NND

0.
04

0
18

84
18

96
65

00
95

00
20

00
60

00
40

00
0

63500

63
50

02NXYND

Figure 3. Scatter plot of each parameter against each other, based on 50 simulated data sets.

Peer Community In Mathematical and Computational Biology 13 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

For both algorithms, data analysis involved 5 stages. In stage 1, legofit was run on each
of 50 simulated data sets. Each run produced two output files: a .legofit file, which contains
parameter estimates, and a .state file, which records the state of the optimizer at the end of
the run. The optimizer uses the differential evolution algorithm [17]. This algorithm maintains a
swarmof points, each of which represents a guess about the values of the free parameters. There
are ten times as many points as free parameters, as recommended by Price et al. [17].

Although differential evolution is good at finding global optima, it is possible that some of the
stage 1 runs will get stuck on different local optima. Stage 2 is designed to avoid this problem.
Each job in stage 2 begins by reading all 50 of the .state files produced in stage 1, and sampling
among these to construct a swarm of points. This allows legofit to choose among local optima.

Figure 3 plots pairs of free parameters after stage 2 of the analysis. Each sub-plot has 50
points, one for each simulated data set. Several pairs of parameters are tightly correlated, and
these correlations reflect “identifiability” problems: different sets of parameter values imply al-
most identical site pattern frequencies. To ameliorate this problem, stage 3 of the analysis uses
the pclgo program to perform a principal components analysis, which re-expresses the free vari-
ables in terms of uncorrelated principal components (PCs). In previous publications [20–22], we
used this step to reduce the dimension of the analysis, by excluding components that explain little
of the variance. However, excluding dimensions can introduce bias, especially in the presence of
identifiability problems, so I chose here to retain the full dimension. Even without any reduction
in dimension, re-expression in terms of PCs improves the fit of model to data, because it allows
legofit to operate on uncorrelated dimensions.

Stages 4 and 5 are like stages 1 and 2, except that the free variables are re-expressed in terms
of PCs.

The program uses KL divergence [13] to measure the discrepancy between observed and pre-
dicted site pattern frequencies. Minimizing KL divergence is equivalent to maximizing multino-
mial composite likelihood. The optimizer stops after a fixed number of iterations or when the
difference between the best and worst KL divergences falls to a pre-determined threshold. This
threshold was 3× 10−6 for the deterministic algorithm and 2× 10−5 for the stochastic algorithm.
This difference reflects the fact that the deterministic algorithm is capable of much greater preci-
sion.

2.7 Analysis of speed as a function of model complexity

As model complexity increases, the number of states increases. This reduces the speed of the
deterministic algorithm and increases memory usage. To study this effect, I used the legosim
program, which calculates the site pattern frequencies implied by a given model. I studied a
series of models without migration or changes in population size. The models differed in the

Peer Community In Mathematical and Computational Biology 14 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

X Y N D S
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........

...............
...............
...............
...............
..

...............
...............
...............
...............
...............
...............
...............
................
...............
...............
...............
...............
...............
...............
...............
...........

...
δ

γ
...

.............
.............
.............
.............
.............
.............
.............
.............
...............
...............
...............
....

.............
.............
.............
.............
.............
.............
.............
.............
......

.............
.............
.............
.............
.............
.............
.............
.............
......

..

...
.............
.............
.............
.............
.............
.............
.............
...............
...............
...............
...............
...............
..................
..................
..................
..................
..................
..................
.................
.............
.............
.............
.............
.............
.............
.....

..

...
α

β
...

Figure 4. A population network including four episodes of gene flow. Upper case letters (X , Y ,
N ,D, and S) represent populations (Africa, Europe, Neanderthal, Denisovan, and superarchaic).
Greek letters label episodes of admixture.

number of populations, which ranged from four to nine. Timings were done on a 2018 MacBook
Air.

2.8 Analysis of real data

I used the deterministic algorithm to replicate the analysis of Rogers et al. [22]. (Data sets and
analysis files are in directory xyvad of the archive (doi:10.17605/OSF.IO/74BJF).) That paper stud-
ied modern human sequence data from Europe and Africa [15], along with three high-coverage
archaic genomes: two Neanderthals (Altai [19] and Vindija [18]), and one Denisovan [16]. It ana-
lyzed these data under eight different models, all of which are based on the history in Fig. 4.

In that figure, capital roman letters refer to populations: X is Africa, Y is Europe, N is Ne-
anderthal, D is Denisovan, and S (for “superarchaic” [19]) is a population that separated from
all other humans early in the Pleistocene. Greek letters label episodes of admixture. Episode
α refers to admixture from Neanderthals into Europeans, β to admixture from superarchaics
into Denisovans [12, 18, 19, 24, 25], γ to admixture from early moderns into Neanderthals [12],
and δ to admixture from superarchaics into the “neandersovan” ancestors of Neanderthals and
Denisovans [22].

Following Rogers et al. [22], I considered eight models, all of which include α, and including all
combinations of β, γ, and/or δ. I label models by concatenating Greek letters. For example, αβ

Peer Community In Mathematical and Computational Biology 15 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

doi:10.17605/OSF.IO/74BJF
https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

is the model that includes α and β but not γ and δ. This analysis is described in section S3 of the
supplement.

3 Results and Discussion

I used both algorithms—one deterministic and the other stochastic—to fit 50 simulated data sets.
In each case, this involved 200 runs of the legofit program—4 for each of 50 data sets—and 1 run
of pclgo. Altogether, the deterministic version of this analysis took 18.7 CPU minutes. Because
these calculations were parallelized, the elapsed time was only 1.7 minutes. Using the stochastic
algorithm, the same analysis took 514.8 CPU hours, or 11.4 hours of elapsed time. For this model,
the deterministic algorithm is 1654 times as fast as the stochastic one.

These timings were done on a node at the Center for High Performance Computing (CHPC) at
the University of Utah, using 96 parallel threads of execution. To get a sense of how long these
calculations would take on a less powerful computer, I did one run of legofit on a 2018 MacBook
Air, using the deterministic algorithm with 2 threads. That took 26.2 seconds of CPU time or 13.7
seconds of elapsed time. By comparison, the CHPC node did this job in 12.4 seconds of CPU
time, or 1 second of elapsed time. The high-performance node is nearly 14 times as fast as the
MacBook Air, implying that the full analysis would take 24 minutes on the MacBook Air. Thus, the
deterministic algorithm makes Legofit feasible on small computers.

Figure 5 shows the residual error in site pattern frequencies under the two algorithms. Resid-
uals are substantially smaller under the deterministic algorithm because of its greater accuracy.
When parameters are estimated by computer simulation, each additional decimal digit of preci-
sion requires a 100-fold increase in the number of iterations. This imposes a limit on the accuracy
of the stochastic algorithm, even with the fastest computers.

To estimate site pattern frequencies, both algorithms integrate over the states of the stochastic
process. The number of states increases with model complexity, so both algorithms are slower
when the model is complex. Figure 6 illustrates the effect on speed. In complex models, the
stochastic algorithm is faster than the deterministic one.

Figure 7 shows the parameter estimates from the 50 data sets (blue dots) along with the true
parameter values (red crosses). The two algorithms behave similarly. It does not appear that the
smaller residual error of the deterministic algorithm (Fig. 5) translates into more accurate param-
eter estimates. This is probably because most of the spread in the parameter estimates reflects
the identifiability problems seen in Fig. 3. To understand this effect, note the tight correlation
between TXY and 2NXY in Fig. 3. This correlation exists because it is hard to distinguish the
case in which 2NXY is large and TXY small from that in which the opposite is true. Because of
this ambiguity, both parameters exhibit large uncertainties in Fig. 7.

Peer Community In Mathematical and Computational Biology 16 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

ynd
xnd
xyd
xyn
nd
yd
yn
xd
xn
xy
d
n
y
x

−0.001 0.000 0.001
Observed Minus Fitted Frequencies

S
ite

 P
at

te
rn

Deterministic algorithm

ynd
xnd
xyd
xyn
nd
yd
yn
xd
xn
xy
d
n
y
x

−0.001 0.000 0.001
Observed Minus Fitted Frequencies

S
ite

 P
at

te
rn

Stochastic algorithm

Figure 5. Residual error of deterministic and stochastic algorithms, based on 50 simulated data
sets. Each circle refers to a different simulated data set.

0

5

10

15

Execution
time
(sec)

4 5 6 7 8 9

Populations

Deterministic

Stochastic

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.............

Figure 6. Execution time of legosim, excluding system calls, in models without migration. For the
stochastic algorithm, each run used two million iterations.

Peer Community In Mathematical and Computational Biology 17 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

mα − mε

mα + mε

mε

mα

0.00 0.02 0.04 0.06 0.08
Admixture Fraction

Deterministic algorithm

TXY

TND

TA

TD

100 200 300 400
Thousands of Years

2NXYND

2NXY

2NND

2NN

2ND

20000 40000 60000
Haploid Population Size (2N)

mα − mε

mα + mε

mε

mα

0.00 0.02 0.04 0.06 0.08
Admixture Fraction

Stochastic algorithm

TXY

TND

TA

TD

100 200 300 400
Thousands of Years

2NXYND

2NXY

2NND

2NN

2ND

20000 40000 60000
Haploid Population Size (2N)

Figure 7. Parameter estimates from 50 simulated data sets, using the deterministic and stochas-
tic algorithms. Blue circles are estimates and red crosses are the true parameter values.

Peer Community In Mathematical and Computational Biology 18 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

Table 2. CPU time expended in analysis of each model from Rogers et al. [22]. Each analysis
involves 204 runs of legofit and 1 run of pclgo. Elapsed times were much shorter, because calcu-
lations were done in parallel. “Acceleration” is the ratio of execution speed in the deterministic
model to that in the stochastic model. Models are arranged in order of increasing execution time
with the deterministic algorithm.

log10 seconds
Model Deterministic Stochastic Acceleration
α 1.60246 5.94980 22250.5
αβ 2.60384 5.81015 1608.1
αγ 2.83806 5.94417 1276.8
αβγ 3.67736 6.03901 230.0
αδ 4.42860 6.16730 54.8
αβδ 4.86285 6.04239 15.1
αγδ 5.47544 6.14022 4.6
αβγδ 6.04505 6.20171 1.4

Somebias is evident in these estimates. For example, the estimates ofmα tend to be a little low
and those ofmε a little high [20]. This reflects the negative correlation between these parameters
that can be seen in Fig. 3. Because the two source populations (N and D) are so similar, they
are hard to distinguish. We get a better estimate of the sum (mα + mε) than of the difference
(mα − mε). There is also some bias in 2ND and 2NN . In spite of these biases, the swarms of
estimates tend to enclose the true parameter values, so the biases in these estimates aremodest
compared with their uncertainties. It should not, however, be assumed that this will always be
the case.

To illustrate the new algorithm in a full-scale analsis of real data, I replicated the analysis of
Rogers et al. [22]. Table 2 shows the CPU time used by each algorithm in analysis of the eight
models in that publication. For this set of models, the deterministic algorithm is always faster,
but its execution time ranges across several orders of magnitude. These execution times are
not strictly comparable, because they involve several compute clusters, which vary in processor
speed. These differences are minor, however, compared with the enormous differences in run
time seen in table 2.

To choose among models, I used the bootstrap estimate of predictive error, “bepe” [4, 5, 20].
This method uses variation among data sets (the real data plus 50 replicates generated by a
moving-blocks bootstrap [14]) to approximate variation in repeated sampling. It fits the model
to one data set and then tests this fit against all the others. Table 3 uses all models to compare
the bepe values calculated by the deterministic and stochastic algorithm. In all cases, the deter-

Peer Community In Mathematical and Computational Biology 19 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

Table 3. Bootstrap estimate of predictive error (bepe) values and bootstrap model average
(booma) weights, based on the data of Rogers et al. [22]. Values for the stochastic algorithm
are also from that publication. Models are arranged in order of decreasing bepe values.

Deterministic Stochastic
Model bepe weight bepe weight

α 1.13× 10−6 0 1.16× 10−6 0
αδ 0.82× 10−6 0 0.87× 10−6 0
αγ 0.61× 10−6 0 0.62× 10−6 0
αγδ 0.40× 10−6 0 0.44× 10−6 0
αβ 0.14× 10−6 0 0.18× 10−6 0
αβγ 0.14× 10−6 0 0.17× 10−6 0
αβδ 0.11× 10−6 0.02 0.15× 10−6 0.16
αβγδ 0.10× 10−6 0.98 0.13× 10−6 0.84

ministic algorithm yields a smaller bepe value than the stochastic algorithm, indicating a better
fit of model to data. The order of the eight models, however, is the same. Because the deter-
ministic algorithm yields smaller bepe values, one should use the same algorithm (stochastic or
deterministic) for all models in any analysis. Otherwise, model selection will be biased in favor of
deterministic results because of their smaller bepe values.

When severalmodels provide reasonable descriptions of the data, it is better to average across
models than to choose just one. This allows uncertainty about themodel itself to be incorporated
into confidence intervals. For this purpose, Legofit uses bootstrap model averaging, “booma”
[2, 20]. The booma weight of the ith model is the fraction of data sets (including the real data and
50 bootstrap replicates) in which that model “wins,” i.e. has the lowest value of bepe. The weights
of all models are shown in table 3.

The new analysis, using the deterministic algorithm, replicates the main result of Rogers et al.
[22]: that the most complex model (αβγδ) is preferred over all others. The strength of this pref-
erence, however, is stronger under the deterministic algorithm. The 2nd-place model (αβδ) gets
16% of the weight with the stochastic algorithm but only 2% with the deterministic one. The
greater precision of the deterministic algorithm apparently improves Legofit’s ability to discrimi-
nate among models. The difference between these models is that αβγδ includes gene flow from
early modern humans into Neanderthals, as proposed by Kuhlwilm et al. [12]. The current results
strengthen the case for this hypothesis.

The model-averaged estimates of all parameters are shown in supplementary table S1. The
two algorithms provide similar estimates, but there are two differences. First, the deterministic al-
gorithm provides an unrealistic estimate of TXY , the separation time of Europeans and Africans.

Peer Community In Mathematical and Computational Biology 20 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

This estimate—323 generations, or about 9000 y—is clearly too small. This may indicate that
something is missing from the model or that identifiability problems have introduced bias. Fur-
ther work would be needed to evaluate these alternatives. Second, the estimate of NS is even
larger—over 700,000—with the deterministic algorithm than with the stochastic one. This sup-
ports our previous suggestion that the superarchaic population was large or deeply subdivided
[22].

4 Conclusions

Legofit’s new deterministic algorithm increases both speed and accuracy. The increase in accu-
racy results in smaller residual errors and better discrimination between alternative hypotheses.
It has no large effect on confidence intervals, however, because these are primarily measuring
uncertainty arising from statistical identifiability problems. The increase in speed is dramatic with
models of small tomoderate complexity andmakes Legofit practicable on laptop computers. The
deterministic algorithm slows dramatically, however, as models increase in complexity. For very
complex models, the stochastic algorithm is still needed.

The deterministic algorithm replicated all the findings of Rogers et al. [22]. Because of its
greater accuracy, it provided stronger support for the hypothesis that early modern humans con-
tributed genes to Neanderthals [12]. It also strengthened the evidence that the superarchaic
population was large or deeply subdivided [22].

Legofit is open source and freely available at https://github.com/alanrogers/legofit.

Acknowledgements

I thank Greg Martin for comments on appendix B, Elizabeth Cashdan for editorial suggestions,
and those who reviewed themanuscript for PCI Mathematical and Computational Biology. Analysis
files are archived at doi:10.17605/OSF.IO/74BJF. This work was supported by NSF BCS 1638840,
NSF BCS 1945782, and the Center for High Performance Computing at the University of Utah.
Version 5 of this preprint has been peer-reviewed and recommended by Peer Community In Math-
ematical and Computational Biology (https://doi.org/10.24072/pci.mcb.100003).

Peer Community In Mathematical and Computational Biology 21 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://github.com/alanrogers/legofit
doi:10.17605/OSF.IO/74BJF
https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

A The probability that d of n descendants derive from 1 of k
ancestors

Eqn. 8 presents a formula for Qdk , the probability that a particular set of d descendants, chosen
from a total of n, derives from a single unspecified ancestor, given that there were k ancestors
in that ancestral generation. If k = 1, Qdk = 1 as explained above. The result for k > 1 can be
derived in two different ways.

A.1 Short argument

Suppose that some ancestor has d descendants. The probability that a particular group of d
descendents derives from this ancestor is 1

/(
n
d

)
, where

(
n
d

)
is the number of ways of choosing d

descendants from a total of n. If r ancestors have d descendants each, the probability of descent
from one of these is r

/(
n
d

)
. In reality, r is a random variable, and the probability becomesQdk =

E[r]
/(
n
d

)
, where E[r] is the expected value of r.

To derive E[r], number the ancestors from 1 to k, and let yi represent the number of descen-
dants of the ith ancestor, where yi > 0 and

∑
yi = n. I will refer to a particular set of values,

y1, . . . , yk , as an allocation of descendants among ancestors. The number of such allocations
is
(
n−1
k−1

)
[6, pp. 38–39]. Furthermore, each allocation has the same probability,

(
n−1
k−1

)−1, under
the coalescent process [3, p. 13]. The k ancestors are statistically equivalent, which implies that
E[r] =

∑k
i=1 Pr{yi = d} = kPr{yi = d} for an arbitrary ancestor i. If this ancestor has d de-

scendants, there are
(
n−d−1
k−2

)
ways, each with probability

(
n−1
k−1

)−1, to allocate the n−d remaining
descendants among the k − 1 remaining ancestors. Thus Pr{yi = d} =

(
n−d−1
k−2

)(
n−1
k−1

)−1, and
Qdk equals the expression in Eqn. 8.

A.2 Longer argument

The k ancestors define a partition of the set of descendants into k subsets, each corresponding
to a different ancestor. Let x1, x2, . . . , xk denote the sizes of the k subsets, i.e., the numbers
of descendants of the k ancestors. The probability of such a partition is given above in Eqn. 7.
Suppose that a set of d descendants (and no others) derive from a single ancestor in interval k.
This can happen only if xi = d for some i. The ancestors are numbered in an arbitrary order, so
let us set xk = d and rewrite Eqn. 7 as

A = k!

(
n− 1

k − 1

)−1(
n

d

)−1(
n− d

x1, . . . , xk−1

)−1

Peer Community In Mathematical and Computational Biology 22 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

To calculateQdk , we need to sum this quantity across all ways to partition the set of n−d remain-
ing descendants into k − 1 subsets.

This is not the same as summing across values of xi, because each array of xi values may
correspond to numerous partitions of the set of descendants. This is illustrated in table 1, where
the left side lists the 7 ways of partitioning a set of 4 descendants among 2 ancestors, along
with the probability of each partition as given by Eqn. 7. The first four set partitions have equal
probability, because each one divides the descendants into subsets of sizes 3 and 1, and the xj
values of these partitions therefore make equal contributions to Eqn. 7. Similarly, the last three
set partitions have equal probability, because each divides the ancestors into two sets of size 2.
These two cases: 3 + 1 = 4 and 2 + 2 = 4 are the two ways of expressing 4 as a sum of two
positive integers. Eqn. 7 implies that all set partitions corresponding to a given integer partition
have equal probability.

There are
(

n−d
x1,...,xk−1

)/∏
m cm! set partitions for a given partition of the integer n−d into k−1

summands [1, theorem 13.2, p. 215]. In this expression, cm is the number of times m appears
among x1, . . . , xk−1. Multiplying this into A and summing gives

Qdk = k!

(
n− 1

k − 1

)−1(
n

d

)−1∑(∏
m

cm!

)−1

(9)

where the sum is over ways of partitioning n − d into k − 1 summands. Appendix B shows that
this sum equals

(
n−d−1
k−2

)
/(k − 1)!. Substituting into Eqn. 9 reproduces Eqn. 8.

B An identity involving integer partitions

The partition of a positive integer n into k parts can be written as n =
∑k
i=1 xi, where the xi

are positive integers. This same partition is also n =
∑
i ici, where ci is the number of times i

appears among the xi values. In other words, ci is the multiplicity of i in the partition. In terms
of these multiplicities, k =

∑
ci. This appendix will show that

∑(∏
i

ci!

)−1

=
1

k!

(
n− 1

k − 1

)
(10)

where the sum is across all partitions of an integer n into k parts.
This identity follows from the fact that there are

(
n−1
k−1

)
ways to put n balls into k boxes so that

no box is empty [6, pp. 38–39]. Let us call each of these an “allocation” of balls to boxes. For
each allocation, there is a corresponding partition of the integer n into k parts. The number of
allocations often larger than the number of partitions. For example, there are

(
2
1

)
= 2 ways to

put 3 balls into 2 boxes, **|* and *|**, where the stars represent balls and the bar separates

Peer Community In Mathematical and Computational Biology 23 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

boxes. Both allocations, however, correspond to a single partition, 3 = 2 + 1, of the integer
3. For a given integer partition, c1, c2, . . ., there are k!/

∏
ci! distinct ways to allocate balls to

boxes. (This is the number of ways to reorder the boxes while ignoring the order of boxes with
equal numbers of balls.) The sum of this quantity across partitions must therefore equal

(
n−1
k−1

)
.

Dividing both sides by k! produces identity 10. GregMartin posted a different proof of this identity
on StackExchange.2

References

[1] George E. Andrews. The Theory of Partitions. Addison Wesley, Reading, MA, 1976.

[2] Steven T Buckland, Kenneth P Burnham, and Nicole H Augustin. Model selection: an integral
part of inference. Biometrics, 53(2):603–618, 1997.

[3] Richard Durrett. Probability Models for DNA Sequence Evolution. Springer, New York, 2nd
edition, 2008.

[4] Bradley Efron. Estimating the error rate of a prediction rule: Improvement on cross-
validation. Journal of the American Statistical Association, 78(382):316–331, 1983.

[5] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall,
New York, 1993.

[6] William Feller. An Introduction to Probability Theory and Its Applications, volume II. Wiley, New
York, 2nd edition, 1971.

[7] Laurent Fousse, GuillaumeHanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transac-
tions on Mathematical Software, 33(2):13–es, 2007. ISSN 0098-3500.

[8] RC Griffiths and Simon Tavaré. The age of a mutation in a general coalescent tree. Stochastic
Models, 14(1-2):273–295, 1998.

[9] Jerome Kelleher, AlisonM Etheridge, and GileanMcVean. Efficient coalescent simulation and
genealogical analysis for large sample sizes. PLoS Computational Biology, 12(5):1–22, 5 2016.

[10] Motoo Kimura. The number of heterozygous nucleotide sites maintained in a finite popula-
tion due to steady flux of mutation. Genetics, 61:893–903, 1969.

2https://math.stackexchange.com/questions/938280/on-multiplicity-representations-of-integer-partitions-of-fixed-length

Peer Community In Mathematical and Computational Biology 24 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://math.stackexchange.com/questions/938280/on-multiplicity-representations-of-integer-partitions-of-fixed-length
https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

[11] Donald E. Knuth. The Art of Computer Programming: Volume 4A, Combinatorial Algorithms. Part
1. Addison-Wesley, New York, 2011. ISBN 0-201-03804-8.

[12] Martin Kuhlwilm, Ilan Gronau, Melissa J. Hubisz, Cesare de Filippo, Javier Prado-Martinez,
Martin Kircher, Qiaomei Fu, HernánA. Burbano, Carles Lalueza-Fox, Marco de la Rasilla, Anto-
nio Rosas, Pavao Rudan, Dejana Brajkovic, Željko Kucan, Ivan Gušic, Tomas Marques-Bonet,
Aida M. Andrés, Bence Viola, Svante Pääbo, Matthias Meyer, Adam Siepel, and Sergi Castel-
lano. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 530
(7591):429–433, Feb 2016. ISSN 1476-4687.

[13] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, Mar 1951.

[14] Regina Y. Liu and Kesar Singh. Moving blocks jacknife and bootstrap capture weak depen-
dence. In Raoul LePage and Lynne Billard, editors, Exploring the “Limits” of the Bootstrap,
pages 225–248. Wiley, New York, 1992.

[15] Swapan Mallick, Heng Li, Mark Lipson, Iain Mathieson, Melissa Gymrek, Fernando Racimo,
Mengyao Zhao, Niru Chennagiri, Susanne Nordenfelt, Arti Tandon, Pontus Skoglund, Iosif
Lazaridis, Sriram Sankararaman, Qiaomei Fu, Nadin Rohland, Gabriel Renaud, Yaniv Erlich,
Thomas Willems, Carla Gallo, Jeffrey P. Spence, Yun S. Song, Giovanni Poletti, Francois Bal-
loux, George van Driem, Peter de Knijff, Irene Gallego Romero, Aashish R. Jha, Doron M. Be-
har, Claudio M. Bravi, Cristian Capelli, Tor Hervig, Andres Moreno-Estrada, Olga L. Posukh,
ElenaBalanovska, OlegBalanovsky, SenaKarachanak-Yankova, Hovhannes Sahakyan, Draga
Toncheva, Levon Yepiskoposyan, Chris Tyler-Smith, Yali Xue, M. Syafiq Abdullah, Andres Ruiz-
Linares, Cynthia M. Beall, Anna Di Rienzo, Choongwon Jeong, Elena B. Starikovskaya, Ene
Metspalu, Jüri Parik, Richard Villems, BrennaM. Henn, Ugur Hodoglugil, Robert Mahley, Antti
Sajantila, George Stamatoyannopoulos, Joseph T. S. Wee, Rita Khusainova, Elza Khusnutdi-
nova, Sergey Litvinov, George Ayodo, David Comas, Michael F. Hammer, Toomas Kivisild,
William Klitz, Cheryl A. Winkler, Damian Labuda, Michael Bamshad, Lynn B. Jorde, Sarah A.
Tishkoff, W. Scott Watkins, Mait Metspalu, Stanislav Dryomov, Rem Sukernik, Lalji Singh, Ku-
marasamy Thangaraj, Svante Pääbo, Janet Kelso, Nick Patterson, and David Reich. The Si-
mons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 538:
201–206, 2016. ISSN 1476-4687.

[16] MatthiasMeyer, Martin Kircher, Marie-TheresGansauge, Heng Li, FernandoRacimo, Swapan
Mallick, Joshua G Schraiber, Flora Jay, Kay Prüfer, Cesare de Filippo, Peter H. Sudmant, Can
Alkan, Qiaomei Fu, Ron Do, Nadin Rohland, Arti Tandon, Michael Siebauer, Richard E. Green,
Katarzyna Bryc, Adrian W. Briggs, Udo Stenzel, Jesse Dabney, Jay Shendure, Jacob Kitzman,

Peer Community In Mathematical and Computational Biology 25 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

Michael F. Hammer, Michael V. Shunkov, Anatoli P. Derevianko, Nick Patterson, Aida M. An-
drés, Evan E. Eichler, Montgomery Slatkin, David Reich, Janet Kelso, and Svante Pääbo. A
high-coverage genome sequence from an archaic Denisovan individual. Science, 338(6104):
222–226, 2012.

[17] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution: A Practical Ap-
proach to Global Optimization. Springer Science and Business Media, Berlin, 2006.

[18] Kay Prüfer, Cesare de Filippo, Steffi Grote, Fabrizio Mafessoni, Petra Korlević, Mateja Ha-
jdinjak, Benjamin Vernot, Laurits Skov, Pinghsun Hsieh, Stéphane Peyrégne, David Reher,
Charlotte Hopfe, Sarah Nagel, Tomislav Maricic, Qiaomei Fu, Christoph Theunert, Rebekah
Rogers, Pontus Skoglund, Manjusha Chintalapati, Michael Dannemann, Bradley J. Nelson,
Felix M. Key, Pavao Rudan, Željko Kućan, Ivan Gušić, Liubov V. Golovanova, Vladimir B.
Doronichev, Nick Patterson, David Reich, Evan E. Eichler, Montgomery Slatkin, Mikkel H.
Schierup, Aida Andrés, Janet Kelso, Matthias Meyer, and Svante Pääbo. A high-coverage
Neandertal genome from Vindija Cave in Croatia. Science, 358(6363):655–658, 2017.

[19] Kay Prüfer, Fernando Racimo, Nick Patterson, Flora Jay, Sriram Sankararaman, Susanna
Sawyer, Anja Heinze, Gabriel Renaud, Peter H Sudmant, Cesare de Filippo, Heng Li, Swapan
Mallick, Michael Dannemann, Qiaomei Fu, Martin Kircher, Martin Kuhlwilm, Michael Lach-
mann, Matthias Meyer, Matthias Ongyerth, Michael Siebauer, Christoph Theunert, Arti Tan-
don, Priya Moorjani, Joseph Pickrell, James C. Mullikin, Samuel H. Vohr, Richard E. Green,
Ines Hellmann, Philip L. F. Johnson, Hélène Blanche, Howard Cann, Jacob O. Kitzman, Jay
Shendure, Evan E. Eichler, Ed S. Lein, Trygve E. Bakken, Liubov V. Golovanova, Vladimir B.
Doronichev, Michael V. Shunkov, Anatoli P. Derevianko, Bence Viola, Montgomery Slatkin,
David Reich, Janet Kelso, and Svante Pääbo. The complete genome sequence of a Nean-
derthal from the Altai Mountains. Nature, 505(7481):43–49, 2014.

[20] Alan R. Rogers. Legofit: Estimating population history from genetic data. BMC Bioinformatics,
20:526, 2019.

[21] Alan R. Rogers, Ryan J. Bohlender, and Chad D. Huff. Early history of Neanderthals and
Denisovans. Proceedings of the National Academy of Sciences, USA, 114(37):9859–9863, 2017.

[22] Alan R. Rogers, Nathan S. Harris, and Alan A. Achenbach. Neanderthal-Denisovan ancestors
interbred with a distantly-related hominin. Science Advances, 6(8):eaay5483, 2020.

[23] Simon Tavaré. Line-of-descent and genealogical processes, and their applications in popu-
lation genetics models. Theoretical Population Biology, 26:119–164, 1984.

Peer Community In Mathematical and Computational Biology 26 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

[24] P. J. Waddell. Happy New Year Homo erectus? More Evidence for Interbreeding with Archaics
Predating the Modern Human/Neanderthal Split. ArXiv, 1312.7749, December 2013.

[25] Peter J Waddell, Jorge Ramos, and Xi Tan. Homo denisova, correspondence spectral analysis,
finite sites reticulate hierarchical coalescent models and the Ron Jeremy hypothesis. ArXiv,
1112.6424, 2011.

[26] Stephen Wooding and Alan R. Rogers. The matrix coalescent and an application to human
SNPs. Genetics, 161:1641–1650, 2002.

Peer Community In Mathematical and Computational Biology 27 of 27

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.01.23.427922doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.23.427922
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	Model of population history
	Nucleotide site patterns
	The matrix coalescent
	Partitioning descendants among ancestors
	Summing across set partitions
	A faster algorithm for the root segment

	Simulated data sets
	Analysis of simulated data
	Analysis of speed as a function of model complexity
	Analysis of real data

	Results and Discussion
	Conclusions
	The probability that d of n descendants derive from 1 of k ancestors
	Short argument
	Longer argument

	An identity involving integer partitions

