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Abstract 

Academic performance relies, in part, on intelligence; however, intelligence quotient (IQ) is limited in predicting                             
academic success. Furthermore, while the search for the biological seat of intelligence predates neuroscience itself,                             
its findings remain conflicting. Here, we assess the interplay between IQ, academic performance, and brain                             
connectivity with behavioral and functional MRI data collected from undergraduate students as they completed                           
an active learning or lecture-based semester-long university physics course. IQ (i.e., full-scale WAIS scores)                           
increased significantly pre- to post-instruction, were associated with physics knowledge and reasoning measures,                         
but were unrelated to overall course grade. IQ was related to brain connectivity during physics-related cognition,                               
but connectivity did not mediate IQ’s association with task performance. These relations depended on students’                             
sex and instructional environment, providing evidence that physics classroom environment and pedagogy may                         
have a gendered influence on students’ performance. Discussion focuses on opportunities to improve physics                           
reasoning skills for all students. 
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Introduction 

Intelligence testing has been the subject of substantial scientific inquiry over the past century, especially with                               
respect to academic performance and overall success.1–4 These lines of inquiry have a pernicious history, as                               
intelligence testing and IQ have been used to deny educational and employment opportunities and as a                               
foundation of eugenics in the United States and abroad in the 20th century, 5,6 though updates to these tests have                                       
mitigated bias with respect to racial, ethnic, and gender differences.7,8 Both in research and in popular discourse,                                 
intelligence is often treated as an inherent, stable, trait-like quality, equated with an intelligence quotient (IQ).9–13                               
While intellectual abilities are moderately heritable,14 IQ and other psychometric measures of intellectual ability                           
are also influenced by a number of experiential factors, and the relative influences of genes and environment on                                   
IQ change across the lifespan.15,16 In general, intelligence is psychometrically assessed via a range of verbal and                                 
nonverbal cognitive tests, capturing a general view of ability across domains. One such test is the Wechsler Adult                                   
Intelligence Scale (WAIS17), which demonstrates moderate stability across adulthood, with increasing stability for                         
shorter intervals and with increasing age.18–28 A history of research and popular discourse presupposes that IQ                               
predicts one’s predisposition to academic and life success,29–33 though in reality, the picture is much more                               
complicated due to a variety of sociocultural factors.34–37 Decades of research suggest education and psychometric                             
intelligence are entwined in a bidirectional relationship, as intellectual ability predicts access to and extent of                               
education, through a variety of socioeconomic factors,38,39 while years of education predict modest increases in                             
intellectual abilities,38,40 and some educational interventions likely to improve one’s ability to acquire and apply                             
knowledge and skills.22,41–44 

University students who pursue science, technology, engineering, and mathematics (STEM) disciplines are                       
exposed to a rigorous curriculum designed to transform their problem-solving skills,45–48 which engages students’                           
perceptual and verbal abilities.49–51 The fourth edition of the WAIS (WAIS-IV) provides a full-scale measure of                               
intellectual ability (FSIQ) and four component index scores: Processing Speed, Perceptual Reasoning, Working                         
Memory, and Verbal Comprehension.52 The WAIS is widely used as an extensively validated and researched                             
clinical tool, but less often applied in educational research, though it may be particularly well-suited for exploring                                 
associations between education and skill development. Introductory physics presents a prime opportunity for                         
such study, as a gateway course for STEM majors with a relatively standard curriculum across universities,                               
including instruction on classical Newtonian mechanics and emphasizing the development of quantitative,                       
visuospatial reasoning and problem-solving skills likely captured by WAIS-IV index scores. Unfortunately,                       
female students often perform worse on specific conceptual evaluations in these courses, though not necessarily                             
on overall course grades, due to a host of socioaffective and -cultural factors present in education and physics                                   
classrooms, specifically.53–58 Female students also constitute a smaller proportion of the student body, compared                           
to their male counterparts53,56,57,59,60 and ultimately, such disparities can propagate across courses, leading to                           
higher rates of STEM degrees among male students as compared to female students (64% male vs. 36% female in                                     
2015-2016).61 Recently, institutions have sought to improve STEM student success using active learning                         
instructional approaches that yield improved student performance outcomes62,63 and impact socioemotional                     
aspects of university education, including self-efficacy, science-related anxiety, and identity.54,59 Together, these                       
effects may mitigate existing sex differences in performance,55,58 though this is contradicted by some findings.64                             
Altogether, there is a need to better understand sex differences in physics education and potential avenues for                                 
mitigating these differences, to ensure all students have the opportunity to succeed. 

For as long as we have been trying to understand intelligence, we have been searching for its biological                                   
substrates. Recently, neuroscience research has studied the underlying neurobiology of intelligence using                       
neuroimaging techniques such as functional magnetic resonance imaging (fMRI).65–69 Task-based fMRI research                       
has focused on understanding how differences in brain activation during cognition differs relates to intelligence,                             
yielding two theories of the neurobiology of intelligence: the parieto-frontal integration theory (P-FIT70) and the                             
neural efficiency hypothesis (NEH71). The PFIT suggests that interactions between frontal and parietal regions                           

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 3 

 
 

underlie intelligence, while the NEH suggests that higher intelligence is reflected by more “efficient” brain                             
activation during cognitively demanding tasks. An alternative view on “neural efficiency” comes from the                           
application of network science to functional connectivity, to show that more intelligent individuals exhibit greater                             
topological efficiency, which describes ease of information transfer across the brain,66–68,72 rather than activation                           
efficiency. Much of this work has focused on functional brain connectivity during the resting state, i.e., in the                                   
absence of a task or externally-directed cognition,73–75 often referred to as “intrinsic” connectivity,76,77 mirroring                           
the notion of intelligence as an inherent trait. However, recent work shows that individual differences in                               
intelligence are better predicted by task-evoked connectivity,78 presenting an opportunity to merge these two                           
lines of research to better understand individual differences in the neurobiology of intellectual abilities.  

Here, we build on the knowledge that the WAIS measures cognitive abilities that are subject to influence by                                   
educational interventions, and leverage the WAIS to study individual differences across student performance in                           
an introductory physics course, and potential roles of sex and pedagogy therein. Then, we build on prior                                 
neuroimaging research suggesting task-evoked brain organization can explain individual differences in                     
intellectual abilities, to search for a biological substrate for associations between ability and student performance.                             
To do so, we collected data from undergraduate students enrolled in either a lecture-based or active learning                                 

 

 

Figure 1. fMRI tasks performed by students at both pre- and post-instruction time points. During MRI scanning sessions,                                   
students completed tasks that probed students’ physics-related cognition. The physics reasoning task (A) included questions                             
from the Force Concept Inventory (FCI) and engaged students’ conceptual understanding of Newtonian mechanics (left),                             
with perceptually similar control questions (right). The physics knowledge task (B) included questions about definitions and                               
equations that students learn in class (left), with perceptually matched general knowledge control questions (right). 
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section of an introductory physics course. Both pre- and post-instruction, students completed the WAIS-IV                           
alongside a robust fMRI protocol, including two physics-related tasks (Figure 1) with different demands on                             
cognition. The first task engaged students’ reasoning skills and conceptions about forces at work in the natural                                 
world (Figure 1A), based on the Force Concept Inventory (FCI79; see Bartley et al.80 for detailed FCI task results).                                     
In this physics reasoning task, students viewed questions about forces on and the movement of objects, along                                 
with answer choices that included the correct (e.g., Newtonian) explanation, and choices that reflect common but                               
incorrect (e.g., non-Newtonian) conceptions about forces and motion. The second task required students to recall                             
concepts and equations taught in an introductory physics course (Figure 1B). In this physics knowledge task,                               
students engage semantic memory to recognize equations or definitions of physics concepts learned in the course                               
from a list of possible answer choices presented. Here, we used these data to, first, assess changes in WAIS-IV                                     
scores (both FSIQ and index scores) over the course of the semester, then applied a series of linear regressions to                                       
assess associations between post-instruction and pre- to post-instruction changes in WAIS-IV scores and                         
post-instruction student performance (i.e., task accuracy and final course grade). Finally, we assessed associations                           
between WAIS-IV scores, and changes therein, and post-instruction functional brain organization during the two                           
tasks, and the degree to which these associations provide a common neural substrate supporting the role of                                 
cognitive abilities in student performance. We hypothesized that, while FSIQ itself is stable, different WAIS-IV                             
index scores are differentially associated with performance on physics-related assessments with different                       
cognitive demands. Further, we hypothesized these differences would be reflected in brain organization during                           

these domain-specific tasks (e.g., physics reasoning           
and physics knowledge), providing a         
neurobiological explanation for ability-performance       
relationships across physics-related cognition.       
Finally, including sex and pedagogy in these             
assessments may provide an insight into sex             
differences in physics education and the potential             
role of active learning in their mitigation, though               
we did not expect different brain-IQ relations             
across active learning and lecture classrooms. 

Results 

WAIS-IV scores increased over a semester 
of physics learning regardless of sex or 
classroom. 

First, to understand characteristics of WAIS-IV           
scores (i.e., FSIQ and index scores) in this sample,                 
we administered the WAIS-IV before and after a               
semester of physics instruction from 110 students             
who completed undergraduate introductory       
physics in lecture-based (25 female, 28 male) or               
active-learning (24 female, 33 male) classrooms.           
Pre- to post-instruction changes in WAIS-IV scores             
were assessed via Wilcoxon signed-rank tests, due             
to the presence of outliers (Supplementary Figure             
1). Full-scale WAIS-IV scores increased an average             
of 7.03 points (W+ = 822, p < 0.001; Table 1; Figure                       
2A). This change was driven by significant             
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increases in three of the four index scores of the WAIS (Table 1; Figure 2B), greatest in Processing Speed (PSI) and                                         
Perceptual Reasoning (PRI). Importantly, however, there were no significant differences in the change in                           
WAIS-IV scores with respect to sex and only PSI changes varied with respect to classroom (i.e., active learning,                                   
lecture), evidenced by a significant time by class interaction (Supplementary Table 1). The changes in WAIS-IV                               
scores were commensurate with previously reported retest gains among college students across a similar time                             
period.81 

Physics task accuracy, but not course grade, is related to WAIS-IV scores differently for male 
and female students.  

To assess associations between course performance and intellectual ability, we separately regressed each                         
WAIS-IV score (both post-instruction and pre- to post-instruction changes) on post-instruction course grade and                           
physics-related task accuracies (denoted “performance” below), controlling for students’ sex, classroom                     
environment, and other demographics, for a total of 30 separate regressions (controlling for familywise error rate                               
with the Šidák correction).  

Equation 1 

performance =  +  +  +  +  +  + IQβ1 IQ exβ2 × S IQ lassβ3 × C IQ lass exβ4 × C × S Sex β5 Classβ6 Sex Classβ7 ×    
+  + Ageβ8 Y ears in Univ.β9  

 

Table 1. Average change in WAIS scores pre- to post-instruction 

WAIS Score  Pre- 
instruction 

Post- 
instruction 

Pre to Post 
Change  

Estevis et al., 
2012  

Change - Estevis 
t-test (p) 

Full score 
WAIS-IV 
Score 

103.9 ± 7.6  110.8 ± 9.4  7.0 ± 7.3  6.7 ± 5.2  -0.12 (0.90) 

Perceptual 
Reasoning 
Index 

105.0 ± 9.6  111.5 ± 11.1  6.0 ± 9.5  3.6 ± 5.6  2.39 (0.02) 

Processing 
Speed Index 

98.3 ± 13.3  110.6 ± 14.5  12.6 ± 17.5  10.5 ± 9.5  0.71 (0.48) 

Verbal 
Comprehens
ion Index 

106.0 ± 13.0  108.5 ± 10.6  2.5 ± 9.0  4.2 ± 7.6  -1.28 (0.20) 

Working 
Memory 
Index 

102.3 ± 10.8  103.2 ± 10.5  2.0 ± 9.1  3.2 ± 4.8  -2.36 (0.02) 

Note. Bolded changes indicate significant Wilcoxon Signed Rank tests at pFWE-corr < 0.05 (αadjusted =                             
0.014), after controlling for familywise error using the Šidák correction.81 The Change - Estevis t-test                             
(p) column (far right) provides the results of a Student’s t-test for independent samples,                           
comparing the changes in WAIS scores seen in this sample with those reported by Estevis et al.                                 
(2012) to determine whether the changes in our sample are comparable with those reported                           
elsewhere. 
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Here, task accuracy refers to the proportion of correct                 
answers given while participants performed a physics task               
in the MRI scanner (Figure 1). In addition to the full models                       
(Equation 1), we assessed nested models without the WAIS                 
interaction terms (Supplementary Table 2).  

Post-instruction accuracy on the physics reasoning task was               
significantly related to post-instruction PRI scores (post PRI;               
F(9, 120) = 5.122, p < 0.001; Figure 3A, 3C) and FSIQ scores                         
(post FSIQ; F(9, 120) = 5.770, p < 0.001; Figure 3B), in                       
addition to the pre- to post-instruction changes in both PRI                   
(ΔPRI; F(9, 120) = 5.034, p < 0.001; Figure 3D, 3F) and FSIQ                         
scores (ΔFSIQ; F(9, 120) = 4.498, p < 0.001; Figure 3E, 3G).                       
After controlling for demographics and interactions, post             
PRI, post FSIQ, ΔPRI, and ΔFSIQ all significantly predicted                 
physics reasoning task accuracy, implying that they were               
not wholly dependent on students’ sex and classroom               
environment. However, relations between each post PRI,             
ΔPRI, and ΔFSIQ and performance were moderated by               
students’ sex, such that female students exhibited a more                 
positive relationship between WAIS-IV scores and           
performance than male students (Figure 3B, 3C, and 3D;                 
Table 2, Physics Reasoning Accuracy). Conversely, male             
students demonstrated overall higher accuracy on the task,               
in line with previous research.82 Of these, the regression of                   
task accuracy on ΔPRI that included class- and               
sex-interaction terms (i.e., per Equation 1) explained             
significantly more variance in physics reasoning task             
accuracy than did the corresponding model without             
interaction terms. Thus, the relation between task accuracy               
and ΔPRI is better understood in the context of students’ sex                     
and classroom environments.  

Post-instruction accuracy on the physics knowledge task             
was associated with post-instruction Verbal Comprehension           
Index (post VCI; F(9, 120) = 6.474, p < 0.001; Figure 3H) and                         
Working Memory Index (post WMI; F(9, 120) = 6.008, p <                     
0.001; Figure 3I). Physics knowledge accuracy was related to                 
post VCI after controlling for potential moderations of this                 
relation by sex and class type (Figure 3H). The converse was                     
true of relations between accuracy and post WMI. Post WMI                   
displayed sex-dependent relations with task accuracy, such             
that greater accuracy in male students’ was associated with                 
greater increases in WAIS scores than those of female                 
students (Figure 3I). Notably, this moderation was in the                 
opposite direction of those between WAIS scores and               
physics reasoning accuracy noted above. Of these,             
regression of task accuracy on WAIS-IV scores with class-                 
and sex-interaction terms (i.e., of the form displayed in                 
Equation 1) did not explain significantly more of the                 
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variance in physics knowledge task accuracy than did the models without interaction terms. This indicates that,                               
unlike in the case of physics reasoning, these sex and class interactions do not significantly add to our                                   
understanding of these relations.  

We found no relations between students’ final course grade and any WAIS-IV score or change therein.                               
Parameters and test statistics for all regressions, including non-significant regressions, can be found in                           
Supplementary Tables 2 and 3. 

These data indicate that WAIS-IV scores were clearly, but differentially associated with performance on                           
physics-related assessments, suggesting a distinction between skills related to physics conceptual reasoning and                         
content knowledge recall. Significant associations between physics reasoning accuracy and each ΔPRI and ΔFSIQ                           
suggest that the development of perceptual reasoning ability and general intellectual ability underscore                         
performance in physics reasoning. Similarly, relations between post-instruction VCI and WMI scores and physics                           
knowledge accuracy suggest that working memory and verbal comprehension at post-instruction support                       
successful physics knowledge retrieval, not necessarily the development of those skills (i.e., pre- to                           
post-instruction). Nonetheless, post PRI and full-scale WAIS scores remain relevant for students’ performance on                           
physics conceptual reasoning and problem solving tasks, in addition to the development of such skills. 

 

Table 2. Significant relations between physics task performance and WAIS scores. 

  Physics Reasoning Accuracy  Physics Knowledge 
Accuracy 

Post PRI  Post FSIQ  ΔPRI*  ΔFSIQ  Post VCI  Post WMI 

WAIS  0.005  0.007  0.006  0.005  0.003  0.001 

WAIS X Sex (M)  -0.009  -0.003  -0.010  -0.010  0.004  0.005 

WAIS X Class (A)  0.002  0.003  -0.001  -0.001  -0.002  0.002 

WAIS X Sex X Class  0.006  -0.001  0.008  0.008  -0.002  -0.004 

Sex X Class  -0.764  0.038  -0.109  -0.109  0.270  0.498 

Sex (M)  1.190  0.458  0.232  0.225  -0.434  -0.507 

Class (A)  -0.212  -0.319  0.004  -0.028  0.142  -0.235 

Age  -0.022  -0.014  -0.026  -0.029  -0.001  -0.004 

Year in University  0.011  0.001  0.020  0.016  -0.014  -0.013 

Regression coefficients are shown for each variable on which physics reasoning and physics                         
knowledge were regressed, for OLS regressions of the form shown in Equation 1 that were significant                               
at pFWE-corr < 0.05 and in which a WAIS term or interaction parameter significantly related to                               
performance. Bold text indicates parameters significant at p < 0.05; bold and italicized text, parameters                             
significant at p < 0.01. *Indicates that the full interaction model (i.e., of the form shown in Equation 1)                                     
explained significantly more variance than a smaller model without interactions between each WAIS                         
scores, class (A for active learning), and sex (M for male). 
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Functional brain network efficiency and connectivity differentially support component 
intelligence across contexts.  

To further investigate associations between intellectual ability and task performance, we assessed brain                         
organization during physics-related cognition using regressions of the same form as Equation 1 above.                           
Specifically, we combined theories of the neurobiology of intelligence (i.e., P-FIT and NEH) with methods for                               
studying individual differences in the brain organization (i.e., connectomics and network science) to search for a                               
common neural substrate underlying the relations between WAIS-IV scores and accurate physics cognition.                         
Measures of functional connectivity and network efficiency (denoted “topology” below) were regressed on                         
WAIS-IV scores, while students’ sex, classroom environment, demographics, and head movement (i.e., framewise                         
displacement, “fd”). 

Equation 2 

opology β IQ β IQ ex β IQ lass β IQ lass ex β Sex β Class β Sex Classt =  1 +  2 × S +  3 × C +  4 × C × S +  5 +  6 +  7 ×   
β Age β Y ears in Univ. β fd +  8 +  9 +  10  

Topological measures were calculated from functional connectivity graphs computed from fMRI data collected                         
while participants performed the physics reasoning and physics knowledge tasks, using two brain parcellations                           
to ensure that results are not parcellation-induced artifacts. In these graphs, individual brain regions comprise                             
nodes and the pairwise correlation of their BOLD signals comprise edge weights, representing functional                           
connectivity. We regressed, separately, (a) global efficiency calculated during each task, (b) local efficiency of each                               
brain region during each task, and (c) connectivity between each pair of brain regions, during each task, on only                                     
the WAIS-IV scores significantly related to performance on said task. Significance thresholds of α < 0.05 were                                 
adjusted to control the familywise error rate using the Šidák procedure, adjusted to account for dependence of                                 
correlated measures (Li & Ji, 2005; Sidak, 1967). Regression test statistics, fit statistics, and parameter estimates for                                 
all regressions calculated here are shown in Supplementary Tables 4 - 6. 

Global and Local 
Efficiency 

These analyses found that       
WAIS-IV scores were not       
significantly associated with     
global efficiency or with local         
efficiency across the brain       
during either task. Across both         
tasks, only head movement was         
associated with brain network       
efficiency. 

Connectivity 

Of the WAIS-IV scores       
associated with physics     
reasoning task accuracy, only       
post FSIQ was additionally       
associated with task     
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connectivity, of the right anterior         
insula (Figure 4A, 4C),       
depending on students’ sex and         
classroom environment (Figure     
4B, 4D). For female students         
greater FSIQ was associated with         
increased connectivity for those       
enrolled in lecture-based classes,       
but decreased connectivity for       
those enrolled in active learning         
classes. Meanwhile, for male       
students, the direction of       
associations between   
post-instruction FSIQ and     
connectivity did not differ due to           
classroom environment, though     
it did across parcellations (Figure         
4B, 4D). Furthermore, the two         
parcellations both indicate     
significant associations of FSIQ       
and functional connectivity     
during the physics reasoning       
task; they did not converge on a             
particular network or region,       
providing no specific     
neuroanatomical locus. Across     
both parcellations, there was no         
consistent association between     
functional connectivity during     
the physics knowledge task and         
either post WMI or VCI scores,           
only with students’ head       
movement during this task (see         
Supplementary Figures 2 and 3         
for all significant edges).  

 
Functional brain networks are not a common neural substrate supporting the role of 
intelligence in physics-related cognition.  

We sought to explore possible common neural substrates for WAIS-IV and physics reasoning task accuracy. To                               
this end, we assembled mediation models to assess whether brain connectivity significantly associated with                           
WAIS-IV scores (Table 3, Figure 4) explains shared variance between WAIS-IV scores and task accuracy (Table 2,                                 
Figure 3), accounting for the interactions and covariates in Equations 1 and 2 (all model statistics reported in                                   
Supplementary Table 7). These models (Figure 5) indicated that the functional connectivity was unrelated to                             
students’ accuracy on the task (yellow path), and while FSIQ scores continued to explain a significant proportion                                 
of variability in connectivity (red paths), they no longer significantly accounted for variability in physics                             
reasoning task accuracy (blue paths). Across parcellations, anterior insula connectivity (Figure 4) was                         
significantly associated with FSIQ, but not task accuracy, and provided no significant mediation of the                             
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IQ-accuracy relationship (Supplementary Table 3). While WAIS scores and task accuracy seem to capture related                             
behavioral phenomena, FSIQ-accuracy relations were weakened by the inclusion of functional connectivity in the                           
model, and connectivity did not significantly mediate the FSIQ-accuracy association (Table 3).  

Discussion 

We present evidence of complex relations between intellectual ability and physics learning, behaviorally and                           
neurally. Among these are significant increases in cognitive ability (i.e., WAIS-IV scores) over a semester of                               
physics instruction, corresponding with previously reported increases in college students tested twice over a                           
similar three-month period. These changes did not differ based on students’ sex or based on course pedagogy                                 
and classroom environment. Gains in PRI were among the largest across index scores, and positively related to                                 
physics reasoning accuracy, suggesting the WAIS-IV components driving FSIQ increases represent                     
physics-related skill development. Our data indicate that WAIS-IV measures of cognitive ability related to task                             
performance were also related to brain connectivity, but not efficiency, during the task. Although we found no                                 
evidence of common neural underpinnings for the performance-ability relationship, we did uncover a                         
moderation of brain-ability associations by students’ sex and physics classroom environment. Therefore, the                         
neurobiology supporting skill acquisition is context-, and perhaps pedagogy-dependent, instead of intrinsic,                       
underscoring the importance of experience and environment in associations between ability and performance.  

 

Table 3. Mediation of the relations between changes in full-scale IQ and physics reasoning                           
accuracy by functional connectivity. 

  Connectivity  Accuracy 

  Parameter estimate  P-value  Parameter estimate  P-value 

FSIQ  -0.009  0.695  0.054  0.123 

FSIQ X Sex  0.062  0.025  0.011  0.805 

FSIQ X Class  0.004  0.894  0.003  0.938 

FSIQ X Sex X Class  -0.071  0.043  0.023  0.691 

Sex X Class  0.046  0.199  0.053  0.355 

Sex  -0.037  0.26  -0.135  0.001 

Class  -0.033  0.154  -0.056  0.191 

Age  -0.001  0.931  -0.013  0.168 

Year in University  0.002  0.467  0  0.967 

Head motion  0.021  0.098  --  -- 

Connectivity  --  --  0.020  0.891 

Bold indicates significant parameters at α < 0.05, bold and italicized, at α < 0.01. Values                               
shown are for the connectivity significant in the Craddock parcellation. Values for                       
mediation with functional connectivity significant in the Shen parcellation can be found in                         
Supplementary Table 4. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 11 

 
 

Are WAIS gains related to physics education or general college education? 

The study of intelligence lacks concrete definitions,83,84 but compensates with extensive psychometrics.38,84–89 Here,                         
we observed gains in intellectual ability, per the WAIS-IV, that outpaced retest gains reported in the measure’s                                 
standardization sample.17,90,91 These gains were seen across WAIS-IV index scores, greatest in PSI and PRI though                               
minimal in WMI, but did not significantly differ from retest effects over a similar time period in an independent                                     
sample of college students.92 WAIS-IV score increases were not related to overall class performance (i.e., course                               
grade), but instead to physics reasoning ability at course completion (i.e., post-instruction FCI accuracy). This                             
suggests they capture skills related to students' grasp of Newtonian mechanics. While these relations are                             
moderated by students’ class type, we cannot definitively link WAIS-IV score increases to physics instruction,                             
and pedagogical differences therein, without a control group of participants who were not exposed to a semester                                 
of physics instruction. Perceptual reasoning seems directly related to skills developed by the specific demands of                               
the course, though it and other components of intelligence are likely developed and engaged broadly across                               
university coursework. To clarify how university instruction may impact different components of intelligence                         
across disciplines, future studies should extend assessments across a range of curricula in the sciences, arts, and                                 
humanities and compare retest effects across a semester of education with those seen in the broader population.                                 
This is especially relevant given (a) the present evidence of education-related gains in WAIS-IV scores that appear                                 
to capture domain-specific skills and, importantly, (b) the widespread belief in the significance of intelligence and                               
IQ for student and life success. 

Perceptual reasoning improvements underlie physics-related cognition. 

Following a semester of physics instruction, physics knowledge task accuracy was related to post-instruction                           
verbal comprehension and working memory abilities, while physics reasoning task accuracy was related to pre-                             
to post-instruction changes in perceptual reasoning and full-scale WAIS-IV scores (i.e., intellectual or cognitive                           
ability), in addition to their values post-instruction. These differences between the tasks may reflect their unique                               
cognitive demands and the manner in which the associated skills are acquired and exercised. 

While physics knowledge reflects memorization of formulae and definitions of physics concepts, physics reasoning                           
reflects the development of accurate conceptual understanding of Newtonian mechanics and the macro-scale                         
forces at work in the physical world (e.g., gravity, friction). Students are unlikely to know definitions and                                 
formulae learned in class before enrolling in a physics class, but working memory and reading comprehension                               
skills captured by WMI and VCI are not domain-specific but domain-general abilities exercised across                           
curricula.93–101 Therefore, it is the associated post-instruction scores that capture the skills utilized in accurately                             
recalling physics knowledge, i.e., recalling definitions and formulae learned in class, that were not necessarily                             
developed during the class.  

Conversely, physics reasoning draws on the conceptions of physical phenomena that students bring into their first                               
physics class, including pre-existing “common-sense beliefs” acquired over a lifetime of interacting with the                           
physical world that are at odds with scientific explanations.102 Decades of physics education research suggests                             
that these pre-existing conceptions are difficult for students to overcome, even with formal instruction.102–104 As                             
this instruction relies heavily on visual representations of the movement of macroscale objects to teach                             
Newtonian mechanics, encouraging students to rely on visuospatial skills and mental imagery, likely developing                           
their perceptual reasoning skills throughout the course.50,105–109 In this respect, our results indicate that students                             
with more accurate conceptions of Newtonian mechanics following physics instruction were those demonstrating                         
larger increases in perceptual reasoning skills and greater absolute perceptual reasoning ability, post-instruction.                         
It may be that either (a) students who acquire more perceptual reasoning skills in the course are better able to                                       
align their conceptions of how the world works with Newtonian explanations or (b) students who are able to                                   
overcome previous conceptions about the mechanisms of the physical world gain better perceptual reasoning                           
skills than their peers who have more difficulty doing so. In the former case, these findings might illustrate                                   
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another approach for physics instructors to help students develop more accurate conceptions of Newtonian                           
mechanics: focusing on students’ perceptual reasoning skills.   

Insofar as changes in WAIS-IV index scores reflect skill acquisition, it follows that physics reasoning accuracy,                               
reflecting conceptualizations of Newtonian mechanics honed throughout physics instruction, is associated with                       
changes in perceptual reasoning and full-scale intelligence, though absolute levels of these skills remain relevant.                             
Conversely, physics knowledge accuracy, reflecting correct recall of definitions and formulae learned throughout                         
physics instruction, is associated with absolute levels of verbal comprehension and working memory skills, but                             
not the changes therein. This may highlight an opportunity for correcting students’ pre-existing conceptions of                             
physical phenomena, by focusing on students’ perceptual reasoning skills throughout their physics instruction.                         
However, the sex- and classroom-differences suggest that this is not a one-size-fits-all opportunity, and that                             
students may benefit differently from such learning interventions. For female students, who historically perform                           
poorer on the Force Concept Inventory (our physics reasoning task) due to a host of sociocognitive factors,                                 
increases in PRI might provide a means of “leveling the playing field” compared to their male counterparts. 

Brain network organization during physics cognition is related to intelligence, but does not 
explain its relationship with physics task accuracy. 

Contrary to previous research,73–75 our data did not indicate associations between students’ WAIS-IV scores and                             
either global or local brain network efficiency and did not support the neural efficiency hypothesis, which                               
suggests more intelligent individuals benefit from “more efficient” brains. The concept of neural “efficiency” is, at                               
best, unclear, with varying definitions across the years, and at worst, empty and misleading.110 Here, we use the                                   
network science definition of efficiency, defined mathematically in terms of connections between nodes of a                             
graph (i.e., connectivity between brain regions).111 These findings add domain-specific insight to what has                           
previously been a study of intrinsic abilities and neurobiological processes, failing to find support in a sample                                 
demonstrating intelligence gains related to an extrinsic manipulation (i.e., physics instruction). Our data do not                             
support the parieto-frontal integration hypothesis, either, as we uncovered no parieto-frontal connectivity                       
underlying intelligence during physics-related cognition. 

Representing a small proportion of all possible connections in the brain, sparse connectivity during physics                             
reasoning was related to post-instruction full-scale WAIS-IV scores, the full complement of measured verbal,                           
perceptual, working memory, and processing speed skills. Different roles of pedagogy and classroom                         
environment on brain network connectivity, cognitive abilities, and relations between the two with respect to sex                               
point out a potentially significant sex difference in classroom experience. In a heavily male-dominated field like                               
physics, it is a reasonable assumption that male and female students would have differential classroom                             
experiences.60,112–115 For example, it is a commonly-held stereotype that men are good at math and that women are                                   
not,116,117 subjecting women and female students to stereotype threat in physics classrooms, where beliefs                           
negatively affect classroom experience and performance.118,119 The data presented here indicate no sex differences                           
in overall course performance, but persistent sex differences across classroom environments in associations                         
between cognitive abilities and not only performance on physics assessments, but brain connectivity during those                             
assessments. Together, this literature and our findings indicate meaningful neurobiological consequences of                       
classroom experience on the basis of sex. However, our data show no sex- or classroom-related difference in                                 
changes in intelligence or cognitive abilities, though the brain-WAIS relationships point to a multitude of                             
neurobiological representations of intelligence. Neural phenomena related to intelligence differ based not only on                           
cognitive context,but on sociological and pedagogical contexts, as well. 

Although intelligence measures associated with physics task accuracy also explained certain functional                       
connectivity during these tasks, we found no evidence of a common neural substrate for intelligence and                               
accuracy. On the whole, task-based connectivity related to intelligence was unrelated to participants’ accuracy on                             
said task, and no connectivity associated with intelligence accounted for any significant portion of the relations                               
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between intelligence and accuracy. This may indicate a lack of a common neural substrate for these two                                 
phenomena, suggesting that, while they are measuring a similar skill or capacity, they are not measuring the                                 
same skill or capacity. On the other hand, the neural substrate of a common skill measured by PRI or full-scale                                       
WAIS scores and physics reasoning accuracy may merely lie beyond a linear relation with brain network                               
connectivity or topology. In any case, understanding the neural instantiation of a common reasoning skill to                               
perceptual reasoning and physics reasoning requires further study. 

Finally, rather than a global property of brain network organization, as indicated in prior research,66,68,120 these                               
data indicate that sparse, coordinated interactions of disparate brain regions underlie intelligence, in this                           
domain-specific context. That connections across the brain during physics-related cognition are related to changes                           
in students’ overall intellectual skills, but differently with respect to their classroom environment, casts further                             
doubt on the notion of IQ or intelligence as a fixed, innate measure and, instead, highlights the role of                                     
environment and experience. Although differences in these relationships between female and male students                         
support the substantial body of literature supporting this notion of sex differences in the biological                             
representations of intelligence,71,121–128 here we suggest a potential sociological explanation. These findings                       
indicate, too, neural support for intelligence exhibits domain-specific relations in the context of STEM education.                             
Not only does cognitive context matter to the relations between intelligence and brain network organization, our                               
data indicate that sex and learning environment matter, too.  

Limitations and future directions 

Here, we demonstrate increases in intellectual ability over a semester of physics instruction. While students’ sex                               
and classroom environment did not affect the extent of these increases, the data suggest meaningful                             
consequences of classroom environment on the relations between intellectual ability and underlying brain                         
network organization. The implication that the learning environment affects male and female students                         
differently, both cognitively and neurobiologically, in a field as male-dominated as physics demands attention                           
and further study. However, as there were no observed sex differences in final course grade or in change in                                     
intellectual ability, any differences in classroom experience are not differentially affecting female and male                           
students’ academic performance in the course. Further work should assess whether differences in experience and                             
associated brain function are linked to long-term success for male and female students. This assessment should                               
consider factors beyond overt measures of success and focus on variables related to self-efficacy and in-classroom                               
experiences, both previously been shown to affect men and women differently in physics education.58 

While we have identified differences in physics-related brain organization and its relation to WAIS-IV scores                             
based on class type, this study is unable to distinguish whether these differences are due to differences in                                   
pedagogy or social classroom environment, or to practice effects across a short assessment period. Future                             
research should include in-classroom assessments of social climate and the possibility of gender differences in                             
social interactions during physics instruction. Furthermore, control groups in (1) another, less male-dominated,                         
domain and (2) an age- and sex-matched groups outside of university would provide insight into both sex                                 
differences in and the degree to which changes in intellectual ability are associated with STEM education. 

Conclusion 

While our data indicate clear relations between domain-specific components of intellectual ability and                         
performance on assessments of physics conceptual reasoning and content knowledge, we found no association                           
between academic outcomes and intelligence. Likewise, intelligence was related to functional brain connections                         
during these assessments, but none that explain its association with performance. Our multifaceted approach to                             
studying the neurobiological underpinnings of intelligence did not uncover a single, robust aspect of brain                             
network organization that was consistent across cognitive contexts and experiential influences. However,                       
relations between intelligence and, separately, physics task performance and task-based functional connectivity                       
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were moderated by students’ sex and classroom environment. Ultimately, both the magnitude and development                           
of perceptual reasoning skills is meaningful over the course of a semester of physics instruction. As these data                                   
show significant increases in perceptual reasoning over a semester, we present an optimistic and more plastic                               
view of intelligence, as a set of skills to be developed, rather than an innate capacity that students either have or                                         
don't have. Together, these data highlight the complicated nature of relations between intelligence and classroom                             
successes, which vary with students’ sex and domain-specific experiences. 

Methods 

Participants and Study Design 

One hundred and thirty healthy right-handed undergraduate students (mean age = 20.03 ± 2.25 years, range =                                 
18-25 years; 61 females) who completed a semester of introductory calculus-based physics at Florida International                             
University (FIU), a Hispanic Serving Institution, took part in this study. Participants were not currently using                               
psychoactive medications and reported that they had not been diagnosed with any cognitive impairments or                             
neurological or psychiatric conditions. The physics course emphasized problem solving skill development and                         
covered topics in classical Newtonian mechanics, including motion along straight lines and in two and three                               
dimensions, Newton’s laws of motion, work and energy, momentum and collisions, and rotational dynamics.                           
Students were either enrolled in a lecture class or an active learning, “Modeling Instruction”, class, which bases                                 
course content in conceptual scientific models and instructs students to appropriate scientific models for their                             
own use. Students completed behavioral assessments and MRI scans in separate appointments at two time points:                               
at the beginning (“pre-instruction”) and conclusion (“post-instruction”) of the 15-week semester. Pre-instruction                       
data collection sessions were acquired no later than the fourth week of classes and post-instruction sessions were                                 
completed no more than two weeks after the final exam. Written informed consent was obtained in accordance                                 
with FIU’s Institutional Review Board approval. 

Missing Data 

A missing value analysis indicated that, of the variables of interest in this study, missingness ranged from 2% to                                     
17%. Data were more often missing from MRI data than behavioral or demographic data and more often missing                                   
from post-instruction data than from pre-instruction. Assessment of the relations between missingness on each                           
variable and values of each other variable of interest revealed that data were likely missing completely at random                                   
(MCAR). Behavioral and brain network efficiency data were imputed using iterated Bayesian ridge regression                           
implemented in scikit-learn (v. 0.23.1; scikit-learn.org/). Due to its high dimensionality, missingness in edgewise                           
functional connectivity data was addressed using distance-weighted K-Nearest Neighbors approach (K = 100,                         
where p = 71,824) implemented in scikit-learn, which is robust to missingness up to 20% 129.  

Behavioral Measures 

During pre- and post-instruction behavior sessions, participants were administered the fourth edition of the                           
Wechsler Adult Intelligence Scale (WAIS-IV17), a standardized intelligence test for adults, in addition to other                             
assessments not used here. The WAIS-IV provides scores in four domains, in addition to an overall score of                                   
intellectual functioning. The Verbal Comprehension index measures application of verbal skills in problem                         
solving. The Perceptual Reasoning index measures the ability to detect the underlying conceptual relationship                           
among visual objects and use reasoning to identify and apply rules. The Working Memory index measures                               
short-term memory with auditory and visual stimuli. The Processing Speed index measures speed of mental                             
operations and visual-motor coordination. Lastly, the Full-Scale intelligence quotient (IQ) represents a global                         
estimate of intellectual or cognitive ability. All instruments were administered by researchers for the purpose of                               
this research and not professionally or clinically (i.e., for diagnostic or instructional purposes). 
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fMRI Tasks 

In the scanner, participants performed two different physics tasks, each probing different aspects of physics                             
learning and problem solving (Figure 1).  

Participants completed three runs of a physics reasoning task, which uses questions from the Force Concept                               
Inventory (FCI; 79) to assess domain-specific problem solving. This task includes two conditions, FCI and control,                               
presented in a block design with self-paced trials. FCI and control questions were presented in three screens                                 
(Figure 1A, SI Figure 3), between which participants advanced by the press of a button. The first screen presented                                     
a written description of a physical scenario and corresponding figure; the second, a question relating to the                                 
scenario; and the third, four answer choices from which the participants were instructed choose the correct                               
answer while mentally justifying their choice. 

Participants additionally completed two runs of a physics knowledge task, which probed physics-related memory                           
retrieval and included physics, general, and control conditions. Participants were asked a series of                           
multiple-choice questions and instructed to respond by indicating their choice with the press of a button (Figure                                 
1B). In the physics condition, participants were asked to recall definitions and formulas taught in the physics                                 
course (e.g., “What does the ‘SI’ in SI units stand for?” or “What is the value of the acceleration due to gravity?”).                                           
In the general condition, participants were asked to recall general trivia (e.g., “Which of these is not an                                   
automobile brand?” or, “Who is the President of the United States?”). The low-level control condition asked                               
participants to press the button corresponding to a letter or symbol. Conditions were organized into blocks and                                 
each run included three blocks per condition. 

fMRI Acquisition and Pre-Processing 

Neuroimaging data were acquired on a GE 3T Healthcare Discovery 750W MRI scanner at the University of                                 
Miami. Functional MRI (fMRI) data were acquired with an interleaved gradient-echo, echo planar imaging (EPI)                             
sequence (TR/TE = 2000/30ms, flip angle = 75°, field of view [FOV] = 220x220mm, matrix size = 64x64, voxel                                     
dimensions = 3.4×3.4×3.4mm, 42 axial oblique slices). A T1-weighted series was also acquired using a 3D fast                                 
spoiled gradient recall brain volume (FSPGR BRAVO) sequence with 186 contiguous sagittal slices (TI = 650ms,                               
bandwidth = 25.0kHz, flip angle = 12°, FOV = 256x256mm, and slice thickness = 1.0mm). A 2-mm isotropic                                   
MNI152 template image was nonlinearly oriented to each participant’s structural T1-weighted image using                         
FMRIB’s Software Library’s (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki130) nonlinear registration tool (FNIRT131).                 
Then, each participant’s T1-weighted image was coregistered to the middle volume of each functional run, using                               
FSL’s linear registration tool (FLIRT132 ). These two transformations were concatenated and used to align                           
regionwise parcellations to each subject's functional images. Tissue-type masks for white matter, gray matter, and                             
cerebrospinal fluid (CSF) were created from each subject’s T1-weighted images using FSL’s automated                         
segmentation tool (FAST133).  

Task-based fMRI preprocessing began with FSL’s MCFLIRT with spline interpolation, per run per functional task,                             
to align all volumes of each subject’s fMRI time series with that middle volume. To further correct for in-scanner                                     
motion effects, functional volumes unduly affected by motion were identified using fsl_motion_outliers, with a                           
framewise displacement threshold of 0.9mm for functional scans.134 Data were standardized, detrended, and                         
high-pass filtered, according to the period of each task. The physics knowledge task was high-pass filtered at                                 
0.018Hz and the physics reasoning task was thresholded according to each participant’s individual timing. 

Regionwise Parcellation and Brain Connectivity Analyses 

Each participant’s fMRI data were parcellated according to two functionally-derived, whole-brain parcellations                       
with similar numbers of regions. Here, we used a 268-region parcellation computed via multigraph k-way                             
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clustering, without spatial constraints, henceforth referred to as the Shen parcellation.135 To ensure that our results                               
were not artifacts of node definition, we additionally performed all analyses with an atlas generated from                               
resting-state fMRI data by performing normalized-cut spectral clustering on voxelwise functional connectivity                       
data to define homogeneous, spatially-constrained clusters (i.e., regions), henceforth referred to as the Craddock                           
parcellation,136 which includes a range of atlas sizes from which we chose a 268-region solution, to match the                                   
granularity of the Shen parcellation. Connectivity graphs were computed using two different brain parcellations                           
(Supplementary Figure 4). Following preprocessing, data analysis continued in two parallel streams, one with the                             
Craddock parcellation and one with the Shen parcellation, to ensure that any results were not artifacts of                                 
parcellation schema. Presented results (e.g., Figures 4, 5) include brain-IQ relations observed for both                           
parcellations, but values displayed are derived from the Shen parcellation. 

For each region, a single time series was computed as an average of the fMRI time series from all voxels within                                         
the region, after further regressing out six motion parameters (from MCFLIRT) and censoring high-motion                           
volumes (framewise displacement >0.9mm), as well as the immediately preceding volume and two following                           
volumes, following recommendations from Power et al. 137. Functional tasks’ regionwise time series were                           
standardized (i.e., z-scored), divided by condition per task per run and spliced together across runs, creating                               
separate time series per condition per task for each participant. Adjacency matrices were constructed with each                               
parcellation per participant, per functional task, per session (pre- and post-instruction) using Nilearn (v. 0.3.1,                             
http://nilearn.github.io/index.html), a Python (v 2.7.13) module, built on scikit-learn, for the statistical analysis                         
of neuroimaging data,138,139 by computing the pairwise Pearson’s correlations between each pair of regions,                           
resulting in a 268x268 region-wise correlation matrix for each subject per condition per task per session (pre- and                                   
post-instruction). Graph theoretic, topological measures were calculated across a range of density-based                       
thresholds. The lowest thresholds at which each network became (a) scale-free and (b) became node-connected                             
were calculated for each adjacency matrix. From these values, a lower- and upper-bound for network                             
thresholding were estimated, following recommendations from Lynall140 and Ginestet141, such that networks                       
would remain node-connected, meaning there are no brain regions completely separate from the rest of the brain,                                 
and spurious connections would be removed while maintaining the scale-free degree distribution expected of the                             
brain per prior research.142–144 

All topological measures were calculated using bctpy, a Python toolbox intended to replicate the functionality of                               
the Brain Connectivity Toolbox, a MATLAB toolbox for graph theoretic analysis of functional and structural brain                               
connectivity (brain-connectivity-toolbox.net111). From each correlation matrix described above, we calculated                   
global efficiency, characteristic path length, and modularity for across the range of proportional thresholds as                             
calculated above (τ = [0.21, 0.31] at steps of 0.01), then calculated the area under the curve (AUC) of each                                       
measure.145,146 These AUCs were used in all following statistical tests assessing the relationship between brain                             
network organization and IQ and will henceforth be referred to per the topological measure from which they                                 
were calculated. All topology-related results reported here are significant per topology values calculated from                           
graphs generated from both parcellations. 

Statistical Analyses 

Statistical inference was performed using the lavaan R package, and the Python modules SciPy (v. 1.2.1;                               
scipy.org147–153) statsmodels (v. 0.9.0; statsmodels.org), and nilearn (v. 0.6.2; nilearn.github.io). 

Paired t-tests were used to assess changes in WAIS-IV scores pre- to post-instruction. Two-sample t-tests were                               
used to assess differences in the changes in WAIS-IV scores (post- minus pre-instruction) between male and                               
female students, as well as between students enrolled in the active learning and lecture classes. 

Ordinary least squares (OLS) regressions implemented in R were used to regress measures of academic and task                                 
performance on WAIS-IV scores, sex, class, age, and years in university, per Equation 1. Significance of individual                                 
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models was assessed by comparing models’ p-values to a significance threshold adjusted for multiple                           
comparisons via Šidák correction.81 

A similar procedure, using mass-univariate OLS regressions with permutation testing as implemented by the                           
Python package Nilearn,154–156 was used to regress topological measures and functional connectivity (thresholded                         
at τ = 0.31) on WAIS-IV scores, sex, class, age, years in university, head size, average framewise displacement                                   
(calculated by fsl_motion_outliers, per run, per task), per Equation 2. To correct for multiple comparisons across                               
these regressions, we used the Šidák correction as mentioned above. All reported results were significant in both                                 
parcellations, to minimize the effects of brain parcellation on our interpretations. 

Mediation models to assess whether brain connectivity explained the relationship between WAIS-IV scores and                           
task performance were run using the R package lavaan.157 

Data Availability 

A GitHub repository was created at github.com/62442katieb/physics-learning-iq to archive the code and source                         
files for this study, including data preprocessing and analysis scripts and behavioral data. Significant                           
neuroimaging results are available at neurovault.org/collections/9385/. 

   

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://github.com/62442katieb/physics-learning-iq
https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 18 

 
 

Acknowledgments 

Primary funding for this project was provided by NSF REAL DRL-1420627; additional support was provided by                               
NSF 1631325, NIH R01-DA041353, NIH U01-DA041156, NSF CNS 1532061, NIH K01-DA037819, NIH                       
U54-MD012393, and the FIU Graduate School Dissertation Year Fellowships (KLB, JEB, RO, AN). We would like                               
to thank the FIU Instructional & Research Computing Center (IRCC, http://ircc.fiu.edu) for providing the HPC                             
and computing resources that contributed to the research results reported within this paper, and to the                               
Department of Psychology of the University of Miami for providing access to their MRI scanner. Special thanks to                                   
Karina Falcone, Rosario Pintos Lobo, Emily Boeving, and Camila Uzcategui for their assistance with data                             
collection and to the FIU undergraduate students who volunteered and participated in this project. 

  
Competing Interests 

The authors declare no competing interests. 

  
Author Contributions  

ARL, EB, SMP, MTS, RWL conceived and designed the project. JEB, EIB, RO, AN acquired behavioral and fMRI                                   
data. KLB, JEB, ARL analyzed data. MCR, TS contributed scripts and pipelines. KLB, JEB, ARL wrote the paper                                   
and all authors contributed to the revisions and approved the final version.  

 

   

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 19 

 
 

References 

1. Alloway, T. P. & Alloway, R. G. Investigating the predictive roles of working memory and IQ in academic                                   

attainment. J. Exp. Child Psychol. 106, 20–29 (2010). 

2. Gottfredson, L. S. Where and why g matters: Not a mystery. Hum. Perform. 15, 25–46 (2002). 

3. Gottfredson, L. S. The General Intelligence Factor. Sci. Am. Presents Explor. Intell. 9, 24–30 (1998). 

4. Harris, D. Factors affecting college grades: a review of the literature, 1930-1937. Psychol. Bull. 37, 125–166 

(1940). 

5. Frisby, C. L. & Henry, B. Science, politics, and best practice: 35 years after Larry P. Contemp. Sch. Psychol. 20, 

46–62 (2016). 

6. Reddy, A. The eugenic origins of IQ testing: Implications for post-Atkins litigation. DePaul Rev 57, 667 

(2007). 

7. Reynolds, C. R. & Suzuki, L. A. Bias in Psychological Assessment. in Handbook of Psychology, Second Edition 

(American Cancer Society, 2012). doi:10.1002/9781118133880.hop210004. 

8. Weiss, L. G., Chen, H., Harris, J. G., Holdnack, J. A. & Saklofske, D. H. CHAPTER 4 - WAIS-IV Use in 

Societal Context. in WAIS-IV Clinical Use and Interpretation (eds. Weiss, L. G., Saklofske, D. H., Coalson, D. L. 

& Raiford, S. E.) 97–139 (Academic Press, 2010). doi:10.1016/B978-0-12-375035-8.10004-7. 

9. Dzirasa, K. A brilliant approach to study the basis of intelligence? Sci. Transl. Med. 9, eaao0978 (2017). 

10. Bartels, M., Rietveld, M. J. H., Van Baal, G. C. M. & Boomsma, D. I. Genetic and environmental influences 

on the development of intelligence. Behav. Genet. 32, 237–249 (2002). 

11. Canivez, G. L. & Watkins, M. W. Long-term stability of the Wechsler Intelligence Scale for Children—Third 

Edition. Psychol. Assess. 10, 285–291 (1998). 

12. Hertzog, C. & Schaie, K. W. Stability and change in adult intelligence: 1. Analysis of longitudinal covariance 

structures. Psychol. Aging 1, 159–171 (1986). 

13. Herrnstein, R. J. & Murray, C. The Bell Curve: Intelligence and Class Structure in American Life. (Free Press, 

1994). 

14. Plomin, R. & von Stumm, S. The new genetics of intelligence. Nat. Rev. Genet. 19, 148–159 (2018). 

15. Reynolds, C. A. et al. Quantitative Genetic Analysis of Latent Growth Curve Models of Cognitive Abilities 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 20 

 
 

in Adulthood. Dev. Psychol. 41, 3–16 (2005). 

16. Behavior Genetics of Cognition Across the Lifespan. (Springer-Verlag, 2014). doi:10.1007/978-1-4614-7447-0. 

17. Wechsler, D., Coalson, D. L. & Raiford, S. E. WAIS-IV: Wechsler adult intelligence scale. (Pearson San Antonio, 

TX, 2008). 

18. Begovac, I., Begovac, B., Majić, G. & Vidović, V. LONGITUDINAL STUDIES OF IQ STABILITY IN 

CHILDREN WITH CHILDHOOD AUTISM – LITERATURE SURVEY. Psychiatr. Danub. 21, 310–319 (2009). 

19. Johnstone, B. & Wilhelm, K. L. The longitudinal stability of the WRAT-R Reading subtest: Is it an 

appropriate estimate of premorbid intelligence? J. Int. Neuropsychol. Soc. 2, 282–285 (1996). 

20. Moffitt, T. E., Caspi, A., Harkness, A. R. & Silva, P. A. The Natural History of Change to Intellectual 

Performance: Who Changes? How Much? Is it Meaningful? J. Child Psychol. Psychiatry 34, 455–506 (1993). 

21. Pietschnig, J. & Voracek, M. One Century of Global IQ Gains: A Formal Meta-Analysis of the Flynn Effect 

(1909–2013). Perspect. Psychol. Sci. 10, 282–306 (2015). 

22. Ritchie, S. J. & Tucker-Drob, E. M. How Much Does Education Improve Intelligence? A Meta-Analysis. 

Psychol. Sci. 29, 1358–1369 (2018). 

23. Schneider, W., Niklas, F. & Schmiedeler, S. Intellectual development from early childhood to early 

adulthood: The impact of early IQ differences on stability and change over time. Learn. Individ. Differ. 32, 

156–162 (2014). 

24. Schuerger, J. M. & Witt, A. C. The temporal stability of individually tested intelligence. J. Clin. Psychol. 45, 

294–302 (1989). 

25. Tuma, J. M. & Appelbaum, A. S. Reliability and Practice Effects of Wisc-R Iq Estimates in a Normal 

Population. Educ. Psychol. Meas. 40, 671–678 (1980). 

26. Verhaeghen, P. Aging and vocabulary score: A meta-analysis. Psychol. Aging 18, 332–339 (2003). 

27. Yang, P., Jong, Y.-J., Hsu, H.-Y. & Lung, F.-W. Role of assessment tests in the stability of intelligence scoring 

of pre-school children with uneven/delayed cognitive profile. J. Intellect. Disabil. Res. 55, 453–461 (2011). 

28. Yu, H., McCoach, D. B., Gottfried, A. W. & Gottfried, A. E. Stability of intelligence from infancy through 

adolescence: An autoregressive latent variable model. Intelligence 69, 8–15 (2018). 

29. Hunter, J. E. & Hunter, R. F. Validity and utility of alternative predictors of job performance. Psychol. Bull. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 21 

 
 

96, 72–98 (1984). 

30. Deary, I. J., Strand, S., Smith, P. & Fernandes, C. Intelligence and educational achievement. Intelligence 35, 

13–21 (2007). 

31. Strenze, T. Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. 

Intelligence 35, 401–426 (2007). 

32. Zax, J. S. & Rees, D. I. IQ, Academic Performance, Environment, and Earnings. Rev. Econ. Stat. 84, 600–616 

(2002). 

33. Murray, C. A. Income Inequality and IQ. (AEI Press, 1998). 

34. von Stumm, S. Socioeconomic status amplifies the achievement gap throughout compulsory education 

independent of intelligence. Intelligence 60, 57–62 (2017). 

35. Day, L., Hanson, K., Maltby, J., Proctor, C. & Wood, A. Hope uniquely predicts objective academic 

achievement above intelligence, personality, and previous academic achievement. J. Res. Personal. 44, 

550–553 (2010). 

36. Zuffianò, A. et al. Academic achievement: The unique contribution of self-efficacy beliefs in self-regulated 

learning beyond intelligence, personality traits, and self-esteem. Learn. Individ. Differ. 23, 158–162 (2013). 

37. Bergold, S. & Steinmayr, R. Personality and Intelligence Interact in the Prediction of Academic 

Achievement. J. Intell. 6, 27 (2018). 

38. Neisser, U. et al. Intelligence: Knowns and unknowns. Am. Psychol. 51, 77–101 (1996). 

39. Busato, V. V., Prins, F. J., Elshout, J. J. & Hamaker, C. Intellectual ability, learning style, personality, 

achievement motivation and academic success of psychology students in higher education. Personal. Individ. 

Differ. 29, 1057–1068 (2000). 

40. Walker, A. J., Batchelor, J. & Shores, A. Effects of education and cultural background on performance on 

WAIS-III, WMS-III, WAIS-R and WMS-R measures: Systematic review. Aust. Psychol. 44, 216–223 (2009). 

41. Ding, L. Verification of causal influences of reasoning skills and epistemology on physics conceptual 

learning. Phys. Rev. Spec. Top. - Phys. Educ. Res. 10, 023101 (2014). 

42. Jackson, J., Dukerich, L. & Hestenes, D. Modeling Instruction: An Effective Model for Science Education. Sci. 

Educ. 17, 10–17 (2008). 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 22 

 
 

43. Roberts, J. D., While, A. E. & Fitzpatrick, J. M. Problem solving in nursing practice: application, process, skill 

acquisition and measurement. J. Adv. Nurs. 18, 886–891 (1993). 

44. Taasoobshirazi, G. & Sinatra, G. M. A structural equation model of conceptual change in physics. J. Res. Sci. 

Teach. 48, 901–918 (2011). 

45. Bicer, A. et al. Moving from STEM to STEAM: The effects of informal STEM learning on students’ creativity 

and problem solving skills with 3D printing. in 2017 IEEE Frontiers in Education Conference (FIE) 1–6 (2017). 

doi:10.1109/FIE.2017.8190545. 

46. Etkina, E., Murthy, S. & Zou, X. Using introductory labs to engage students in experimental design. Am. J. 

Phys. 74, 979–986 (2006). 

47. Gabel, D. L. & Sherwood, R. D. Facilitating problem solving in high school chemistry. J. Res. Sci. Teach. 20, 

163–177 (1983). 

48. Stieff, M. & Uttal, D. How Much Can Spatial Training Improve STEM Achievement? Educ. Psychol. Rev. 27, 

607–615 (2015). 

49. Hegarty, M., Stieff, M. & Dixon, B. L. Cognitive change in mental models with experience in the domain of 

organic chemistry. J. Cogn. Psychol. 25, 220–228 (2013). 

50. Hegarty, M. Spatial Thinking in Undergraduate Science Education. Spat. Cogn. Comput. 14, 142–167 (2014). 

51. Oswald, T. M. et al. Clinical and Cognitive Characteristics Associated with Mathematics Problem Solving in 

Adolescents with Autism Spectrum Disorder. Autism Res. Off. J. Int. Soc. Autism Res. 9, 480–490 (2016). 

52. Weiss, L. G., Saklofske, D. H., Coalson, D. L. & Raiford, S. E. CHAPTER 3 - Theoretical, Empirical and 

Clinical Foundations of the WAIS-IV Index Scores. in WAIS-IV Clinical Use and Interpretation (eds. Weiss, L. 

G., Saklofske, D. H., Coalson, D. L. & Raiford, S. E.) 61–94 (Academic Press, 2010). 

doi:10.1016/B978-0-12-375035-8.10003-5. 

53. Day, J., Stang, J. B., Holmes, N. G., Kumar, D. & Bonn, D. A. Gender gaps and gendered action in a first-year 

physics laboratory. Phys. Rev. Phys. Educ. Res. 12, 020104 (2016). 

54. Kelly, A. M. Social cognitive perspective of gender disparities in undergraduate physics. Phys. Rev. Phys. 

Educ. Res. 12, 020116 (2016). 

55. Lorenzo, M., Crouch, C. H. & Mazur, E. Reducing the gender gap in the physics classroom. Am. J. Phys. 74, 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 23 

 
 

118–122 (2006). 

56. Madsen, A., McKagan, S. B. & Sayre, E. C. Gender gap on concept inventories in physics: What is consistent, 

what is inconsistent, and what factors influence the gap? Phys. Rev. Spec. Top. - Phys. Educ. Res. 9, 020121 

(2013). 

57. McCullough, L. Gender, Context, and Physics Assessment. J. Int. Womens Stud. 5, 20–30 (2013). 

58. Nissen, J. M. & Shemwell, J. T. Gender, experience, and self-efficacy in introductory physics. Phys. Rev. Phys. 

Educ. Res. 12, 020105 (2016). 

59. Eddy, S. L. & Brownell, S. E. Beneath the numbers: A review of gender disparities in undergraduate 

education across science, technology, engineering, and math disciplines. Phys. Rev. Phys. Educ. Res. 12, 

020106 (2016). 

60. Gewin, V. Gender divide in physics spans globe. Nature 473, 547–547 (2011). 

61. Status and Trends on the Education of Racial and Ethnic Groups, Indicator 26: STEM Degrees. (2019). 

62. Freeman, S. et al. Active learning increases student performance in science, engineering, and mathematics. 

Proc. Natl. Acad. Sci. 111, 8410 (2014). 

63. Hake, R. R. Interactive-engagement versus traditional methods: A six-thousand-student survey of 

mechanics test data for introductory physics courses. Am. J. Phys. 66, 64–74 (1998). 

64. Pollock, S. J., Finkelstein, N. D. & Kost, L. E. Reducing the gender gap in the physics classroom: How 

sufficient is interactive engagement? Phys. Rev. Spec. Top. - Phys. Educ. Res. 3, 010107 (2007). 

65. Fischer, F. U., Wolf, D., Scheurich, A. & Fellgiebel, A. Association of Structural Global Brain Network 

Properties with Intelligence in Normal Aging. PLoS ONE 9, e86258 (2014). 

66. Heuvel, M. P., Stam, C. J., Kahn, R. S. & Hulshoff Pol, H. E. Efficiency of functional brain networks and 

intellectual performance. J. Neurosci. Off. J. Soc. Neurosci. 29, 7619–24 (2009). 

67. Hilger, K., Ekman, M., Fiebach, C. J. & Basten, U. Efficient hubs in the intelligent brain: Nodal efficiency of 

hub regions in the salience network is associated with general intelligence. Intelligence 60, 10–25 (2017). 

68. Langer, N. et al. Functional brain network efficiency predicts intelligence. Hum. Brain Mapp. 33, 1393–1406 

(2012). 

69. Li, Y. et al. Brain Anatomical Network and Intelligence. PLoS Comput. Biol. 5, e1000395 (2009). 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 24 

 
 

70. Jung, R. E. & Haier, R. J. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging 

neuroimaging evidence. Behav. Brain Sci. 30, 135–154; discussion 154-187 (2007). 

71. Neubauer, A. C. & Fink, A. Intelligence and neural efficiency: Measures of brain activation versus measures 

of functional connectivity in the brain. Intelligence 37, 223–229 (2009). 

72. Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A. & Rossi, S. Efficiency of weak brain connections 

support general cognitive functioning. Hum. Brain Mapp. 35, 4566–4582 (2014). 

73. Hearne, L. J., Mattingley, J. B. & Cocchi, L. Functional brain networks related to individual differences in 

human intelligence at rest. Sci. Rep. 6, 32328 (2016). 

74. Dubois, J., Galdi, P., Paul, L. K. & Adolphs, R. A distributed brain network predicts general intelligence 

from resting-state human neuroimaging data. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373, (2018). 

75. Hilger, K., Ekman, M., Fiebach, C. J. & Basten, U. Intelligence is associated with the modular structure of 

intrinsic brain networks. Sci. Rep. 7, 16088 (2017). 

76. Laird, A. R. et al. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 23, 

4022–4037 (2011). 

77. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. 

Natl. Acad. Sci. U. S. A. 106, 13040–5 (2009). 

78. Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain state manipulation improves 

prediction of individual traits. Nat. Commun. 9, 2807 (2018). 

79. Hestenes, D., Wells, M. & Swackhamer, G. Force concept inventory. Phys. Teach. 30, 141–158 (1992). 

80. Bartley, J. E. et al. Brain activity links performance in science reasoning with conceptual approach. Npj Sci. 

Learn. 4, 1–8 (2019). 

81. Šidák, Z. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. Am. Stat. 

Assoc. 62, 626–633 (1967). 

82. Docktor, J. & Heller, K. Gender Differences in Both Force Concept Inventory and Introductory Physics 

Performance. AIP Conf. Proc. 1064, 15–18 (2008). 

83. Neisser, U. The concept of intelligence. Intelligence 3, 217–227 (1979). 

84. Weinberg, R. A. Intelligence and IQ: Landmark issues and great debates. Am. Psychol. 44, 98–104 (1989). 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 25 

 
 

85. Howe, M. J. A. IQ in Question: The Truth about Intelligence. (SAGE, 1997). 

86. Hunt, E. The Concept and Utility of Intelligence. in Intelligence, Genes, and Success: Scientists Respond to The 

Bell Curve (eds. Devlin, B., Fienberg, S. E., Resnick, D. P. & Roeder, K.) 157–176 (Springer New York, 1997). 

doi:10.1007/978-1-4612-0669-9_7. 

87. Richardson, K. What IQ Tests Test. Theory Psychol. 12, 283–314 (2002). 

88. Schönemann, P. H. Do IQ tests really measure intelligence? Behav. Brain Sci. 6, 311–313 (1983). 

89. Sternberg, R. J. What Should Intelligence Tests Test? Implications of a Triarchic Theory of Intelligence for 

Intelligence Testing. Educ. Res. 13, 5–15 (1984). 

90. Holdnack, J. A., Drozdick, L. W., Iverson, G. L. & Chelune, G. J. Chapter 6 - Serial Assessment with 

WAIS–IV and WMS–IV. in WAIS-IV, WMS-IV, and ACS (eds. Holdnack, J. A., Drozdick, L. W., Weiss, L. G. 

& Iverson, G. L.) 279–329 (Academic Press, 2013). doi:10.1016/B978-0-12-386934-0.00006-7. 

91. Cullum, C. M. & Larrabee, G. J. CHAPTER 6 - WAIS-IV Use in Neuropsychological Assessment. in WAIS-IV 

Clinical Use and Interpretation (eds. Weiss, L. G., Saklofske, D. H., Coalson, D. L. & Raiford, S. E.) 167–187 

(Academic Press, 2010). doi:10.1016/B978-0-12-375035-8.10006-0. 

92. Estevis, E., Basso, M. R. & Combs, D. Effects of Practice on the Wechsler Adult Intelligence Scale-IV Across 

3- and 6-Month Intervals. Clin. Neuropsychol. 26, 239–254 (2012). 

93. Beilock, S. L. & DeCaro, M. S. From poor performance to success under stress: Working memory, strategy 

selection, and mathematical problem solving under pressure. J. Exp. Psychol. Learn. Mem. Cogn. 33, 983–998 

(2007). 

94. Piacente, T. Verbal comprehension of university students. Orientación Soc. no. 12, (2012). 

95. Helwig, R., Rozek-tedesco, M. A., Tindal, G., Heath, B. & Almond, P. J. Reading as an Access to 

Mathematics Problem Solving on Multiple-Choice Tests for Sixth-Grade Students. J. Educ. Res. 93, 113–125 

(1999). 

96. Simmons, F. R., Willis, C. & Adams, A.-M. Different components of working memory have different 

relationships with different mathematical skills. J. Exp. Child Psychol. 111, 139–155 (2012). 

97. Chen, W.-C. & Whitehead, R. Understanding physics in relation to working memory. Res. Sci. Technol. Educ. 

27, 151–160 (2009). 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 26 

 
 

98. Staver, J. R. & Jacks, T. The influence of cognitive reasoning level, cognitive restructuring ability, 

disembedding ability, working memory capacity, and prior knowledge on students’ performance on 

balancing equations by inspection. J. Res. Sci. Teach. 25, 763–775 (1988). 

99. Cassels, J. R. T. & Johnstone, A. H. The effect of language on student performance on multiple choice tests in 

chemistry. J. Chem. Educ. 61, 613 (1984). 

100. Daneman, M. & Hannon, B. Using working memory theory to investigate the construct validity of 

multiple-choice reading comprehension tests such as the SAT. J. Exp. Psychol. Gen. 130, 208–223 (2001). 

101. Andreassen, R. & Bråten, I. Examining the prediction of reading comprehension on different 

multiple-choice tests. J. Res. Read. 33, 263–283 (2010). 

102. Halloun, I. A. & Hestenes, D. Common sense concepts about motion. Am. J. Phys. 53, 1056–1065 (1985). 

103. Neidorf, T., Arora, A., Erberber, E., Tsokodayi, Y. & Mai, T. Review of Research into Misconceptions and 

Misunderstandings in Physics and Mathematics. in Student Misconceptions and Errors in Physics and 

Mathematics: Exploring Data from TIMSS and TIMSS Advanced (eds. Neidorf, T., Arora, A., Erberber, E., 

Tsokodayi, Y. & Mai, T.) 11–20 (Springer International Publishing, 2020). doi:10.1007/978-3-030-30188-0_2. 

104. Eaton, P., Vavruska, K. & Willoughby, S. Exploring the preinstruction and postinstruction non-Newtonian 

world views as measured by the Force Concept Inventory. Phys. Rev. Phys. Educ. Res. 15, 010123 (2019). 

105. Buffler, A., Lubben, F., Ibrahim, B. & Pillay, S. A model-based framework for understanding the role of 

visualization in physics education. in Proceedings of the 16th Annual Meeting of the Southern African Association 

for Research in Mathematics, Science and Technology Education, Maseru, Lesotho 435–441 (2008). 

106. Kozhevnikov, M., Hegarty, M. & Mayer, R. E. Revising the visualizer-verbalizer dimension: Evidence for 

two types of visualizers. Cogn. Instr. 20, 47–77 (2002). 

107. Kozhevnikov, M. & Thornton, R. Real-Time Data Display, Spatial Visualization Ability, and Learning Force 

and Motion Concepts. J. Sci. Educ. Technol. 15, 111 (2006). 

108. Madsen, A. M., Larson, A. M., Loschky, L. C. & Rebello, N. S. Differences in visual attention between those 

who correctly and incorrectly answer physics problems. Phys. Rev. Spec. Top. - Phys. Educ. Res. 8, 010122 

(2012). 

109. Pallrand, G. J. & Seeber, F. Spatial ability and achievement in introductory physics. J. Res. Sci. Teach. 21, 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 27 

 
 

507–516 (1984). 

110. Poldrack, R. A. Is “efficiency” a useful concept in cognitive neuroscience? Dev. Cogn. Neurosci. 11, 12–17 

(2015). 

111. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. 

NeuroImage 52, 1059–1069 (2010). 

112. Charles, M. & Bradley, K. Indulging Our Gendered Selves? Sex Segregation by Field of Study in 44 

Countries. Am. J. Sociol. 114, 924–976 (2009). 

113. Baird, C. L. Male-dominated stem disciplines: How do we make them more attractive to women? IEEE 

Instrum. Meas. Mag. 21, 4–14 (2018). 

114. Richman, L. S., vanDellen, M. & Wood, W. How Women Cope: Being a Numerical Minority in a 

Male-Dominated Profession. J. Soc. Issues 67, 492–509 (2011). 

115. Barone, C. Some Things Never Change: Gender Segregation in Higher Education across Eight Nations and 

Three Decades. Sociol. Educ. 84, 157–176 (2011). 

116. Nosek, B. A., Banaji, M. R. & Greenwald, A. G. Math = male, me = female, therefore math not = me. J. Pers. 

Soc. Psychol. 83, 44–59 (2002). 

117. Spencer, S. J., Steele, C. M. & Quinn, D. M. Stereotype Threat and Women’s Math Performance. J. Exp. Soc. 

Psychol. 35, 4–28 (1999). 

118. Keller, J. & Dauenheimer, D. Stereotype Threat in the Classroom: Dejection Mediates the Disrupting Threat 

Effect on Women’s Math Performance. Pers. Soc. Psychol. Bull. 29, 371–381 (2003). 

119. Keller, J. Stereotype threat in classroom settings: The interactive effect of domain identification, task 

difficulty and stereotype threat on female students’ maths performance. Br. J. Educ. Psychol. 77, 323–338 

(2007). 

120. Zhao, W. et al. Individual Differences in Cognitive Performance Are Better Predicted by Global Rather Than 

Localized BOLD Activity Patterns Across the Cortex. Cereb. Cortex doi:10.1093/cercor/bhaa290. 

121. Dunst, B., Benedek, M., Koschutnig, K., Jauk, E. & Neubauer, A. C. Sex differences in the IQ-white matter 

microstructure relationship: A DTI study. Brain Cogn. 91, 71–78 (2014). 

122. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. The neuroanatomy of general intelligence: sex 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 28 

 
 

matters. NeuroImage 25, 320–327 (2005). 

123. Jiang, R. et al. Gender Differences in Connectome-based Predictions of Individualized Intelligence Quotient 

and Sub-domain Scores. Cereb. Cortex (2019) doi:10.1093/cercor/bhz134. 

124. Ryman, S. G. et al. Fronto-Parietal gray matter and white matter efficiency differentially predict intelligence 

in males and females. Hum. Brain Mapp. 37, 4006–4016 (2016). 

125. Satterthwaite, T. D. et al. Linked Sex Differences in Cognition and Functional Connectivity in Youth. Cereb. 

Cortex 25, 2383–2394 (2015). 

126. Schmithorst, V. J. Developmental sex differences in the relation of neuroanatomical connectivity to 

intelligence. Intelligence 37, 164–173 (2009). 

127. Schmithorst, V. J. & Holland, S. K. Sex differences in the development of neuroanatomical functional 

connectivity underlying intelligence found using Bayesian connectivity analysis. NeuroImage 35, 406–419 

(2007). 

128. Wu, K. et al. Topological Organization of Functional Brain Networks in Healthy Children: Differences in 

Relation to Age, Sex, and Intelligence. PLOS ONE 8, e55347 (2013). 

129. Troyanskaya, O. et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 

(2001). 

130. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 

782–790 (2012). 

131. Andersson, J. L. R., Jenkinson, M. & Smith, S. Non-linear registration, aka spatial normalization. 

132. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear 

registration and motion correction of brain images. NeuroImage 17, 825–841 (2002). 

133. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field 

model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001). 

134. Siegel, J. S. et al. Statistical improvements in functional magnetic resonance imaging analyses produced by 

censoring high-motion data points. Hum. Brain Mapp. 35, 1981–1996 (2014). 

135. Shen, X., Tokoglu, F., Papademetris, X. & Constable, R. T. Groupwise whole-brain parcellation from 

resting-state fMRI data for network node identification. NeuroImage 82, 403–415 (2013). 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 29 

 
 

136. Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fMRI atlas 

generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012). 

137. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. 

NeuroImage 84, (2014). 

138. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinformatics 8, 14 (2014). 

139. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). 

140. Lynall, M.-E. et al. Functional Connectivity and Brain Networks in Schizophrenia. J. Neurosci. 30, 9477–9487 

(2010). 

141. Ginestet, C. E. & Simmons, A. Statistical parametric network analysis of functional connectivity dynamics 

during a working memory task. NeuroImage 55, 688–704 (2011). 

142. Gong, G. et al. Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo 

Diffusion Tensor Imaging Tractography. Cereb. Cortex 19, 524–536 (2009). 

143. Hayasaka, S. & Laurienti, P. J. Comparison of characteristics between region-and voxel-based network 

analyses in resting-state fMRI data. NeuroImage 50, 499–508 (2010). 

144. He, Y., Chen, Z. J. & Evans, A. C. Small-World Anatomical Networks in the Human Brain Revealed by 

Cortical Thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007). 

145. Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal 

small-world human brain functional networks. Proc. Natl. Acad. Sci. 103, 19518 (2006). 

146. Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J. & Lim, K. O. Altered resting state complexity in 

schizophrenia. NeuroImage 59, 2196–2207 (2012). 

147. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). 

148. McKinney, W. Data Structures for Statistical Computing in Python. in Proceedings of the 9th Python in Science 

Conference (eds. Walt, S. van der & Millman, J.) 56–61 (2010). doi:10.25080/Majora-92bf1922-00a. 

149. Millman, K. J. & Aivazis, M. Python for Scientists and Engineers. Comput. Sci. Eng. 13, 9–12 (2011). 

150. Oliphant, T. E. Python for Scientific Computing. Comput. Sci. Eng. 9, 10–20 (2007). 

151. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). 

152. Perez, F. & Granger, B. E. IPython: A System for Interactive Scientific Computing. Comput. Sci. Eng. 9, 21–29 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/


Bottenhorn et al. 30 

 
 

(2007). 

153. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 

261–272 (2020). 

154. Anderson, M. J. & Robinson, J. Permutation Tests for Linear Models. Aust. N. Z. J. Stat. 43, 75–88 (2001). 

155. Freedman, D. & Lane, D. A Nonstochastic Interpretation of Reported Significance Levels. J. Bus. Econ. Stat. 

1, 292 (1983). 

156. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the 

general linear model. NeuroImage 92, 381–397 (2014). 

157. Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 48, 1–36 (2012). 

 
 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.23.427928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.23.427928
http://creativecommons.org/licenses/by-nc/4.0/

