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Abstract 

 

Objective: Brain-machine interfaces (BMIs) are promising candidates for restoring the lost 

motor system functions. Center-out reaching task is a commonly used BMI control paradigm 

in humans and monkeys. In this work, our goal was to develop a behavioral paradigm which 

enables rats to control a neuroprosthesis in a center-out reaching task applied in one-

dimensional space. 

Approach: The experimental setup mainly consisted of a behavioral cage and a robotic 

workspace outside the cage. Two distant targets were located on the left and right sides of the 

central starting position of the robot endpoint. An online transform algorithm was used to 

convert the activity of a pair of recorded primary motor cortex units into two robotic actions. 

An increase in the activity of one of the units directed the robot endpoint toward left while an 

increase in the other moved it toward right. The task difficulty level which was proportional 

to the distance between the selected target and the initial position of the robot endpoint at the 

beginning of trials was increased gradually as the rat adapts with the transform. 

Main Results: All three rats involved in the study were capable of achieving randomly 

selected targets with at least 78% accuracy in the highest task difficulty level, in center-out 

reaching task. A total of 9 out of 16 pairs of units examined were eligible for training in 

center-out reaching task. Two out of three rats were capable of reversal learning where the 

mapping between the activity of the unit pairs and the robotic actions were reversed.  

Significance: The present behavioral paradigm and experimental setup may be used to study 

the neural mechanisms involved in neuroprosthetic control. Using the present approach the 

performance of BMI decoders may also be assessed for one-dimensional center-out reaching 

task. 

 

Keywords: Motor cortex, neuroprosthetics, brain-machine interface.  
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1. Introduction 

Brain-machine interfaces (BMIs) hold great potential for restoration of the motor functions 

lost due to spinal cord injury or neurodegenerative disorders. Advances in neural interface 

technology have recently enabled seamless and scar-free tissue integration for the brain-

implantable recording probes (Luan et al., 2017; Zhou et al., 2017). Neural decoders allowed 

monkeys and humans to manipulate multi-degree of freedom robotic arms or cursors on 

computer screens with their neuronal activity (Velliste et al., 2008; Hochberg et al., 2012; 

Wodlinger et al., 2015; Flint et al., 2016; Lebedev and Nicolelis, 2017; Nuyujukian et al., 

2018). In light of these promising demonstrations, providing a dexterous motor 

neuroprosthetic control similar to natural movements has been and continues to be a highly 

active research topic. Mostly monkeys and humans are used to study the performance of 

neural decoders and the adaptation of the brain to the neuroprosthetic devices. Even though 

the cognitive and visual abilities of rodents are limited compared to monkeys and humans, 

they are also commonly used in BMI research due to the ethical and cost-related 

considerations. Furthermore, availability of versatile genetic tools for rodents makes them 

advantageous for studying the neural mechanisms involved in brain adaptation and 

neuroprosthetic skill learning (Koralek et al., 2013; Athalye et al., 2018).  

 

The capability of rats to modulate the activity of cortical neurons to obtain rewards has 

been demonstrated decades ago (Olds, 1965; Hiatt, 1972). Unidirectional manipulation of a 

brain-controlled robotic arm has been demonstrated in rats (Chapin et al., 1999) thanks to the 

advances in microelectrode array technology that enabled multichannel recordings (Nicolelis 

et al., 1997). Utilization of reinforcement learning-based decoding algorithms allowed the 

rats to control a robotic arm in three-dimensional space to reach one of two targets 

(DiGiovanna et al., 2009). Controlling the frequency of an auditory cursor has also been 

presented using rats for achieving one of two targets (Koralek et al., 2012). The capability of 

rats to perform the control of a robotic actuator unidirectionally and bidirectionally using 

cortical activity has been demonstrated as well (Arduin et al., 2013, 2014). In these studies, 

the rats modulated the neural activity to bring water rewards toward themselves using a one-

dimensional robotic actuator.  

 

Center-out reaching is a typical paradigm applied in BMI experiments with human and 

monkey subjects for investigating the accuracy of the trajectories generated by the neural 

decoders (Taylor et al., 2002; Carmena et al., 2003; Jarosiewicz et al., 2015). In the center-

out reaching task, the subject’s aim is to move a cursor (on a computer screen) or a robotic 

arm from a central starting position toward the target points which are located around that 

starting position. Even though the center-out reaching is a widely used paradigm in BMI 

research utilizing primates, it has not been extended to experiments with rats which have a 

high throughput potential. In this article, we introduce a novel behavioral paradigm which 

allows the rats to perform one-dimensional center-out reaching using a cortically controlled 

robotic arm. In the paradigm, the rat is first shaped to associate movements of a robot 

endpoint with water rewards. Subsequently, the movements of the robot endpoint are 

controlled by the rat through a pair of extracellularly recorded M1 units. The goal of the rat is 

to continuously manipulate the robotic arm and acquire one of two randomly selected targets 

based on the visual feedback provided. The task difficulty level, which represents the 

distance between the initial position of the robot endpoint and the selected target, is gradually 

increased to shape the rat to acquire any randomly selected target starting from the central 

position equidistant to both targets. The rats involved in the study have been capable of 

adapting the neural activity and achieving both targets. We believe the present behavioral 
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paradigm can be applied to study the performance of BMI decoders and the neural 

mechanisms of learning in rats for one-dimensional center-out reaching tasks.  

 

 
 

2. Methods 

 

2.1. Microelectrode Array Implantation  

 

All animal procedures presented in this paper were approved by and conducted in accordance 

with the regulations of the Istanbul Medipol University Ethics Committee on Animal 

Maintenance and Experimentation. Three male Wistar rats weighing 400-550 g were 

chronically implanted bilaterally with two microelectrode arrays in the primary motor cortex 

(see coordinates below). The arrays were built in-house and each consisted of 16 tungsten 

microwires (35 µm diameter, polyimide-coated diameter 48 µm; California Fine Wire, CA).  

The configuration of the microelectrode arrays was 2x8 with 250 µm row and 500 µm 

column spacing. An additional bare tungsten wire (50 µm diameter) was aligned in parallel 

with the microwires of the array with 500 µm spacing and used as an indifferent reference 

electrode. The rats were anesthetized with i.p. injection (1.5 cc/kg) of a mixture of ketamine 

and xylazine anesthesia (100 mg/kg and 12 mg/kg in saline, respectively). Maintenance of 

anesthesia was achieved with isoflurane gas as needed. Dexamethasone (0.5 mg/kg i.p.) was 

administered 1 hour prior to the surgery to attenuate inflammatory response during insertion 

of the microelectrode arrays (Zhong and Bellamkonda, 2007; Gaire et al., 2018). Craniotomy 

was created bilaterally and the dura mater was removed over the implantation sites carefully 

while avoiding damaging blood vessels and the pia mater (Oliveira and Dimitrov, 2008). The 

pia mater was attached to skull using a 2-octyl and n-butyl cyanoacrylate tissue adhesive 

(Leukosan, BSN Medical GmbH, Germany) in order to prevent dimpling during lowering the 

microelectrode arrays (Kralik et al., 2001). The arrays were centered stereotaxically to target 

forelimb area (AP: +1.5 mm, ML: ±2.5 mm) in both hemispheres (Gioanni and Lamarche, 

1985; Kleim et al., 1998) and advanced independently and slowly (50 µm/min) to a cortical 

depth of ~1200 µm using a hydraulic micropositioner (Narishige MO-82, Japan). When the 

target depth is achieved, the craniotomy was sealed with a thin layer of cyanoacrylate tissue 

adhesive and the microelectrode array was fixed to the skull using dental acrylic.  

 

 

2.2. Neural Signal Acquisition  

 

Acquisition and online processing of the neural signals and the control of the components of 

experimental setup were performed using in-house built Bioinspired Neuroprosthetic Design 

Environment (BNDE) (Kocaturk et al., 2015). Neural signals were amplified and filtered 

using 32-channel electrophysiology hardware (PBX Preamplifier, Plexon Inc., TX, USA). 

The high-cut and low-cut frequencies of the bandpass filter of the hardware were 150 Hz and 

8 KHz, respectively, and the passband gain was 1000. Neural signals were acquired with a 

sampling rate of 31.25 kHz per channel, digitally band-pass filtered (cut-off frequency = 400 

Hz–8 kHz) and up-sampled to 62.5 kHz by cubic interpolation. Detection of the neural spikes 

was performed by applying two amplitude thresholds and spikes were sorted using template 

matching algorithm based on Bayesian clustering and classification (Lewicki, 1998; 

Alpaydin, 2010; Kocaturk et al., 2015). A 32-channel commutator (Plexon Inc., TX, USA) 

was used to keep the headstage cables untangled during electrophysiological recordings. 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427325


4 
 

 

2.3. Rat Operant Conditioning 

 

The experimental setup for cortical control of the robotic arm is illustrated in Figure 1. Prior 

to the initiation of the trials for cortical control of the robotic arm, the rats were first shaped 

for attending to the robotic workspace. Shaping process was started after a recovery period of 

four weeks following the microelectrode array implantation surgery. The shaping procedures 

and the experimental setup introduced previously (DiGiovanna et al., 2009) were employed 

in this work with some modifications we included for enabling trajectory-based cortical 

control of the robotic arm. In this section, we describe the experimental setup and the shaping 

procedures applied.  

 

The experimental setup mainly consisted of a behavioral cage and a robotic workspace. 

The walls of the behavioral cage were transparent so that the robotic workspace was visible 

to the rat while it was enclosed in the cage (Figure 1A). The rats were trained in this 

environment with a two-button choice task to associate robot control with button pressing. As 

shown in Figure 1A,B, the cage included one lever and two buttons on either side, which 

were located on a flat platform. The height and the depth of the platform were adjusted 

according to the size of an adult rat so that it can reach the lever and the buttons while 

standing on the floor of the cage and putting its forepaws onto the platform as shown in 

Figure 1B. The design of the buttons allowed the rats to operate them by biting with their 

teeth (see Figure 1D, E). Two green cage LEDs were placed onto the front wall of the cage 

on either side of the platform. An infrared (IR) beam passed through the proximal portion of 

the platform from the perspective of the rat and reached an array of IR sensors placed onto 

the opposite wall of the cage. The IR beam was positioned to detect whether the rat’s upper 

body was over the platform; the trials ended whenever the rat left the platform. A water 

receptacle dispensing 15 μl of water was positioned on the wall of the platform. The amount 

of water reward was controlled using a solenoid valve. The water delivery by valve generated 

a click sound during opening and closure, constituting a reward cue for the rat following 

conditioning. A narrow corridor was created on the floor of the cage so that the rat always 

stood at the center of the cage while being capable of reaching the lever and the buttons (see 

back view of the cage represented in Figure 1C). The floor of the cage was flat so that the rat 

could stand comfortably during the trials. The rats had ad libitum access to food both in the 

behavioral cage and in their home cage and they were motivated using a 21 hour water 

deprivation protocol in which they received water only in the behavioral cage during 

behavioral tasks.   

   

The robotic workspace included a customized version of Lynxmotion AL5D robotic arm 

(Swanton, VT, USA) and two opposite left/right targets, pointed by green LEDs. The targets 

were located on the same plane to be reached by the robotic arm moving around its first joint 

(base servomotor) in one-dimensional space as shown in Figure 1A,B. A blue guide LED 

was mounted onto the tip of the robotic arm as an indicator of the position of the robot 

endpoint. The elevations of the target LEDs and the guide LED were equal and they were 

adjusted according to the rat’s field of vision while standing as illustrated in Figure 1B. The 

experimental environment was poorly illuminated to direct rat’s attention toward the LED 

cues in the robotic workspace.   

 

Rat training consisted of two phases: The first phase was applied to associate robot 

control with button pressing and the second phase was used to ensure the rat perceives the 

position of the robot endpoint (Figure 2A, B). In the first training phase, each trial was 
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initiated by nose-poking a lever through a hole. With the initiation of a trial, one of the targets 

was randomly selected and the cage and the target LEDs corresponding to that side were 

turned on without delay. The guide LED was also illuminated at the onset of each trial. Forty 

milliseconds after trial initiation, the robot started moving toward the selected target with a 

constant speed and reached the target within 1.2 s. If the rat pressed the button on the target 

side 0.7 s after initiation of the robot motion then the trial was considered successful and a 

water reward was delivered through the receptacle in the cage. The trial was ended without 

reward delivery, if 1) the rat pressed the button on the target side earlier than 0.7 s after robot 

motion initiation, 2) the rat did not give any response within 1.8 s after robot motion 

initiation, 3) the rat pressed the wrong button at any time. Whenever a trial was ended, all 

LEDs in the experimental setup were turned off and the robotic arm moved back to its default 

position at the midpoint of the targets to be used in the next trial. At the end of each trial, a 

refractory period of 2 s was applied to allow the robotic arm to reach its default position and 

the rat to consume the water reward. The cage LEDs were not lit up in the following trials as 

the accuracy improved so that the attention of the rat was shifted to the target and guide 

LEDs in the robotic workspace. When the rat’s accuracy reached the operant conditioning 

inclusion criterion (i.e. 80% through at least 40 consecutive trials), the first training phase 

was successfully completed and the second training phase was started. The training paradigm 

for the second phase is depicted in Figure 2B. The entire paradigm was same as the one 

applied in the first phase except for turning on the target LEDs. In this phase of the training, 

the only cue for the rat for button choice was the movement direction of Guide LED which 

constituted the marker of the robot endpoint. After rats reached inclusion criteria of 80% 

accuracy in this phase of training, the task for cortical control of the robotic actuator 

commenced.      
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Figure 1. Experimental setup. (A) Top view. (B) Side view. (C) Back view. (D) The design 
of the button which the rats operated with their teeth. The button is surrounded by a 

cylindrical barrier and an aperture placed onto the side of the barrier such that the rat can 

insert its lower teeth through the aperture. The rat can press the button with the upper teeth as 

it puts the lower teeth into the aperture. (E) The positions of the buttons and the lever which 

is used to initiate the trials. The lever is located in front of the animal as shown in (A) and 

(B). The orientation of the aperture of each button is adjusted to ease pressing with teeth.  

27 cm

3
6

cm

12cm

8 cm

Infrared 
Sensor 
Array

Water 
Receptacle

Lever

Button

1
5

 cm

Target 
LED

Guide 
LED

Joint 1

7cm

3
6

 c
m

6 cm 6 cm8 cm

Infrared 
Sensor 
Array

Infrared 
Beam 
Source

Water 
Receptacle

3 cm

1
7

 c
m

1
1

 cm

1
6

 c
m

1
2

 c
m

1
5

 cm
4

 cm 2.7 cm

2.3 cm

A

B

C D

E

2
 cm

0.5 cm

Cage Wall

Left Target

Right Target

θ

7
.2

 cm
7

.2
 cm

Rotation 
Axis 

(Joint 1)

14.5 cm

Guide 
LED

Infrared 
Beam

Water 
Receptacle

Transparent
Cage Wall Robotic 

Arm

25 cm

7
cm

2
0

 c
m

27 cm

5 cm
5

.5
cm

8 cm

Cage LED

Lever

Button

Button

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427325


7 
 

 

 

 

Figure 2. Behavioral paradigm for shaping the rat for neuroprosthetic control. A) Paradigm 

for associating button press with the selected target. (B) Paradigm for associating button press 

with the movement direction of robot endpoint. (C) Paradigm for cortical control of the 

robotic actuator. During cortical control, the transform algorithm converts the firing rates of 

M1 units into robotic actions. 

 

 

2.4. Cortical Control of the Robotic Actuator  

 

After the rats had been shaped to engage in the robot workspace and associate movements of 

the robotic arm with reward (see Rat Operant Conditioning), they again entered into the same 

experimental setup for learning manipulation of the robotic arm using M1 neurons. In this 

phase of learning, the movements of the robotic arm were controlled using the activity of two 

M1 units rather than being automatic (see Figure 2C and Figure 3A). A transform algorithm 

was employed for converting the firing rates of M1 neurons into robotic actions (see 

Equation (1) and Figure 3A). The firing rates of the units were calculated by binning the 
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spikes every 26 ms with a sliding 208 ms time window and fed into the below online 

transform algorithm:  

 

                       (1) 

 

where       and       are the firing rates of first and second units at time bin  .    and    are 

the coefficients and   is the bias term used in the transform algorithm where     ,     , 

   . The angular velocity of the robotic actuator (    ) is obtained from the output of the 

transform (    ) as follows:  

 

                          

          
           
            

  

 

(2) 

 

where    and    are the firing rate thresholds for movement of the robotic arm toward left or 

right, respectively, with the constraints      and     . From the perspective of the rat, 
the robot endpoint moved toward left for the positive values of angular velocity and moved 

toward right for the negative values (Figure 1A and Figure 3B). The value of    was kept 

constant at 36.76º/s throughout the trials. Therefore, available prosthetic actions were: 1) 

move left, 2) move right and 3) stay stationary. The angular velocity of the robotic arm 

(    ) was updated every 26 ms, which was also the period for binning the spikes for 

calculating the firing rates       and      . An increase in the firing rate of the first unit 

(     ) directed robotic arm toward left and an increase in firing rate of the second unit 

(     ) moved it toward right. The coefficients and the bias term in the transform algorithm 

(  ,    and  ) were manually updated by the experimenter through the trials to guide the rat 

to acquire both targets by modulating the activity of the units. The absolute values of    and 

   were increased to slow down the rotation of the robotic actuator if the firing rates of the 

neurons (      and      ) were so high that rat’s performance could not be improved through 
the trials due to rapid movements of the robotic arm.  

 

In the present cortical control task, the trials were initiated by the rat by nose-poking as in 

previous training phases (Figure 2). Forty milliseconds after the trial initiation, the robotic 

actuator was enabled to move and       and       were reset to zero. The aim of the rat was 

to direct the robotic arm toward the target LED which was randomly selected and illuminated 

with initiation of the trial. The cage LED on the selected side was also turned on when the 

trial was started and remained on throughout the trial in order to aid the rat discriminate the 

target side. Whenever the endpoint of the robotic arm reached the selected target, the rat was 

rewarded and the trial was classified as “correct”. The trial was ended without reward 

delivery and classified as “incorrect” if 1) the robotic arm reached the wrong target, 2) none 

of the targets was achieved within the maximum allowed trial duration (i.e. 4-8 s), 3) all four 

infrared sensors on the wall of the cage were illuminated by the infrared beam, indicating that 

the rat left the platform and no longer attended to the robotic workspace. The experimenter 

was also allowed to manually and immediately terminate the trial without reward delivery by 

software whenever it was obvious that the target LED was out of the vision of the rat due to 

the rat’s movements after initiating the trial. Whenever a trial ended, all LEDs in the 

experimental setup were turned off and the robotic arm moved to the initial position for the 

next trial.  
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In the cortical control trials, four levels of task difficulty were applied in order to keep the 

rats motivated in the task and engaged in the robotic workspace. The level of the difficulty 

determined the distance of the robot endpoint to the selected target at the beginning of a trial. 

Figure 3B illustrates the applied difficulty levels from 1 through 4 and the initial positions of 

the robot endpoint corresponding to each difficulty level. The task difficulty level was 

incremented whenever the rat exceeded the cortical control inclusion criterion (i.e. 75% 

accuracy for 40 consecutive trials in which target side is selected randomly). If the rat could 

not meet the inclusion criterion through approximately 200 trials, the difficulty level of the 

task was decremented and the rat was again trained. In the trials in which the robotic arm had 

varying trajectories, the rat was also manually rewarded by the experimenter when the robotic 

arm started moving toward the correct target following a movement toward the wrong target. 

Rewarding the rat whenever it directed the robotic arm toward correct target likely facilitated 

association of cortical activity with the correct movements of the robotic arm (Thorndike, 

1911; Fetz, 1969; Moritz et al., 2008; Arduin et al., 2013). Whenever the rats’ accuracy 

exceeded inclusion criterion for the highest (4
th

) difficulty level, the unit pair used was 

classified as “successful” for neuroprosthetic control. The inclusion criterion in the highest 

difficulty level was selected as “greater than 75% accuracy for 40 consecutive randomly 

selected targets”. The probability of exceeding this inclusion criterion by chance is less than 

0.001. After reaching the inclusion criterion for the highest task difficulty level, the rats 

continued using the same units in the rest of the trials in that day until they gave up initiating 

new trials to receive water. In the following day, a reversal learning task was applied to 

determine whether the rats actually adapted with the transform for reaching the selected 

target or isolated units were stimulated or inhibited directly by the selected target without any 

learning. To examine this, the sign of the coefficients    and    in the transform algorithm 
were inverted (see Equation (3)) so that the mapping between the activity of the units and 

robotic actions were reversed. In this phase of cortical control task, the rats needed to reverse 

the activity modulation of the units to direct the robotic actuator toward the correct target; an 

increase in the firing rate of the first unit (     ) led to a robotic movement toward right 

rather than left and an increase in the firing rate of the second unit (     ) directed the robotic 
movement toward left rather than right.  

 

                        (3) 

 

The behavioral paradigm was the same in the reversal learning phase (Figure 2C). The same 

rules to increase the task difficulty level were applied in this phase of learning. As the rats’ 

accuracy increased through the trials, the task difficulty level was incremented (see Figure 

3B). The rat was expected to adapt with the new transform to acquire the selected targets 

through increasing levels of task difficulty over multiple days of training. When the rat met 

the inclusion criterion (i.e. >75% accuracy for 40 consecutive trials) for the reversal learning 

phase in the highest task difficulty level, these units were classified as eligible for reversal 

learning. 
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Figure 3. Cortical control of the robotic arm in one-dimensional space. (A) The online 
transform and the neuroprosthetic control architecture. (B) The movement of the robot 

endpoint in one dimensional space. Green circles indicate left/right targets and blue circle 

denotes the robot endpoint. Black circles represent the initial position of the robot endpoint at 

the beginning of trials depending on the task difficulty level. The numbers denote the task 

difficulty levels proportional to the distance between the selected target and the robot 

endpoint at the beginning of the trials. Level 4 is the highest task difficulty level where the 

initial position of the robot endpoint is at the midpoint of the targets.      
 

 

3. Results 

 

The rats entered into the experimental setup illustrated in Figure 1 and they were first trained 

in the setup for shifting their attention from inside the cage to the robotic workspace. All 

three rats reached the inclusion criteria in the training phases depicted in Figure 2A and 

Figure 2B. The time it took the rats to meet the inclusion criteria to be eligible for starting 

trials for cortical control of the robotic arm varied between rats: Rat1 was trained for 16, Rat2 

was trained for 22 and Rat3 was trained for 20 days. While 15 μl of water reward at the end 

of successful trials was sufficient for keeping Rat1 and Rat2 motivated during the tasks, Rat3 

required twice the amount of water the other rats needed.  

 

After meeting the operant conditioning inclusion criteria, the rats received the cortical 

control task (see Figure 2C). The activity and the spike waveforms of the units were 

reviewed by the experimenter over multiple days prior to commencement of the cortical 

control task. The cortical control task was started with the first (lowest) difficulty level. 

Whenever the rats retracted their body through the infrared beam to reach the water 

receptacle before acquiring the selected target, the trial was immediately terminated without 
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reward delivery. The trials were also ended manually by the experimenter through the 

software when it was obvious that the rat was not attending to the robotic workspace. In order 

to help the rat acquire the selected targets, the coefficients in the transform algorithm 

(Equation (1)) were applied differently for each target at the beginning of the training in each 

difficulty level. For instance, the value of    was increased and the values of    and   were 

decreased when the left target was selected. Inversely, the value of    was decreased and the 

values of    and   were increased when the right target was selected. As the rats’ accuracy 

improved, the difference between the values of these coefficients applied differently for each 

target was reduced gradually. Finally, the same coefficients and bias terms were applied for 

both targets. When the inclusion criterion was exceeded for both targets with the finalized 

values of   ,    and  , the difficulty level was incremented and the optimal values for the 
parameters of the transform were searched again in the next task difficulty level by repeating 

the same shaping approach. Selection of the same target for several consecutive trials during 

the training sessions also facilitated reinforcing the neural activity modulations leading to 

acquisition of the selected targets. Randomization in target selection was introduced 

afterwards as the target acquisition performance improved through a series of trials in which 

same target was selected consecutively.   

 

The trajectory of the robotic arm in a trial with highest (4
th

) difficulty level is shown in 

Figure 4. In this representative trial, the right target was randomly selected and the rat 

acquired the selected target by modulating the activity of the pair of the units involved in the 

neuroprosthetic control. The initial position of the robot endpoint in this difficulty was at the 

midpoint of the targets (see Figure 3B). The coefficients in the transform were    = 1,    = 1 

and   = 4.8 Hz, the firing rate thresholds were   =4.8 Hz and   =4.8 Hz during the control of 

the robotic arm for reaching both left and right targets in this task difficulty level. By the 

initiation of a trial via nose poke, the robotic arm was enabled to move and the firing rate 

values of the units (      and      ) were reset to zero (Figure 4C,D). The output of the 

transform (    ) was calculated throughout the trial (Figure 4E). In Figure 4A,B, we can see 
the activity of Unit 1 was mostly higher than that of Unit 2 just before and at the beginning of 

the trial and the robot endpoint moved toward left by the trial initiation. As the right target 

LED was selected for illumination in this trial, the rat modified the firing rates of the units 

and directed the robotic arm toward right (Figure 4F). One can see the inertia of the robotic 

arm from the difference between the delivered pulse width commands (green colored trace) 

and actual trajectory of the robotic arm (orange colored trace) (Figure 4F). The selected 

target (right target) was acquired within 2.23 s based on the actual trajectory of the robotic 

arm and the rat was rewarded with water at the end of trial. 
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Figure 4. Change in the joint angle of the robotic actuator based on the firing rates of the unit 

pair involved in neuroprosthetic control. (A and B) The raster of the spikes generated by the 

units involved in control. (C and D) The firing rates of the units (      and      ), which are 
fed to the transform (Equation (1)). Firing rates of the units before/after the initiation of the 

trial are shown by gray/green bars, respectively. (E) The output of the transform (    ) used 

in the manipulation of the robotic arm. Horizontal dashed red lines indicate the values of 

thresholds    and    used in Equation (2). (F) The trajectory of the robotic actuator. The 

green trace indicates the joint angle values sent to the base servomotor of the robotic arm and 

the orange trace indicates its actual trajectory. Horizontal blue lines present the positions of 

the left and right targets in terms of the joint angle corresponding to the base servomotor of 

the robotic arm. Vertical dashed black lines in all plots represent the time on which the robot 

control was enabled by a nose poke.  
 

The overall target reach accuracy of Rat1 through 50 consecutive trials is illustrated in 

Figure 5A. The highest (4
th

) task difficulty level was applied through these trials. The target 

reach accuracy of the rat through these trials was 90%. The rat was not rewarded in 5 out of 

50 trials since the correct target was not achieved. In one of these trials (18
th

 trial), the robotic 

arm reached the wrong target. In remaining four, the rat moved toward the water receptacle 

and left the platform earlier than acquisition of any target. This action of the rat was detected 

using the infrared beam located in the cage (Figure 1A,B) and the trial was ended 

immediately. The control of the robotic arm through these 50 trials is shown in Movie S1 and 

Movie S2 from the back and front views, respectively. The resulting target reach accuracy 

was achieved within 6 days of training by gradually incrementing the task difficulty level (see 

Figure 3B). The number of trials performed per day ranged from 521 to 1175. As depicted in 

A

B

C

D

E

F

Left Target

Right Target

λ1

λ2
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Figure 5A, the finalized values of the parameters of the transform in the highest task 

difficulty level were   =1,   =1 and  =4.8 Hz. The firing rate thresholds used in the 

transform algorithm were   =4.8 Hz and   =4.8 Hz. The changes in the joint angle of the 

robotic arm for the correct trials are illustrated in Figure 5C. The trajectory through 8
th

 trial 

in Figure 5A is also shown in Figure 4. Figure 6A demonstrates the raster plot of the spikes 

generated by the unit pair involved in cortical control of the robotic arm. After the target 

acquisition performance had reached plateau levels in the 4
th

 (highest) task difficulty level, 

the ongoing session on that day was continued until the rat gives up initiating new trials.  

 

After reaching the inclusion criterion for the highest difficulty level (i.e. greater than 75% 

correct target achievement through at least 40 consecutive trials in which the target is selected 

randomly), the reversal learning task was initiated in the following day. In the reversal 

learning task, the signs of the coefficients of the transform algorithm were inverted 

(Equation (3)) so that the rat was to adapt with the new transform to achieve the randomly 

selected targets. Figure 5B illustrates the target achievement performance of Rat1 for 50 

consecutive trials in the reversal learning task after reaching plateau levels in accuracy. 

Figure 6B presents raster plot of the activity of the unit pair involved in neuroprosthetic 

control through these trials. The target reach accuracy of the rat was 95%. The rat was not 

rewarded in 2 out of 50 trials since it acquired the wrong targets. Movie S3 and Movie S4 

demonstrate the manipulation of the robotic arm by Rat1 through these 50 trials from the 

back and front views, respectively. The present target achievement performance was obtained 

within 2 days of training by gradually incrementing the task difficulty level. The traces in 

Figure 5D present the changes in the joint angle of the robotic arm through the correct trials 

in the reversal learning task. As presented in Figure 5B, the finalized values of the 

parameters of the transform in the highest task difficulty level in the reversal learning task 

were   =1,   =1 and  =0 Hz. The firing rate thresholds applied in the transform algorithm 

were   =4.8 Hz and   =4.8 Hz. 
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Figure 5. Target reach performance in cortical control task. (A) Target reach accuracy and 
the lengths of trials when the transform algorithm presented with Equation (1) is applied. 

The selected target for each trial is represented by red stems (L for left trial and R for right 

trial) and the blue stems show if the correct (selected) target was acquired (1) or not (0). Blue 

stems with empty markers indicate the trial was ended without reward delivery since the rat 

left the platform before target reach and consecutively the infrared beam sensor array in the 

cage (see Figure 1A,B) was activated. Blue stems with filled markers for the unsuccessful 

trials point the trial was ended due to the acquisition of the wrong (opposite) target. (B) 

Target reach accuracy and the lengths of trials after reversal learning with application of the 

transform algorithm given with Equation (3). The bottom graphs in (A) and (B) present the 

lengths of the trials in terms of seconds. (C and D) The trajectories of the robotic arm through 

the correct trials depicted in (A) and (B), respectively. Red/green traces denote the 

trajectories for the selected left/right targets in terms of the joint angle corresponding to the 

base servomotor of the robotic arm. (E and F) Average of waveforms of 100 spikes for M1 

units used in trials shown in (A) and (B), respectively. The shaded regions present the 

standard deviation. 
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Figure 6. Raster of the spikes generated by the units involved in neuroprosthetic control. (A 

and B) Raster of the spikes during reaching the selected targets in the trials depicted in 

Figure 5A,C and Figure 5B,D, respectively. Only the trials ended with the achievement of 

the correct target are presented in the graphs. Red markers indicate the target achievement 

times. Vertical gray lines denote the time on which the robot control was enabled. Each row 

of graphs corresponds to the unit shown on the rightmost side of the row.  Each column of 

graphs corresponds to the selected target side.   
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A total of 16 pairs of units from three rats were examined for the neuroprosthetic control. 

Table 1 provides a brief summary of the target reach performance of the rats using these unit 

pairs. The criteria for selection of the units for cortical control task were the waveform 

stability over multiple days prior to commencement of cortical control task, having clearly 

identifiable waveforms in spike sorting and having a firing rate more than 1 Hz while the 

forepaws of the rat are placed onto the platform shown in Figure 1B. Based on these criteria 

the number of selected single units varied between rats. Rat1 had 5 units, Rat2 had 9 units 

and Rat3 had 10 units. 4 pairs of units were created for Rat1, 5 pairs were created for Rat2 

and 7 pairs were created for Rat3 for cortical control of the robotic arm. The hemispheres and 

numbers of the microelectrode array channels through which the units were isolated are listed 

for each pair in Table 1 (see column “Pairs” in Table 1). For example, a pair of units was 

formed using the units isolated through 4
th
 channel of the microelectrode array implanted into 

the left hemisphere (L4) and 10
th

 channel of the microelectrode array implanted into the right 

hemisphere (R10) in Rat3 for the first cortical control session. If the task difficulty level 

could not be increased for a pair over multiple days of training, one or both of the units in the 

pair were replaced with other units isolated through the neural recordings. In Table 1, the 

pairs of units with which the rats were not capable of reaching the inclusion criterion are 

indicated by cross marks (). The pairs with which the rat met the inclusion criterion are 

demonstrated with the percentage of reaching correct targets through 40 consecutive trials 

(see column “Acc.” in Table 1). The percentages of acquiring the correct targets in the 

reversal learning task are also listed in the second row allocated for the relevant unit pair. The 

pairs with which the inclusion criterion was not achieved in the reversal learning task are 

marked with a dash (   ).  or instance, the accuracy for pair  11- 15 in  at1 in reversal 

learning task was  5% and the pair   - 1  in same rat was not eligible for reversal learning 

as indicated by a dash      . The numbers of days of training in the cortical control mode 

required to reach the listed accuracies are also presented in the table  see column “Days” in 

Table 1). The values of the transform algorithm parameters (  ,   ,  ,    and   ) enabling 

reaching the listed accuracies are given in the table in the relevant columns. Briefly, a total of 

9 out of 16 pairs allowed reaching the inclusion criterion for acquiring the randomly selected 

targets in the highest (4
th

) task difficulty level. 4 out of 9 successful pairs (i.e. R11-R15, R10-

R12, L14–L15 and L4-L6) additionally allowed reaching the inclusion criterion in the 

reversal learning task in the highest task difficulty level. The trajectory, target reach accuracy 

and raster of spikes for the pair R11-R15 in Rat1 is illustrated in Figure 5 and Figure 6. 7 out 

of 16 pairs (pointed by cross () marks) were ineligible for presenting activity modulations 

for effective control of the prosthetic actuator. For the pairs L4-R7 and R4-R12 in Rat2, the 

stability of the waveforms for spike sorting diminished during the cortical control training 

sessions. For the pair L5-L7 in Rat2, the reliability of the spike sorting was reduced during 

the reversal learning task and further training for this pair was ended.   
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Table 1. Target reach performance using M1 units.  
 

 Pairs Acc. Days a1 a2 b λ1 λ2 
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R11-R15 
90% 

95% 
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4.8 

R6-R12 
98% 

– 
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1 

 

-9.6 

 

4.8 

 

4.8 

 

R6-R10        

R10-R12 
85% 

78% 
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9.6 

4.8 
R

at
 2

 

L4-R7        

L5-L7 
90% 

– 
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1 

 

1 

 

0 

 

4.8 

 

4.8 
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R4-L1 
95% 

– 
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1 

 

1 

 

0 

 

4.8 

 

4.8 

 

L11-L12        
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L4-R10        

L14-L15 
93% 

90% 

7 

11 

2 
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1 
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0 

-9.6 

4.8 

4.8 

4.8 
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R2-R13        

R2-L12 
90% 

– 

7 

 

1 

 

1.5 

 

0 

 

4.8 

 

4.8 

 

L11-R12 
90% 

– 

10 

 

1 

 

1 

 

0 

 

4.8 

 

4.8 

 

L6-L11        

L4-L6 
95% 

93% 

2 

6 

1 

2 

1 

1 

-4.8 

0 

9.6 

24 

4.8 

14.4 

 

 

4. Discussion 

 

In the present work, our goal was to develop a behavioral paradigm and an experimental 

setup that allow use of rats for motor neuroprosthetic control in a center-out reaching task. 

The solution described here enabled all three rats involved in the study to control a robotic 

arm through M1 neurons for reaching two opposite targets in one-dimensional space. An 

online transform algorithm (see Equation (1)) was employed to convert the firing rates of a 

pair of recorded M1 units into two robotic actions. The rats were capable of selecting the 

robotic actions directing the robot endpoint toward the indicated targets. In the present 

trajectory-based cortical control task, the target achievement accuracies of the rats reaching 

the inclusion criterion were at least 85% in the highest task difficulty level (see Table 1). A 

total of 9 out of 16 pairs of units isolated from three rats allowed reaching this accuracy level. 

Subsequently, the mappings between the activities of unit pairs and robotic actions were 
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reversed in order to validate the adaptation of the rats through the neuroprosthetic control 

trials (see Equation (3)). In this reversal learning task, 4 unit pairs isolated from two out of 

three rats (Rat 1 and Rat 3) allowed achieving a target reach accuracy of at least 78% (see 

Table 1). In the other rat (Rat 2), the number of unit pairs remaining well-isolated during 

reversal learning task was only one (i.e. unit pair R4-L1, see Results) and consequently we 

were able to study reversal learning with this rat using only that pair.  

 

In the present experimental setup, the time required to shape the rats for attending to the 

robotic workspace prior to cortical control task ranged from 16 to 22 days. The experimental 

setup was specifically designed to enable the rat to control the neuroprosthetic device using 

cortical neurons subsequent to the shaping process presented here. Figure 1B,C shows the 

depth and the height of the platform onto which rat puts its forepaws during trials. The 

dimensions of the platform, the dimensions of the U-shaped corridor on the platform (Figure 

1C) and the dimensions of the corridor on the floor of the cage were adjusted according to the 

size of the rat in order to minimize the variations in its posture during neuroprosthetic control. 

If the rat has different postures across the trials, the activity patterns of the recorded neurons 

and visual feedback from the robotic workspace might vary from trial to trial. This might 

negatively affect the learning curve of the rat through the training sessions. The water 

receptacle was placed onto the wall of the platform rather than onto its upper surface to 

prevent the rat from being distracted during neuroprosthetic control; the rats might have 

tendency to lick the receptacle throughout the trial with reward expectation rather than 

following the robotic workspace during neuroprosthetic control. A narrow, U-shaped corridor 

onto the proximal edge of the platform (Figure 1C) from the perspective of the rat was 

created so that the rat could leave the platform only through this corridor in a stereotypical 

manner to reach the water receptacle. This design allowed setting a precise criterion for 

ending the trials without reward delivery whenever the rat leaves the platform prior to the 

achievement of the target. This movement of the rat (leaving the platform) could be detected 

using the infrared beam shown in Figure 1A-C and the trials could be automatically and 

immediately ended as needed without releasing reward (see Figure 5A). Thus, the rats have 

been shaped to keep their upper body in the corridor above the platform throughout the online 

control of the neuroprosthetic device. This design helped rats receive visual feedback from 

the robotic workspace during neuroprosthetic control. In the training phase prior to the 

commencement of cortical control task, we used custom-designed buttons pressed with teeth 

rather than forepaws so that the rats were capable of performing stereotypical and intentional 

motions for responding to the cues timely. Performance of stereotypical action sequences 

during instrumental conditioning is expected to facilitate associating the these action 

sequences with environmental cues and reward (Jin and Costa, 2010). These buttons have 

been appropriate to be operated by the rats over the course of the shaping process prior to the 

initiation of the cortical control task. During the cortical control task, each button was 

covered with a separate lid as needed to disengage the rat from the buttons.  

 

After associating the button presses with the cues in the experimental setup, the rats 

entered into the cortical control task illustrated in Figure 2C and Figure 3A. In Table 1, we 

can see the time required to exceed the success criterion in cortical control task ranged from 2 

to 16 days. The values of the coefficients and the bias term used in the transform varied based 

on the baseline firing rates and differences in the modulation characteristics of the units 

during neuroprosthetic control. The values of the parameters in the transform were updated 

by the experimenter by trial-and-error through the presented cortical control task where task 

difficulty level was gradually increased over the course of several days of training. 

Additionally, the rat adapted with the transform and improved its target reach accuracy by 
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trial-and-error, by reinforcement learning. Finally, the rats reached the inclusion criterion in 

the highest task difficulty level where the initial position of the robot endpoint was at the 

midpoint of the targets.  

 

The paradigm presented here allowed the rats to move freely during cortical control of the 

robotic arm. Our goal in the design of the experimental setup was to keep the orientation of 

the rat toward the robotic workspace to make it receive visual feedback throughout the trials. 

The brightness of the LED cues was adjusted for each rat and task so as to maximize the 

accuracy in the trials. During neuroprosthetic control we monitored and recorded the 

behavior using an infrared camera without introducing distracting stimuli. The setup allowed 

us to visually and qualitatively observe the movements of the rat during the trials (see Movie 

S1-S4). It is known that increase in neural activity in motor-related brain structures during 

neural operant conditioning are likely to be accompanied by motor or muscle activity (Hiatt, 

1972; Fetz and Baker, 1973). The limitation of our study was the lack of the use of the tools 

(e.g. electromyographic electrodes implanted into the muscles) for quantitative analysis of the 

variations in correlations between the muscles and M1 neural activity. Previously it has been 

demonstrated that the pitch of an auditory cursor can be intentionally controlled by M1 unit 

activity without any overt change in the electromyographic (EMG) activity (Koralek et al., 

2012). Based on our unquantifiable visual observations, the movements of the rat during 

neuroprosthetic control ranged from no movement to overt body movements varied from trial 

to trial, unit pair to unit pair involved neuroprosthetic control (Fetz and Baker, 1973).  

 

In the present paradigm, the acquisition of the targets by the robotic actuator is the 

predictor of reward in contrast to the previous demonstrations where the subject brings the 

reward toward itself using a neuroprosthetic actuator (Chapin et al., 1999; Arduin et al., 2013, 

2014). The rats in the present study became capable of controlling the movements of the 

reward predictor (the robot endpoint) rather than reward itself (e.g. water, sucrose solution or 

food). Additionally, the rat is directly involved in the control of the trajectory of the robot 

endpoint throughout a robotic reaching task in contrast to the goal-based BMIs where the 

BMI controller learns the necessary trajectory to reach the selected target in three-

dimensional space (DiGiovanna et al., 2009; Mahmoudi and Sanchez, 2011). Lastly, in the 

present control paradigm the rats manipulated the position of a robotic cursor using visual 

feedback instead of shifting the frequency of a tone using auditory feedback, which had been 

effectively employed in previous studies to reach one of two target tones (Koralek et al., 

2012, 2013). In this context, the task presented here is novel and similar to the trajectory-

based center-out cortical control of a robot endpoint or a cursor on a computer screen by 

monkey or human subjects. The control of the movement of a sipper tube in two dimensions 

via a joystick has also been demonstrated in rats previously (Slutzky et al., 2010). In light of 

this study future work may assess the capability of rats to control the trajectory of a 

neuroprosthetic actuator in two dimensions.  

 

  

5. Conclusion 

 

We described a behavioral paradigm along with an experimental setup for shaping the rats 

over multiple days of training to perform a center-out reaching task directly using primary 

motor cortex neurons. In contrast to the existing techniques applied in rats for studying BMI 

control, the present setup enabled them to perform trajectory-based center-out control of a 

robotic arm in one-dimensional space using the visual feedback provided. In the cortical 

control paradigm, the firing rates of a pair of units were fed into an online transform 
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algorithm whose output was used as a control signal for manipulation of the robotic arm. The 

task difficulty level represented the distance between the initial position of the robot endpoint 

and the selected target. By gradually increasing the task difficulty level and manually 

updating the parameters of the transform through the training sessions, the rats were shaped 

to control the robotic arm to acquire the randomly selected targets. Adaptation of the rats with 

the behavioral setup and transform algorithm was validated by introducing a reversal learning 

task. The behavioral paradigm introduced here can provide a cost-effective and practical 

alternative for the development and validation process of BMI controllers in one-dimensional 

center-out reaching tasks.  

 

 

Supplementary Material 

 

Movie S1. Cortical control of the robotic arm during 50 consecutive trials listed in Figure 5A 

(back view). 

 

Movie S2. Cortical control of the robotic arm during 50 consecutive trials listed in Figure 5A 

(front view). 

 

Movie S3. Cortical control of the robotic arm during 50 consecutive trials listed in Figure 5B 

(back view). 

 

Movie S4. Cortical control of the robotic arm during 50 consecutive trials listed in Figure 5B 

(front view). 
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