Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The structural basis of odorant recognition in insect olfactory receptors

View ORCID ProfileJosefina del Mármol, Mackenzie Yedlin, View ORCID ProfileVanessa Ruta
doi: https://doi.org/10.1101/2021.01.24.427933
Josefina del Mármol
1Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Josefina del Mármol
Mackenzie Yedlin
1Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vanessa Ruta
1Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vanessa Ruta
  • For correspondence: ruta@rockefeller.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Olfactory systems must detect and discriminate an enormous diversity of chemicals in the environment. To contend with this challenge, diverse species have converged on a common strategy in which odorant identity is encoded through the combinatorial activation of large families of olfactory receptors (ORs), thus allowing a finite number of receptors to detect an almost infinite chemical world. Although most individual ORs are sensitive to a variety of odorants, the structural basis for such flexible chemical recognition remains unknown. Here, we combine cryo-electron microscopy with functional studies of receptor tuning to gain insight into the structural and mechanistic basis of promiscuous odorant recognition. We show that OR5 from the jumping bristletail, Machilis hrabei, assembles as a homo-tetrameric odorant-gated ion channel with broad chemical tuning. We elucidated the structure of OR5 in multiple gating states, alone and in complex with two of its agonists—the odorant eugenol and the insect repellent DEET. Both ligands bind to a common binding site located in the transmembrane region of each subunit, composed of a simple geometric arrangement of aromatic and hydrophobic residues. We reveal that binding is mediated by hydrophobic, non-directional interactions with residues distributed throughout the binding pocket, enabling the flexible recognition of structurally distinct odorants. Mutation of individual residues lining the binding pocket predictably altered OR5’s sensitivity to eugenol and DEET and broadly reconfigured the receptor’s tuning, supporting a model in which diverse odorants share the same structural determinants for binding. Together, these studies provide structural insight into odorant detection, shedding light onto the molecular recognition mechanisms that ultimately endow the olfactory system with its immense discriminatory capacity.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted January 24, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The structural basis of odorant recognition in insect olfactory receptors
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The structural basis of odorant recognition in insect olfactory receptors
Josefina del Mármol, Mackenzie Yedlin, Vanessa Ruta
bioRxiv 2021.01.24.427933; doi: https://doi.org/10.1101/2021.01.24.427933
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The structural basis of odorant recognition in insect olfactory receptors
Josefina del Mármol, Mackenzie Yedlin, Vanessa Ruta
bioRxiv 2021.01.24.427933; doi: https://doi.org/10.1101/2021.01.24.427933

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4105)
  • Biochemistry (8808)
  • Bioengineering (6509)
  • Bioinformatics (23446)
  • Biophysics (11784)
  • Cancer Biology (9199)
  • Cell Biology (13314)
  • Clinical Trials (138)
  • Developmental Biology (7430)
  • Ecology (11403)
  • Epidemiology (2066)
  • Evolutionary Biology (15143)
  • Genetics (10430)
  • Genomics (14036)
  • Immunology (9167)
  • Microbiology (22142)
  • Molecular Biology (8802)
  • Neuroscience (47539)
  • Paleontology (350)
  • Pathology (1427)
  • Pharmacology and Toxicology (2489)
  • Physiology (3729)
  • Plant Biology (8076)
  • Scientific Communication and Education (1437)
  • Synthetic Biology (2220)
  • Systems Biology (6036)
  • Zoology (1252)