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ABSTRACT 

 

The systems-wide analysis of biomolecules in time and space is key to our understanding of 

cellular function and heterogeneity in health and disease1. Remarkable technological 

progress in microscopy and multi-omics technologies enable increasingly data-rich 

descriptions of tissue heterogeneity2,3,4,5. Single cell sequencing, in particular, now routinely 

allows the mapping of cell types and states uncovering tremendous complexity6. Yet, an 

unaddressed challenge is the development of a method that would directly connect the visual 

dimension with the molecular phenotype and in particular with the unbiased 

characterization of proteomes, a close proxy for cellular function. Here we introduce Deep 

Visual Proteomics (DVP), which combines advances in artificial intelligence (AI)-driven 

image analysis of cellular phenotypes with automated single cell laser microdissection and 

ultra-high sensitivity mass spectrometry7. DVP links protein abundance to complex cellular 

or subcellular phenotypes while preserving spatial context. Individually excising nuclei from 

cell culture, we classified distinct cell states with proteomic profiles defined by known and 

novel proteins. AI also discovered rare cells with distinct morphology, whose potential 

function was revealed by proteomics. Applied to archival tissue of salivary gland carcinoma, 

our generic workflow characterized proteomic differences between normal-appearing and 

adjacent cancer cells, without admixture of background from unrelated cells or extracellular 

matrix. In melanoma, DVP revealed immune system and DNA replication related prognostic 

markers that appeared only in specific tumor regions. Thus, DVP provides unprecedented 

molecular insights into cell and disease biology while retaining spatial information. 
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The deep visual proteomics concept 

The versatility, resolution and multi-modal nature of modern microscopy delivers increasingly 

detailed images of single cell heterogeneity and tissue organization8. However, a pre-defined 

subset of proteins is usually targeted, far short of the actual complexity of the proteome. Taking 

advantage of recent developments in mass spectrometry (MS)-based technology, especially 

dramatically increased sensitivity, we here set out to enable the analysis of proteomes within their 

native, subcellular context to explore their contribution to health and disease. We developed a 

concept called Deep Visual Proteomics (DVP) that combines high-resolution imaging, artificial 

intelligence (AI)-based image analysis for single-cell phenotyping and isolation with a novel ultra-

sensitive proteomics workflow7 (Fig. 1). A key challenge in realizing the DVP concept turned out 

to be the accurate definition of single cell boundaries and cell classes as well as the transfer of the 

AI defined features into proteomic samples, ready for analysis. To this end, we introduce the 

software ‘BIAS’ (Biology Image Analysis Software), which coordinates scanning and laser 

microdissection microscopes. This seamlessly combines data-rich imaging of cell cultures or 

archived biobank tissues (formalin-fixed and paraffin-embedded, FFPE) with deep learning-based 

cell segmentation and machine learning-based identification of cell types and states. Cellular or 

subcellular objects of interest are selected by the AI alone or after instruction and subjected to 

automated laser microdissection and proteomic profiling. Data generated by DVP can be mined to 

discover novel protein signatures providing molecular insights into proteome variation at the 

phenotypic level with full spatial meta-information. We show below that this concept provides a 

powerful, multi-layered resource for researchers with applications ranging from functional 

characterization of single cell heterogeneity to spatial proteomic characterization of disease tissues 

with the aim of assisting clinical decision-making.  
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Fig.1: Deep Visual Proteomics concept and workflow 
Deep Visual Proteomics (DVP) combines high-resolution imaging, artificial intelligence (AI)-guided image 
analysis for single-cell classification and isolation with a novel ultra-sensitive proteomics workflow7. DVP links 
data-rich imaging of cell culture or archived patient biobank tissues with deep learning-based cell segmentation and 
machine learning based identification of cell types and states. (Un)supervised AI-classified cellular or subcellular 
objects of interests undergo automated laser microdissection and mass spectrometry (MS)-based proteomic 
profiling. Subsequent bioinformatic data analysis enables data mining to discover protein signatures providing 
molecular insights into proteome variation in health and disease states at the level of single cells. DVP serves as 
resource for researchers and clinicians. 

 

The image processing and single cell isolation workflow 

The microscopy-related aspects of the DVP workflow build on state-of-the-art high-resolution and 

whole-slide imaging as well as machine learning and deep learning (ML and DL) for image 

analysis. For the required pipeline, further advances in our image analysis software were needed, 

as well as downstream, automated, rapid single-cell laser microdissection.  

First, we used scanning microscopy to obtain high-resolution whole-slide images and developed a 

software suite for integrative image analysis termed ‘BIAS’ (Methods). BIAS allows the 

processing of multiple 2D and 3D microscopy image file formats, supporting the major microscope 

vendors and data formats. It combines image preprocessing, deep learning-based image 
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segmentation, feature extraction and machine learning-based phenotype classification. Building 

on a novel deep learning-based algorithm for cytoplasm and nucleus segmentation9, we undertook 

several optimizations to implement pre-processing algorithms to maintain high quality images 

across large image datasets. Deep learning methods require large training datasets, a major 

challenge due to the limited size of high-quality training data10. To address this challenge, we used 

NucleAIzer9 and applied project-specific image style transfer to synthetize artificial microscopy 

images resembling real images. This approach is inherently adaptable to different biological 

scenarios such as new cell and tissue types or staining techniques. We trained a deep learning 

model with these synthetic images for specific segmentation of the cellular compartment of interest 

(e.g. nucleus or cytoplasm, Fig. 2A), and benchmarked it against two leading deep learning 

approaches: unet4nuclei11 and Cellpose12 and a widely-used adaptive threshold- and object 

splitting-based method13. Notably, our deep learning algorithms for cell and nucleus segmentation 

of cell cultures and tissues showed the highest accuracy (Fig. 2A, Suppl. S1). For interactive 

cellular phenotype discovery, BIAS performs phenotypic feature extraction taking into account 

morphology and neighborhood features based on supervised and unsupervised machine-learning 

(Fig 2B, Methods). Importantly, we can combine feature-based phenotypic classification with 

biomarker expression levels from antibody staining for precise cell classification.  

To physically extract the cellular features discovered with BIAS, we developed an interface 

between scanning and laser microdissection microscopes (currently ZEISS PALM MicroBeam 

and Leica LMD6 & 7) (Fig. 2C). BIAS transfers cell contours between the microscopes, preserving 

full accuracy. Laser microdissection has a theoretical accuracy of 70 nm using a 150x objective 

and in practice we reached 200 nm. After optimization the LMD7 allows the excision of 700 

collected high-resolution contours per hour, with full remote and automated operation (Methods). 

To prevent potential laser-induced damage, contours can be excised with a definable offset (Fig. 

2C, D, video 1,2). In summary, BIAS successfully unifies scanning and laser microdissection 

microscopy on the basis of AI-driven image analysis.      
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Figure 2. BIAS for integrative image analysis and automated LMD single-cell isolation 

A. Left: AI-driven nuclei and cytoplasm segmentation of normal appearing and cancer cells and tissue using image 
style transfer learning in the Biological Image Analysis Software (BIAS), developed here. Right: We benchmarked 
the accuracy of its segmentation approach using the F1 metric and compared results to three additional methods 
M1-M3. Visual representation of the segmentation results: green areas correspond to true positive, blue to false 
positive and red to false negative. B. BIAS allows the processing of multiple 2D and 3D microscopy image file 
formats. Examples for image preprocessing, deep learning-based image segmentation, feature extraction and 
machine learning-based phenotype classification. C. BIAS also serves as the interface between the scanning and a 
laser microdissection microscope, allowing high accuracy transfers of cell contours between the microscopes. 
Upper panel: conceptual overview of cutting functions, cutting offset with respect to the object of interest and 
optimal path finding. Lower panel: Practical illustration of the functions in the upper panel. D. Captured single 
nuclei can be quality controlled in collection wells 
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DVP defines single cell heterogeneity at the subcellular level 

To determine if DVP can characterize functional differences between phenotypically distinct cells, 

we applied our workflow to an unperturbed cancer cell line (FUCCI - U2OS cells14).  After deep 

learning-based segmentation for nuclei and cell membrane detection, we isolated 80-100 single 

cells or 250-300 nuclei per experiment (Fig. 2A, 3A, B). Although the analysis of small numbers 

of tissue cells by MS has been a long-standing goal, transfer, processing and analysis of these 

minute samples pose formidable analytical challenges15 which we addressed in turn. We processed 

samples on the basis of a recently developed workflow for ultra-low sample input7,16, that omits 

any sample transfer steps and ensures decrosslinking in very low volumes (Methods). We found 

that samples could be analyzed directly from 384 wells without any additional sample transfer or 

clean-up. MS measurements were performed with a data independent acquisition method using the 

parallel accumulation – serial fragmentation acquisition method an additional ion mobility 

dimension and optimal fragment (diaPASEF) ion usage on a newly developed mass 

spectrometer17,7. Replicates of cell and nucleus proteomes demonstrated a robust workflow with 

high quantitative reproducibility (Pearson r = 0.96). Proteomes of whole cells were very different 

from those of nuclei alone, as in subcellular proteomics experiments based on biochemical 

separation18 (Fig. 3C, Fig. S2A). This was likewise reflected in the bioinformatic enrichment 

analysis, with terms like plasma membrane, mitochondrion, nucleosomes and transcription factor 

complexes being highly significant (FDR < 10-5) (Fig. 3D).  

To address if morphological differences between nuclei are also reflected in their proteomes, we 

used an unsupervised phenotype finder model to identify groups of morphologically distinct nuclei 

based on nuclear area, perimeter, form factor, solidity and DNA staining intensity (Fig. 3E). ML 

found three main nuclei classes (27-37% each) and also discovered three rare ones (2-4% each) 

(Fig. 3F). The resulting six distinct nuclei classes had visible differences in size and shape. Class 

1 represented mitotic states while the remaining five were in interphase with varying feature 

weighting (Fig. 3G, H). For subsequent analysis, we focused on those five nuclei classes of 

unknown state. In principal component analysis (PCA), replicates of the respective proteomes 

clustered closely and the more frequent classes (2, 3 and 5) grouped together (Fig. 3I). The rare 

classes 4 and 6, which were mainly driven by their unique morphologies (large nuclei (> 4n) and 

‘bean-shaped’, respectively) separated in component 1 and 2 from this group. To verify and 

quantify this observation, we compared each cell class proteome to a proteome of all nuclei in a 
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field of view. This revealed that the rarest cell classes had the largest numbers of differentially 

expressed proteins compared to unclassified proteomes (Fig. 3J, S2B). These results demonstrate 

that the differences visible by microscopy translate into quantifiable proteomic differences and 

highlights that subcellular phenotypes are linked to distinct proteome profiles.  
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Fig.3: DVP defines single cell heterogeneity at the subcellular level 

A. Deep learning-based segmentation of whole cells and nuclei in BIAS of DNA (DAPI) stained U2OS FUCCI 
cells. Scale bar =20µm B. Automated laser microdissection of whole cells and nuclei into 384-well plates. Images 
show wells after collection. C. Quantitative proteomic results of whole cell and nuclei replicates, and comparison 
between whole cells and nuclei. D. Relative protein levels (X-axis) of major cellular compartments between whole 
cell and nuclei specific proteomes. Y-axis displays point density. E. Left: Conceptual workflows of the phenotype 
finder model of BIAS for machine learning-based classification of cellular phenotypes. Right: Results of 
unsupervised ML-based classification of six distinct U2OS nuclei classes based on morphological features and 
DNA staining intensity. Colors represent classes. Scale bar = 20µm. F. Relative proportions of the six nuclei classes. 
G. Phenotypic features used by ML to identify six distinct nuclei classes. Radar plots show z-scored relative levels 
of morphological features (nuclear area, perimeter, solidity and form factor) and DNA staining intensity (total DAPI 
signal). H. Example images of nuclei from the six classes identified by ML. Blue color shows DNA staining 
intensity and red color 5-ethynyl-2’-deoxyuridine (EdU) staining intensity to identify cells undergoing replication. 
Represented nuclei are enlarged for visualization and do not reflect actual sizes I. Principal component analysis 
(PCA) of five interphase classes based on 1,753 protein groups after data filtering. Replicates of classes are 
highlighted by ellipses with a 95% confidence interval. J. Number of differentially expressed proteins compared to 
unclassified nuclei (bulk). Proteins with an FDR less than 0.05 were considered significant.  

We next asked if the proteomic differences across the five nuclei classes could give clues to the 

functional differences between the interphase states (Fig. 3E, H). The 361 significantly 

differentially expressed proteins across classes were enriched for nuclear and cell cycle related 

proteins (e.g. ‘DNA unwinding involved in replication’ and ‘condensation of prophase 

chromosomes’), implicating the cell cycle as a strong biological driver (Fig. 4A, B). To confirm 

this, we compared our data to a single-cell imaging dataset including 574 cell cycle regulated 

proteins 19 and found that they were 2.3-fold enriched in our significantly regulated proteins (FDR 

< 10-6). In addition, nuclear area, one of the driving features between our classes, increases from 

G1 to S/G2 cells during interphase (Fig. 3G, Fig. S3A-C), supporting the importance of the cell 

cycle in defining the nuclei classes. 

We were intrigued that our single cell type proteomes contained a number of uncharacterized 

proteins, offering an opportunity to associate them with a potential cellular function. Focusing on 

three open reading frame (ORF) proteins remaining after data filtering, two of them - C7orf50 and 

C1orf174 - showed class specific expression patterns (p < 0.01, Fig. S3D). C7orf50 was most 

highly expressed in the nucleoli of classes 2 and 4 nuclei, which showed S/G2 specific 

characteristics (Fig. 3H, S3D, E), suggesting that its expression is cell cycle regulated. Indeed, we 

confirmed higher levels of C7orf50 in G1/S and S/G2 compared to G1 phase cells (Fig. S3E). As 

cell cycle regulated proteins tend to be over-represented in cancer prognostic associations19, we 

investigated C7orf50 in the human pathology atlas20 and found high expression was associated 

with favorable outcome in pancreatic cancer (Fig. S3G, p < 0.001). Its interaction, co-expression 
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and co-localization with the protein LYAR (‘Cell Growth-Regulating Nucleolar Protein’) suggests 

a functional link between them and a potential role in cell proliferation and cancer growth (Fig. 

S3F, H). 

Although our data revealed the cell cycle to be a strong driver of nuclei classification, class 6 

showed a pronounced proteomic signature independent of known cell cycle markers (Fig. 4C, D). 

In these rare, bean-shaped nuclei, cytoskeletal and cell adhesion proteins (e.g. VIM, TUBB, ACTB 

and ITGB1) were upregulated, suggesting that they derived from migrating cells undergoing 

nuclear deformation, reminiscent of what has recently been described in the context of cell 

invasion21, 22. Note that we classified nuclei from 2D images but laser cutting isolates them in 3D, 

thus samples also probe morphology-driven protein re-localization around the nucleus as 

exemplified by class 6 nuclei. 

These cell culture experiments establish that DVP correlates cellular phenotypes, heterogeneity 

and dynamics with the proteome level in an unbiased way. Common and rare phenotypes can be 

studied in their natural environment, preserving the native biological variation within cancer cells 

to link phenotypes to proteomic make-up. 
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Fig.4: DVP links cellular phenotypes to functional protein networks in U2OS cancer cells 

A. Bioinformatic enrichment analysis of proteins regulated between the five nuclei classes. Significant proteins 
(361 ANOVA significant, FDR < 0.05, s0 = 0.1) were compared to the set of unchanged proteins based on Gene 
Ontology Biological Process (GOBP), Reactome pathways and cell cycle regulated proteins reported by the Human 
Protein Atlas20. A Fisher’s exact test with a Benjamini-Hochberg FDR of 0.05 was used. B. Relative protein levels 
(z-score) of known cell cycle markers across the five nuclei classes. C. Unsupervised hierarchical clustering of all 
361 ANOVA significant protein groups. Cell cycle regulated proteins reported by the HPA are shown in green in 
the right bar. Nuclei classes are shown in the column bar. Proteins upregulated in class 6-nuclei (yellow) are 
indicated by the black box.  D. Enrichment analysis of proteins upregulated in class 6-nuclei (black box in panel 
C). Relationship between the top 10 most significantly enriched GO terms and proteins are shown. Node sizes 
represent the number of genes in each category. 
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DVP applied to cancer tissue heterogeneity 

We next explored if DVP could provide unbiased proteomic profiling of distinct cell classes in 

their individual spatial environments at high resolution. Billions of patient samples are collected 

routinely during diagnostic workup and biobanked in the archives of pathology departments 

around the world23. Therefore, the precise proteomic characterization of single cells in their spatial 

and subcellular context from these samples could have great clinical impact as an extension of the 

emerging field of digital pathology24 . We selected archived tissue of a salivary gland acinic cell 

carcinoma, a rare and understudied malignancy of the epithelial secretory cells of the salivary 

gland that arises from their epithelial secretory cells. First, we developed an immunohistochemical 

staining protocol on glass membrane slides for routine histopathology and stained the tissue for 

EpCAM to outline the cellular boundaries for segmentation and feature extraction by BIAS 

(Methods). This revealed normal appearing and neoplastic regions with different cellular 

composition. While the former was mainly comprised of acinar, duct and myoepithelial cells, the 

carcinoma was dominated by uniform tumor cells with round nuclei and abundant basophilic 

cytoplasm (Fig. 5A, B).  

To identify disease specific protein signatures, we wished to directly compare the normal 

appearing acinar cells with the malignant cells, rather than admixing it with varying proportions 

of unrelated cells. To this end, we classified acinar and duct cells from normal parotid gland tissue 

based on their cell-type specific morphological features and isolated single cell classes for 

proteomic analysis (Fig. 5C and S4A). Bioinformatics of the resulting proteomes revealed strong 

biological differences between these neighboring cell types, reflecting their distinct physiological 

functions. Acinar cells, which produce and secrete saliva in secretory granules, showed high 

expression of proteins related to vesicle transport and glycosylation along with known acinar cell 

markers such as α-amylase (AMY1A), CA6 and PIP (Fig. S4B). In contrast, duct cells, which are 

rich in mitochondria to deal with the energy demand for transcellular saliva secretion25, indeed 

expressed high levels of mitochondria and metabolism related proteins (Fig. S4B). For 

comparison, we exclusively excised malignant and benign acinar cells from the various regions 

within the same tissue section. Interestingly, the proteomes of acinar cells clustered together 

regardless of disease state, demonstrating a strong cell of origin effect (Fig. S4C). Building on this 

foundation, we analyzed six replicates of normal appearing and nine of neoplastic regions, which 

showed excellent within-group quantitative reproducibility (Pearson r > 0.96). Correlation 
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between normal and cancer were lower, reflecting disease and cell-type specific proteome changes 

(r = 0.8, Fig. 5D, E). Acinar cell markers in the carcinoma were significantly downregulated, 

consistent with previous reports25. We discovered an up-regulation of interferon-response proteins 

(e.g. MX1, HLA-A, HLA-B, SOD2) and the proto-oncogene SRC, a well-known therapeutic 

target26, together with a treasure-trove of other proteins. This highlights the ability of DVP to 

discover disease-specific and therapeutically relevant proteins on the basis of cell-type resolved 

tissue proteomics. 
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Fig.5: DVP applied to archived tissue of a rare salivary gland carcinoma 

A. Immunohistochemical staining of an acinic cell carcinoma of the parotid gland by the cell adhesion protein 
EpCAM. B. Representative regions from normal appearing tissue (upper panels a and b) and acinic cell carcinoma 
(lower panels c and d) from A. C. DVP workflow applied to the acinic cell carcinoma tissue. Deep learning-based 
single cell detection of normal appearing (green) and neoplastic (magenta) cells positive for EpCAM. Cell 
classification based on phenotypic features (form factor, area, solidity, perimeter, EpCAM intensity). D. Proteome 
correlations of replicates from normal appearing (normal, n=6) or cancerous regions (cancer, n=9). E. Volcano plot 
of pairwise proteomic comparison between normal and cancer tissue. T-test significant proteins (FDR < 0.05, s0 = 
0.1) are highlighted by black lines. Proteins higher in normal tissue are highlighted in green on the left of the volcano 
including known acinic cell markers (AMY1A, CA6, PIP). Proteins higher in the acinic cell carcinoma are on the 
right in magenta, including the proto-oncogene SRC and interferon-response proteins (MX1, HLA-A). 

 

To investigate if DVP could resolve different states of the same cell type, we next applied it to 

melanoma, a highly aggressive and heterogeneous cancer associated with poor outcomes in 

advanced stages27,28. We chose an FFPE-preserved tissue specimen archived 18 years ago, as we 

and others have found such tissues to be amenable to MS-based proteomics, a key advantage over 

transcriptomics16,29. 

Melanoma heterogeneity is driven by distinct tumor cell subpopulations and interactions with their 

tumor microenvironment (TME or tumor stroma), influencing disease progression, treatment 

response and patient survival30. We therefore asked if DVP could identify disease-relevant 

proteome signatures by comparing cancer cells from the inner tumor mass to those that were in 

close proximity to the stroma (Fig. 6A). To profile only melanoma cells, we isolated cells double-

positive for the melanoma markers SOX10 and CD146 (Fig. 6A). Proteomes from the central 

tumor (central) and tumor-stroma border (peripheral) region were distinct in unsupervised 

hierarchical clustering and PCA (Fig. 6B). Peripheral cells showed strong BRAF, integrin and 

immune system related signatures, whereas in central cells up-regulated proteins with functions in 

DNA replication, regulation of p53 activity and mRNA splicing (FDR < 0.05, Fig. 6C, D). 

Prognostically relevant genes for subcutaneous melanoma have previously been reported by 

transcriptomics but without spatial context31,32. When we interrogated these markers in our data 

sets, we found that the outer region had significantly up-regulated favorable prognostic proteins 

for immune related processes (e.g. HLA-B, TAPBP, p-value < 0.01). In contrast, unfavorable 

proteins showed the inverse trend with higher levels in the central region (e.g. MCM3/6, 

CDK11A/B, DHX9) (Fig 6E, p-value < 10-5). Furthermore, our differential analysis highlighted 

‘signaling by GCPR’, ‘extracellular matrix organization’ and a number of other relevant proteins 

associated with these and other cancer-relevant functions. These results show the power of DVP 
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to quantify the spatial variability of the disease-related proteome and suggests the potential to 

improve molecular disease subtyping to guide clinical decision-making.  
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Fig.6: DVP applied to archived melanoma tissue 

A. DVP applied to melanoma immunohistochemically stained for the melanoma markers SOX10 and CD146. After 
AI-guided single cell segmentation (left panel), SOX10 and CD146 double-positive melanoma cells were classified 
according to proximity to the tumor stroma (middle panel). Cells from the central tumor mass (central, marked in 
turquoise) and close to the tumor stroma (peripheral, marked in light green) were isolated by automated LMD (right 
panel) and subjected to MS-based proteomics. B. Upper panel: Dendrogram of unsupervised hierarchical clustering 
of central (n = 3) and peripheral (n = 3) melanoma cells. Lower panel: Principal component of central and peripheral 
melanoma cell proteomes. C. Enrichment analysis of proteins differentially regulated between central and peripheral 
melanoma cells. Relationship between all significantly enriched GO terms and proteins are shown. Node sizes 
represent the number of genes in each category. Node colors indicate relative log2 transformed protein levels. D. 
Gene Set Enrichment Analysis (GSEA) plot of significantly enriched pathways for central and peripheral cells. E. 
Relative protein levels comparing central and peripheral cells for favorable (left, p-value < 0.009) and unfavorable 
(right, p-value < 10-5) genes reported by31,32.  

 

 

Outlook 

The DVP pipeline combines high resolution microscopy with new developments for image 

recognition, automated laser microdissection and ultra-sensitive MS-based proteomics in a robust 

way. Our examples demonstrate a wide range of applications, from cell culture to pathology and 

in principle, any biological systems that can be microscopically imaged is amenable to DVP.  

A single slide can encompass hundreds of thousands of cells or more and many such slides could 

rapidly be scanned to isolate very rare cell states or interactions between cells. Likewise, DVP 

should be uniquely suited to study the proteomic composition and post-translational modifications 

in the extracellular matrix surrounding particular cell constellations. The resolution of excision is 

limited to the width of a laser beam, which is sufficient to excise individual chromosomes33, but 

cells could also be interrogated by super-resolution microscopy or highly-multiplexed imaging to 

better delineate precise and subtle cell states as part of their classification.  

In conclusion, DVP marries increasingly powerful imagining technologies with unbiased 

proteomics, with a plethora of applications in basic biology and biomedicine. At the conceptual 

level, this technology integrates cell biology as studied by microscopy with unbiased ‘omics’ type 

analyses and in particular MS-based proteomics. Furthermore, the visual information gives 

specific context that is helpful in interpreting the proteomics data. For the field of oncology, DVP 

encompasses digital pathology but integrates and extends the information in stainings against a 

few pre-defined markers to thousands of proteins making up a cellular context. 
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SUPPLEMENTARY FIGURES 

 

 
Fig. S1: Benchmarking of segmentation algorithm 

Cell body and nuclei segmentation of melanoma (left) and salivary gland tissue (right) using the Biological Image 
Analysis Software (BIAS). We benchmarked the accuracy of our segmentation approach using the F1 metric and 
compared results to three additional methods M1-M3. unet4nuclei (M1)11, conventional adaptive threshold- and object 
splitting-based application (M2)13, CellPose (M3)12. Visual representation of the segmentation results: green areas 
correspond to true positive, blue to false positive and red to false negative. Data provided in Table S1. 
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Fig. S2: PCA and loadings of cell culture classes at sub-cellular level and number of significantly changed 
proteins vs. class abundance 
A. Principal component analysis (PCA) of whole cell (n = 3) and nuclei proteomes (n = 3) based on 1,993 quantified 
protein groups after data filtering for no missing values. Proteins with the strongest contribution to PC1 are 
highlighted. B. Correlation between number of significantly regulated proteins per nuclei class vs relative class 
proportion. A linear model was fitted to the data showing an inverse correlation with Pearson r = -0.86 (p-value = 
0.06). 
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Fig. S3: DVP discovers uncharacterized proteins with potential clinical relevance 

A. Violin plots showing nuclear area in pixels of the 6 nuclei classes identified by ML. B. Nuclear area in pixels of 
U2OS FUCCI cells in relation to the cell cycle pseudotime19. Color code indicates point density. C. Nuclear area of 
three major cell cycle states G1, G1/S and S/G2 determined by fluorescently tagged CDT1 and GMNN intensities and 
Gaussian clustering. D. Relative protein levels of the three ORF proteins C7orf50, C11orf98 and C1orf174 across the 
5 nuclei classes. C7orf50 and C1orf174 were significantly differentially regulated (p < 0.01). E. Mean intensities of 
immunofluorescently stained C7orf50 and the cell cycle markers ANLN and CCNB1 in U20S cells. C7orf50 levels 
were quantified in nuclei with low and high ANLN and CNNB1 intensities. F. Upper panel: Representative 
immunofluorescence images of C7orf50 and DNA (DAPI) stained U2OS cells20,32. Scale bar is 20 µm. Note, C7orf50 
is enriched in nucleoli. Lower panel: Immunohistochemistry of a C7orf50 stained pancreatic adenocarcinoma 
(https://www.proteinatlas.org/ENSG00000146540-C7orf50/pathology/pancreatic+cancer#img). Image credit: 
Human Protein Atlas. Scale bar is 40µm. G. Kaplan-Meier survival analysis of pancreatic adenocarcinoma 
(https://www.proteinatlas.org/ENSG00000146540-C7orf50/pathology/pancreatic+cancer) based on relative C7orf50 
RNA levels (FPKM, number of Fragments Per Kilobase of exon per Million reads)32. RNA-seq data is reported as 
median FPKM, generated by The Cancer Genome Atlas (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga). Patients were divided into two groups based on C7orf50 
levels with n=41 low and n=135 high patients. A log-rank test was calculated with p = 0.0001. H. String interactome 
analysis for C7orf50. A high confidence score of 0.7 was used with the five closest interactors highlighted by color34. 
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Fig. S4: DVP applied to archival tissue of a rare salivary gland carcinoma 

A. Immunohistochemical staining of normal salivary gland stained for the cell adhesion protein EpCAM. Supervised 
(random forest) ML was trained to identify acinar (green) and duct cells (turquoise). B. Left panel: Quantitative 
proteomic comparison between acinar and duct cells from tissue in A with known cell type specific markers 
highlighted (https://www.proteinatlas.org/humanproteome/tissue/salivary+gland). Right panel: Relative protein levels 
of selected pathways that were significantly higher in acinar or duct cells. C. Unsupervised hierarchical clustering of 
acinar and duct cell proteomes from two different patients together with acinar cell carcinoma cells. Note that normal 
acinar cells of two different tissues clustered together. Duct cells clustered furthest away.  Prior to clustering, protein 
levels from different sample groups (duct cell tissue #1, acinar cell tissue #1, acinar cell tissue #2, carcinoma tissue 
#2) were averaged and z-scored. Bar on the left shows differentially expressed pathways from panel B with acini and 
duct specific proteins in green and turquoise, respectively. 
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AI-driven Deep Visual Proteomics defines cell identity and heterogeneity  
Mund and Coscia et al. 

 

MATERIAL & METHODS 

Patient samples and ethics 
We collected archival FFPE tissue samples of salivary gland acinic cell carcinoma and 
melanoma from the Department of Pathology, Zealand University Hospital, Roskilde, 
Denmark. The study was carried out in accordance with the institutional guidelines under 
approval by the local Medical Ethics Review Committee (SJ-742), the Data Protection Agency 
(REG-066-2019) and in agreement with Danish law (Medical Research Involving Human 
Subjects Act). 
In accordance with the Medical Ethics Review Committee approval, all FFPE human patient 
tissue samples were exempted from consent as these studies used existing archived 
pathological specimens and not human subjects directly. Human tissue specimens were 
assessed by a board-certified pathologist. 
 
Cell lines  
The human osteosarcoma cell line U2OS was grown in Dulbecco’s modified Eagle’s medium 
(high glucose, GlutaMAX) containing 10% FBS and penicillin-streptomycin (Thermo Fisher 
Scientific).  
The U2OS FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator) cells were kindly 
provided by Dr. Miyawaki1. These cells are endogenously tagged with two fluorescent proteins 
fused to the cell cycle regulators CDT1 (mKO2-hCdt1+) and Geminin (mAG-hGem+). CDT1 
accumulates during the G1 phase while Geminin accumulates in S and G2 phases allowing cell 
cycle monitoring. The cells were cultivated at 37 °C in a 5.0 % CO2 humidified environment 
in McCoy’s 5A (modified) medium GlutaMAX supplement, (Thermo Fisher, 36600021, MA, 
USA) supplemented with 10% fetal bovine serum (FBS, VWR, Radnor, PA, USA) without 
antibiotics.  
U2OS cells stably expressing a membrane-targeted form of eGFP were generated by 
transfection with plasmid Lck-GFP (Addgene #610992) and culturing in selection medium 
(DMEM medium containing 10% FBS, Penicillin-Streptomycin, 400 µg/ml Geneticin) under 
conditions of limited dilution to yield single colonies. A clonal cell line with homogenous and 
moderate expression levels of Lck-eGFP at the plasma membrane was established from a single 
colony. 
All cell lines were tested for mycoplasma (MycoAlert, Lonza) and authenticated by STR 
profiling (IdentiCell Molecular Diagnostics). 
 
Tissue preparation for immunohistochemistry 
Immunohistochemical staining on membrane slides: 
Membrane PEN slides 1.0 (Zeiss, Göttingen, Germany, cat. #415190-9041-000) were treated 
with UV light for 1 h and coated with APES (3-aminopropyltriethoxysilane) using Vectabond 
reagent (Vector Laboratories, Burlingame, CA, USA, cat. #SP-1800-7) according to the 
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manufacturer's protocol. FFPE tissue sections were cut (2.5 µm), air-dried at 37 ºC overnight 
and heated at 60 ºC for 20 min to facilitate better tissue adhesion. Next, sections were 
deparaffinized, rehydratrated and loaded wet on the fully automated instrument Omnis (Dako, 
Glostrup, Denmark). Antigen retrieval was conducted using Target Retrieval Solution pH 9 
(Dako, cat # S2367) diluted 1:10 and heated for 60 minutes at 90 °C. Single stain for EpCAM 
(Nordic Biosite, Copenhagen K, Denmark, clone BS14, cat. #BSH-7402-1, dilution 1:400) and 
sequential double stain for SOX10/CD146 (SOX10; Nordic Biosite, clone BS7 cat. #BSH-
7959-1, dilution 1:200 and CD146; Cell Marque, Rocklin, CA, USA, clone EP54, cat. #AC-
0052, dilution 1:400) was performed and slides were incubated for 30 min (32 °C).  After 
washing and blocking of endogenous peroxidase activity, the reactions were detected and 
visualized using Envision FLEX+ High pH kit (Dako, cat #GV800+GV809/GV821) according 
to manufacturer’s instructions. In the double stain, Envision DAB+ (Dako, cat # GV825) and 
Envision Magenta (Dako, cat. #GV900) Substrate Chromogen Systems was used for 
visualization of CD146 and SOX10, respectively. Finally, slides were rinsed in water, 
counterstained with Mayer’s hematoxylin, and air-dried without mounting.  
 
Immunofluorescence staining  
Cells were first incubated with 5-ethynyl-2 deoxyuridine (EdU) for 20 min, then fixed for 5 
min at room temperature with 4 % paraformaldehyde and washed three times with PBS. Cells 
were then permeabilized with PBS/0.2% Triton-X for 2 min on ice and washed three times 
with PBS. Cells were then stained with an EdU labeling kit (Life Technologies) and 
counterstained with Hoechst 33342 for 10 min. Slides were mounted with GB mount (GBI 
Labs # E01-18).  
96-well glass bottom plates (Greiner Sensoplate Plus, Greiner Bio-One, Germany) were coated 
with 12.5 µg/ml human fibronectin (Sigma Aldrich, Darmstadt, Germany) for 1 h at RT. 
Immunocytochemistry was carried out following an established protocol3. 8,000 U2OS cells 
were seeded in each well and incubated in a 37 °C and 5% CO2 environment for 24 hours. Cells 
were washed with PBS, fixed with 40 µl 4% ice-cold PFA and permeabilized with 40 µl 0.1 
Triton X-100 in PBS for 3x5 min. Rabbit polyclonal HPA antibodies targeting the proteins of 
interest were diluted in blocking buffer (PBS + 4% FBS) at 2-4 µg/ml along with marker 
primary antibodies (see just below) and incubated overnight at 4°C. Cells were washed with 
PBS for 4x10 min and incubated with secondary antibodies (goat anti-rabbit Alexa488 
(A11034, Thermo Fisher), goat anti-mouse Alexa555 (A21424, Thermo Fisher), goat anti-
chicken Alexa647 (A21449, Thermo Fisher)) in blocking buffer at 1.25 µg/ml for 90 min at 
RT. Cells were counterstained in 0.05 µg/ml DAPI for 15 min, washed with for 4x10min and 
mounted in PBS. 
 
Primary antibodies used: 
For C7orf50 cell cycle validation: 
mouse anti ANLN at 1.25 ug/ml (amab90662, Atlas Antibodies)  
Mouse anti CCNB1 at 1 ug/ml: (610220, BD Biosciences)  
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High-resolution microscopy 
Images of immunofluorescence-labeled cell cultures were acquired using an AxioImager Z.2 
microscope (Zeiss, Germany), equipped with widefield optics, a 20×, 0.8-NA dry objective, a 
quadruple-band filter set for Hoechst, FITC, Cy3 and Cy5 fluorescent dyes. Widefield 
acquisition was performed using the Colibri7 LED light source and an AxioCam 702 mono 
camera with 5,9 mm/px. Z-stacks with 19 z-slices were acquired at 3 mm increments to capture 
the optimal focus plane. Images were obtained automatically with the Zeiss Zen 2.6 (blue 
edition) at non-saturating conditions (12-bit dynamic range). 
IHC images from salivary gland and melanoma tissue were obtained using the automated slide 
scanner Zeiss Axio Scan.Z1 (Zeiss, Germany) for brightfield microscopy. Brightfield 
acquisition was obtained using the VIS LED light source and a CCD Hitachi HV-F202CLS 
camera. PEN slides were scanned with a 20×, 0.8-NA dry objective yielding a resolution of 
0,22 mm/px. Z-stacks with 8 z-slices were acquired at 2 mm increments to capture the optimal 
focus plane. Color images were obtained automatically with the Zeiss Zen 2.6 (blue edition) at 
non-saturating conditions (12-bit dynamic range). 
 
Widefield fluorescence microscopy for validation of cell cycle dependent C7orf50 expression 
Cells were imaged on a Leica Dmi8 widefield microscope equipped with a 0.80 N/A 40x air 
objective and a Hamamatsu Flash 4.0 V3 camera using the LAS X software. The segmentation 
of each cell was performed using the Cell Profiler software4 using DAPI for nuclei 
segmentation. The mean intensity of the target protein and the cell cycle marker protein was 
measured in the nucleus. The cells were grouped into the G1 and G2 phases of the cell cycle 
by using the 0.2 and 0.8 quantile of ANLN or CCNB1 intensity levels in the nucleus and cell 
cycle dependent expression of C7orf50 was validated by comparing differences in expression 
levels between G1 and G2 cells. 
 
Laser microdissection 
To excise cells or nuclei we used the Leica LMD7 system, which we had adapted for automated 
single cell automation. High cutting precision was achieved using a HC PL FLUOTAR L 
63x/0.70 (tissue) or 40x/0.60 (cells cultures) CORR XT objective. We used the Leica Laser 
Microdissection V 8.2.3.7603 software (adapted for this project) for full automated excision 
and collection of more than 700 contours per hour. 
 
Leica LMD 7 cutting accuracy (Leica R&D, patent EP1276586) 
For 150x objective: !"!#" = 0.07µm 
 
Biological Image Analysis Software (BIAS) introduction 
A typical image analysis workflow in BIAS consists of multiple images processing steps, 
including image preprocessing, object segmentation, contour post-processing, feature 
extraction and statistical analysis, supervised or unsupervised machine learning methods for 
phenotype classification, cell selection and cell extraction (by a selected or supported micro-
dissection microscope). For each workflow step BIAS provides conveniently customizable 
modules. 
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Images were captured with a Zeiss Axio Scan.Z1 or AxioImager Z.2 microscope, both are 
supported by the analysis software with preservation of correct spatial information (spatial 
topology and size). Other types of microscopes with similar support include 3DHistech, 
Hamamatsu, GE IN Cell, Molecular Devices ImageXpress Micro, Leica SP, Perkin Elmer 
Opera and Operetta. It is also possible to import standard image files with editable image 
orientation and resolution. Illumination-correction algorithm, primarily CIDRE5 (within BIAS) 
were applied where it was necessary to solve the frequent ‘vignetting’ effect observable in raw 
microscopy images.  
Image preprocessing was followed by deep learning-based nucleus and cell segmentation 
modules (see segmentation methods and accuracy evaluation) further refined by unary and 
binary morphological operators (e.g.: dilation, erosion, cavity filling, addition and subtraction). 
For example, subtraction can be used to calculate the cytoplasm-only region from cell and 
nuclei masks. 
Results of different segmentation algorithms may be connected by a linking module to form 
complex structures, e.g. an abstract cell object might be constructed from a segmented nucleus, 
cytoplasm and proteins where each component can be analyzed individually or as a whole. 
Objects were forwarded to the feature extraction modules, configurable to extract properties 
from the selected image channels and cell components. A multitude of features can be retrieved 
from the image and contour data, such as shape (e.g.: area, perimeter, form factor, solidity etc.), 
intensity (e.g.: min, max, mean, total) or texture (e.g.: Haralick features) and represented in a 
feature matrix6. Features to be extracted may vary by experiments according to their specific 
requirements each, potentially containing up to hundreds or a few thousands per cell depending 
on the configuration. Features from the neighboring regions of each cell can be incorporated 
as well, to further improve accuracy where local neighborhoods might also contain valuable 
information for the cell phenotypes (such as in tissues)7.  The resulting feature matrices can be 
analyzed internally or exported to a 3rd party tool8. Subsequently reimport of extended feature 
matrices into BIAS is also possible to extend the statistical capabilities or simply to visualize 
the data in the plate overview. 
Internal analysis tools include simple, value-based statistics, manual gating, automatic feature 
space clustering and interactive supervised machine learning; additionally, these may also be 
combined. Final cell selection can depend on simple, value-based statistics or complex queries 
searching in multiple feature and classification matrices. 
With manual gating, two features can be represented in a two-dimensional coordinate system 
and with cluster centers defined manually, samples are displayed at their actual position in the 
coordinate system. K-Means clustering can automatically find a fixed number of cluster centers 
in the feature space with an arbitrary number of dimensions. 
During supervised machine learning, the biologist defines the phenotypes of interest and 
provides training samples (usually around a hundred samples for each class). Training is 
iterative and interactive, refinable and new phenotypes may be identified using an active 
learning technique9. A cross validation tool is provided to continuously monitor accuracy, so 
that when a satisfactory threshold is reached, all other cells in the whole experiment are 
classified. Different machine learning approaches are implemented in the BIAS software for 
various experimental needs. Such methods are 1) Multilayer perceptron (a feedforward 
artificial neural network), 2)  Support-vector machine (separates the feature space by 
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hyperplanes between the training samples), 3) Random forest (a number of decision trees 
trained to separate the training data into classes) and 4) Logistic regression (a statistical model 
that determines the probability of passing or failing the criteria of a certain class). These 
classification algorithms can analyze and classify tens of thousands of cells in a matter of 
seconds. 
Results of the feature extraction and classification phases can be summarized in the statistics 
module, in addition it also provides an interface where custom queries can be written in SQL 
language and executed on the cell information database containing feature and classification 
data for all cells in the experiment. Cross queries between different classification and feature 
matrices are also supported. Query templates and wizards are provided for the most common 
questions.  
The queries might be as simple as e.g. listing N items that have the highest value in a selected 
feature, or rather complex e.g. to calculate the sum and ratio of the areas of cells belonging to 
different classes). Results can be represented in graphs, heatmaps or used to filter cells for 
capturing by a suitable microscope.  
The visualization tool supports a virtually unlimited number of channels with adjustable 
intensity window, gamma and look-up-table settings. An interactive, zoomable overview of the 
whole experiment (let it be a slide or a plate) can be displayed, reflecting the changes in 
visualization or data processing real-time. The results of all processing steps could be overlaid 
on it, such as segmentation masks, feature heatmaps or phenotype classification as color-coded 
segments, etc. A schematic display of the multi-well plate helps the navigation, enabling 
manual selection of cross-field areas for isolation.  
The isolation and collection module uses a registration algorithm based on a marker or point-
of-interest (POI) to connect the coordinate systems of the source and the isolation microscopes 
as well as to transfer the contour points to that of the isolation microscope. The tool supports 
sorting cells into different collectors and also cutting components in order (e.g. cutting nuclei 
into a microplate well or collection cap first then remaining cytoplasm into another). Cells of 
interest can be selected manually or using the statistics module. To preserve object integrity, it 
allows the user to define cutting offsets or exclude touching regions thereby preventing 
undesirable laser-induced damage. 
 
Segmentation methods and accuracy evaluation 
NucleAIzer10 models were integrated into BIAS and customized for these experiments by 
retraining and refining the nucleus and cytoplasm segmentation models. Firstly, style transfer11 
learning was performed as follows. Given a new experimental scenario such as our melanoma 
or salivary gland tissue sections stained immunohistochemically, the acquisition of which 
produces such an image type no annotated training data exists for, preventing efficient 
segmentation with even powerful deep learning methods. With an initial segmentation or 
manual contouring by experts (referred to as annotation) a small mask dataset is acquired 
(masks represent e.g. nuclei) which is used to generate new mask images such that the spatial 
distribution, density and morphological properties of the generated objects (e.g. nuclei) are 
similar to those of the annotated images. The initial masks and their corresponding microscopy 
images are used to train a style transfer model that learns how to generate the texture of the 
microscopy images on the masks marking objects: foreground to mimic e.g. nuclei and 
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background for surrounding e.g. tissue structures. Parallelly, artificial masks of either nucleus 
or cytoplasm objects were created and input to the style transfer network that generated 
realistic-looking synthetic microscopy images with the visual appearance of the original 
experiment. Hence, with this artificially created training data (synthetic microscopy images 
and their corresponding, also synthetic masks) their applied deep learning segmentation model, 
Mask R-CNN, is prepared for the new image type and can accurately segment the target 
compartments. 
We benchmarked the accuracy of the segmentation approach on a fluorescent LCK-U2OS cell 
line as well as tissue samples of melanoma and salivary gland, and compared results to three 
additional methods, including two  deep learning approaches: unet4nuclei (denoted as M1 on 
Fig. 2A and S1)12 and CellPose (M3)13, alongside a widely-used, conventional adaptive 
threshold- and object splitting-based application (M2)4. We note that M1 is not intended for 
cytoplasm segmentation (see details in12 and below). Segmentation accuracy according to the 
F1 metric is displayed as bar plots (Fig. 2A, S1), while visual representation in a color-coded 
manner is also provided.  
unet4nuclei12 is optimized to segment nuclei on cell culture images, and 2) CellPose13 is an 
approach intended for either nucleus or cytoplasm segmentation on various microscopy image 
types, while CellProfiler4 is a conventional threshold- and object splitting-based software 
broadly used in the bioimage analysis community. unet4nuclei as its name suggests is primarily 
intended for nucleus segmentation and uses a U-Net-based network after pre-processing of 
input images, then post-processes detected objects. Cellpose uses a vector flow-representation 
of instances and its neural network (also based on U-Net) predicts and combines horizontal and 
vertical flows. unet4nuclei has successfully been applied in nucleus segmentation of cell 
cultures, while CellPose is able to generalize well on various image modalities even outside 
microscopy and can be used to segment nuclei and cytoplasms.  
We evaluated our segmentation performance (and comparisons) according to the F1-score 
metric calculated at 0.7 IoU (intersection over union) threshold. IoU also known as Jaccard 
index was calculated from the overlapping region of the predicted (segmented) object with its 
corresponding ground truth (real) object at a given threshold (see formulation below). True 
positive (TP), false positive (FP) and false negative (FN) objects were counted accordingly, if 
they had IoU greater than the threshold t (in our case 0.7), to yield the F1-score at this threshold 
(see formulation below). Considering the mean F1-scores measured, we conclude that the 
applied deep learning-based segmentation method10 available in BIAS produced segmentations 
on both nucleus and cytoplasm level in a higher quality than the compared methods; see results 
on Fig. 2A and S1. 
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Our evaluation results of nucleus and cell body segmentation on melanoma-, salivary gland 
tissues and U2OS cells is presented in (Supplementary Table 1). 
 

sample 

method 

M1 M2 M3 OUR 

U2OS cyto 0.0667* 0.5994 0.7205 0.7336 

Melanoma nuc 0.1126 0.4386 0.1801 0.5498 

Melanoma cyto 0.0058* 0.0549 0.4859 0.5536 

Salivary gland nuc 0.0476 0.5830 0.0160 0.7158 

Salivary gland cyto 0.0991* 0.0703 0.2312 0.4111 

Supplementary Table 1. F1-scores of the compared segmentation methods on our samples. The methods are as 
follows: M1 is unet4nuclei12, M2 is CellProfiler4, M3 is Cellpose13, while OUR refers to nucleAIzer10 
(implemented in BIAS). High scores are highlighted in bold. Asterisks mark that M1 is intended for nucleus 
segmentation but was applied to segment cytoplasm. 
 
Sample preparation for mass spectrometry 
Cell culture (nuclei or whole cells) and tissue samples were collected by automated laser 
microdissection into 384-well plates (Eppendorf 0030129547). For the collection of different 
U2OS nuclei classes (Fig. 3 and 4), we normalized nuclear size differences (resulting in 
different total protein amounts) by the number of collected objects per class. On average, we 
collected 267 nuclei per sample. For FFPE tissue samples of salivary gland and melanoma, 
(2.5 µm thick section cut in microtome) an area of 80,000 – 160,000 µm2 per sample was 
collected, an estimated number of 100-200 cells based on the average HeLa cell volume of 
2,000 μm3 (BNID 100434).  
20µl of ammonium bicarbonate (ABC) were added to each sample well and the plate closed 
with sealing tape (Corning, CLS6569-100EA). Following vortexing for 10 s, plates were 
centrifuged for 10 min at 2000g and heated at 95C for 30 min (cell culture) or 60 min (tissue) 
in a thermal cycler (Biorad S1000 with 384-well reaction module) at a constant lid temperature 
of 110 °C. 5 µl 5x digestion buffer (60% acetonitrile in 100 mM ABC) was added and samples 
heated at 75 °C for another 30 min. Samples were shortly cooled down and 1 µl LysC added 
(pre-diluted in ultra-pure water to 4 ng/µl) and digested for 4 h at 37 °C in the thermal cycler. 
Subsequently, 1.5 µl trypsin was added (pre-diluted in ultra-pure water to 4ng/µl) and 
incubated overnight at 37 °C in the thermal cycler. Next day, digestion was stopped by adding 
trifluoroacetic acid (TFA, final concentration 1% v/v) and samples vacuum-dried (approx. 1.5 
h at 60 °C). 4 µl MS loading buffer (3% acetonitrile in 0.2% TFA) was added, the plate 
vortexed for 10s and centrifuged for 5 min at 2000g. Samples were stored at -20 °C until LC-
MS analysis. 
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High-pH reversed-phase fractionation 
We used high-pH reversed-phase fractionation to generate a deep U2OS cell precursor library 
for data-independent (DIA) MS analysis (below). Peptides were fractionated at pH 10 with the 
spider-fractionator14. 30 μg of purified peptides were separated on a 30 cm C18 column in 100 
min and concatenated into 12 fractions with 90 s exit valve switches. Peptide fractions were 
vacuum-dried and reconstituted in MS loading buffer for LC-MS analysis.   
 
LC-MS analysis  
Liquid chromatography mass spectrometry (LC-MS) analysis was performed with an EASY-
nLC-1200 system (Thermo Fisher Scientific) connected to a modified trapped ion mobility 
spectrometry quadrupole time-of-flight mass spectrometer with about five-fold higher ion 
current15 (timsTOF Pro, Bruker Daltonik GmbH, Germany) with a nano-electrospray ion 
source (Captive spray, Bruker Daltonik GmbH). The autosampler was configured for sample 
pick-up from 384-well plates. 
Peptides were loaded on a 50 cm in-house packed HPLC-column (75µm inner diameter packed 
with 1.9µm ReproSilPur C18-AQ silica beads, Dr. Maisch GmbH, Germany).  
Peptides were separated using a linear gradient from 5-30% buffer B (0.1% formic acid, 80% 
ACN in LC-MS grade H2O) in 55 min followed by an increase to 60% for 5 min and 10 min 
wash at 95% buffer B at 300nl/min. Buffer A consisted of 0.1% formic acid in LC-MS grade 
H2O. The total gradient length was 70 min. We used an in-house made column oven to keep 
the column temperature constant at 60 °C.   
Mass spectrometric analysis was performed essentially as described in Brunner et al.15, either 
in data-dependent (ddaPASEF) (Fig. 5 and 6) or data-independent (diaPASEF) mode (Fig. 3 
and 4). For ddaPASEF, 1 MS1 survey TIMS-MS and 10 PASEF MS/MS scans were acquired 
per acquisition cycle. Ion accumulation and ramp time in the dual TIMS analyzer was set to 
100 ms each and we analyzed the ion mobility range from 1/K0 = 1.6 Vs cm-2 to 0.6 Vs cm-
2. Precursor ions for MS/MS analysis were isolated with a 2 Th window for m/z < 700 and 3 
Th for m/z >700 in a total m/z range of 100-1.700 by synchronizing quadrupole switching 
events with the precursor elution profile from the TIMS device. The collision energy was 
lowered linearly as a function of increasing mobility starting from 59 eV at 1/K0 = 1.6 VS cm-
2 to 20 eV at 1/K0 = 0.6 Vs cm-2. Singly charged precursor ions were excluded with a polygon 
filter (otof control, Bruker Daltonik GmbH). Precursors for MS/MS were picked at an intensity 
threshold of 1.000 arbitrary units (a.u.) and resequenced until reaching a ‘target value’ of 
20.000 a.u taking into account a dynamic exclusion of 40 s elution. For DIA analysis, we made 
use of the correlation of Ion Mobility (IM) with m/z and synchronized the elution of precursors 
from each IM scan with the quadrupole isolation window. The collision energy was ramped 
linearly as a function of the IM from 59 eV at 1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs 
cm−2. We used the ddaPASEF method for library generation16. 
 
Data analysis of proteomic raw files 
Mass spectrometric raw files acquired in ddaPASEF mode  (Fig. 5 and 6) were analyzed with 
MaxQuant (version 1.6.7.0)17,18. The Uniprot database (2019 release, UP000005640_9606) 
was searched with a peptide spectral match (PSM) and protein level FDR of 1%. A minimum 
of seven amino acids was required including N-terminal acetylation and methionine oxidation 
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as variable modifications. Due to omitted reduction and alkylation, cysteine 
carbamidomethylation was removed from fixed modifications. Enzyme specificity was set to 
trypsin with a maximum of two allowed missed cleavages. First and main search mass 
tolerance was set to 70 ppm and 20 ppm, respectively. Peptide identifications by MS/MS were 
transferred by matching four-dimensional isotope patterns between the runs (MBR) with a 0.7-
min retention-time match window and a 0.05 1/K0 ion mobility window. Label-free 
quantification was performed with the MaxLFQ algorithm19 and a minimum ratio count of one.  
For diaPASEF raw file analysis (Fig. 3 and 4), we used a hybrid library approach combining a 
12-fraction high-pH reversed-phase fractionated precursor library from U2OS cells with the 
directDIA search of the diaPASEF raw files. The hybrid library consisted of 178,948 
precursors, 127,049 peptides, 9,954 protein groups and was generated with the Spectronaut 
software (version 14.5.200813.47784, Biognosys AG, Schlieren, Switzerland) under default 
settings. Search parameters were according to default settings. Protein intensities were 
normalized using the ‘Local Normalization’ (Q-value complete) algorithm in Spectronaut 
based on a local regression model. A protein and precursor FDR of 1% was used. Decoy hits 
and proteins, which did not pass the Q-value threshold, were filtered out prior to data analysis.  
 
Bioinformatic analysis 
Proteomics data analysis was performed with Perseus20 and within the R environment 
(https://www.r-project.org/). MaxQuant output tables were filtered for ‘Reverse’, ‘Only 
identified by site modification’, and ‘Potential contaminants’ before data analysis. Data was 
stringently filtered to only keep proteins with 30% or less missing values (those displayed as 0 
in MaxQuant output). Missing values were imputed based on a normal distribution (width = 
0.3; downshift = 1.8) prior to statistical testing. Principal component analysis was performed 
in R. For multi-sample (ANOVA) or pairwise proteomic comparisons (two-sided unpaired t-
test), we applied a permutation-based FDR of 5% to correct for multiple hypothesis testing. An 
s0 value21 of 0.1 was used for the pairwise proteomic comparison in Fig. 5E.  Pathway 
enrichment analysis was performed in Perseus (Fig. 4A, Fisher’s exact test with Benjamini-
Hochberg FDR of 0.05) or ClusterProfiler22 (Fig. 4D and 5C, D). For all ClusterProfiler 
analyses, an FDR filter of 0.05 was used. Minimum category size was set to 20 and maximum 
size to 500.  
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