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AI-driven Deep Visual Proteomics defines cell identity and heterogeneity  
Mund and Coscia et al. 

 

MATERIAL & METHODS 

Patient samples and ethics 
We collected archival FFPE tissue samples of salivary gland acinic cell carcinoma and 
melanoma from the Department of Pathology, Zealand University Hospital, Roskilde, 
Denmark. The study was carried out in accordance with the institutional guidelines under 
approval by the local Medical Ethics Review Committee (SJ-742), the Data Protection Agency 
(REG-066-2019) and in agreement with Danish law (Medical Research Involving Human 
Subjects Act). 
In accordance with the Medical Ethics Review Committee approval, all FFPE human patient 
tissue samples were exempted from consent as these studies used existing archived 
pathological specimens and not human subjects directly. Human tissue specimens were 
assessed by a board-certified pathologist. 
 
Cell lines  
The human osteosarcoma cell line U2OS was grown in Dulbecco’s modified Eagle’s medium 
(high glucose, GlutaMAX) containing 10% FBS and penicillin-streptomycin (Thermo Fisher 
Scientific).  
The U2OS FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator) cells were kindly 
provided by Dr. Miyawaki1. These cells are endogenously tagged with two fluorescent proteins 
fused to the cell cycle regulators CDT1 (mKO2-hCdt1+) and Geminin (mAG-hGem+). CDT1 
accumulates during the G1 phase while Geminin accumulates in S and G2 phases allowing cell 
cycle monitoring. The cells were cultivated at 37 °C in a 5.0 % CO2 humidified environment 
in McCoy’s 5A (modified) medium GlutaMAX supplement, (Thermo Fisher, 36600021, MA, 
USA) supplemented with 10% fetal bovine serum (FBS, VWR, Radnor, PA, USA) without 
antibiotics.  
U2OS cells stably expressing a membrane-targeted form of eGFP were generated by 
transfection with plasmid Lck-GFP (Addgene #610992) and culturing in selection medium 
(DMEM medium containing 10% FBS, Penicillin-Streptomycin, 400 µg/ml Geneticin) under 
conditions of limited dilution to yield single colonies. A clonal cell line with homogenous and 
moderate expression levels of Lck-eGFP at the plasma membrane was established from a single 
colony. 
All cell lines were tested for mycoplasma (MycoAlert, Lonza) and authenticated by STR 
profiling (IdentiCell Molecular Diagnostics). 
 
Tissue preparation for immunohistochemistry 
Immunohistochemical staining on membrane slides: 
Membrane PEN slides 1.0 (Zeiss, Göttingen, Germany, cat. #415190-9041-000) were treated 
with UV light for 1 h and coated with APES (3-aminopropyltriethoxysilane) using Vectabond 
reagent (Vector Laboratories, Burlingame, CA, USA, cat. #SP-1800-7) according to the 
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manufacturer's protocol. FFPE tissue sections were cut (2.5 µm), air-dried at 37 ºC overnight 
and heated at 60 ºC for 20 min to facilitate better tissue adhesion. Next, sections were 
deparaffinized, rehydratrated and loaded wet on the fully automated instrument Omnis (Dako, 
Glostrup, Denmark). Antigen retrieval was conducted using Target Retrieval Solution pH 9 
(Dako, cat # S2367) diluted 1:10 and heated for 60 minutes at 90 °C. Single stain for EpCAM 
(Nordic Biosite, Copenhagen K, Denmark, clone BS14, cat. #BSH-7402-1, dilution 1:400) and 
sequential double stain for SOX10/CD146 (SOX10; Nordic Biosite, clone BS7 cat. #BSH-
7959-1, dilution 1:200 and CD146; Cell Marque, Rocklin, CA, USA, clone EP54, cat. #AC-
0052, dilution 1:400) was performed and slides were incubated for 30 min (32 °C).  After 
washing and blocking of endogenous peroxidase activity, the reactions were detected and 
visualized using Envision FLEX+ High pH kit (Dako, cat #GV800+GV809/GV821) according 
to manufacturer’s instructions. In the double stain, Envision DAB+ (Dako, cat # GV825) and 
Envision Magenta (Dako, cat. #GV900) Substrate Chromogen Systems was used for 
visualization of CD146 and SOX10, respectively. Finally, slides were rinsed in water, 
counterstained with Mayer’s hematoxylin, and air-dried without mounting.  
 
Immunofluorescence staining  
Cells were first incubated with 5-ethynyl-2 deoxyuridine (EdU) for 20 min, then fixed for 5 
min at room temperature with 4 % paraformaldehyde and washed three times with PBS. Cells 
were then permeabilized with PBS/0.2% Triton-X for 2 min on ice and washed three times 
with PBS. Cells were then stained with an EdU labeling kit (Life Technologies) and 
counterstained with Hoechst 33342 for 10 min. Slides were mounted with GB mount (GBI 
Labs # E01-18).  
96-well glass bottom plates (Greiner Sensoplate Plus, Greiner Bio-One, Germany) were coated 
with 12.5 µg/ml human fibronectin (Sigma Aldrich, Darmstadt, Germany) for 1 h at RT. 
Immunocytochemistry was carried out following an established protocol3. 8,000 U2OS cells 
were seeded in each well and incubated in a 37 °C and 5% CO2 environment for 24 hours. Cells 
were washed with PBS, fixed with 40 µl 4% ice-cold PFA and permeabilized with 40 µl 0.1 
Triton X-100 in PBS for 3x5 min. Rabbit polyclonal HPA antibodies targeting the proteins of 
interest were diluted in blocking buffer (PBS + 4% FBS) at 2-4 µg/ml along with marker 
primary antibodies (see just below) and incubated overnight at 4°C. Cells were washed with 
PBS for 4x10 min and incubated with secondary antibodies (goat anti-rabbit Alexa488 
(A11034, Thermo Fisher), goat anti-mouse Alexa555 (A21424, Thermo Fisher), goat anti-
chicken Alexa647 (A21449, Thermo Fisher)) in blocking buffer at 1.25 µg/ml for 90 min at 
RT. Cells were counterstained in 0.05 µg/ml DAPI for 15 min, washed with for 4x10min and 
mounted in PBS. 
 
Primary antibodies used: 
For C7orf50 cell cycle validation: 
mouse anti ANLN at 1.25 ug/ml (amab90662, Atlas Antibodies)  
Mouse anti CCNB1 at 1 ug/ml: (610220, BD Biosciences)  
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High-resolution microscopy 
Images of immunofluorescence-labeled cell cultures were acquired using an AxioImager Z.2 
microscope (Zeiss, Germany), equipped with widefield optics, a 20×, 0.8-NA dry objective, a 
quadruple-band filter set for Hoechst, FITC, Cy3 and Cy5 fluorescent dyes. Widefield 
acquisition was performed using the Colibri7 LED light source and an AxioCam 702 mono 
camera with 5,9 mm/px. Z-stacks with 19 z-slices were acquired at 3 mm increments to capture 
the optimal focus plane. Images were obtained automatically with the Zeiss Zen 2.6 (blue 
edition) at non-saturating conditions (12-bit dynamic range). 
IHC images from salivary gland and melanoma tissue were obtained using the automated slide 
scanner Zeiss Axio Scan.Z1 (Zeiss, Germany) for brightfield microscopy. Brightfield 
acquisition was obtained using the VIS LED light source and a CCD Hitachi HV-F202CLS 
camera. PEN slides were scanned with a 20×, 0.8-NA dry objective yielding a resolution of 
0,22 mm/px. Z-stacks with 8 z-slices were acquired at 2 mm increments to capture the optimal 
focus plane. Color images were obtained automatically with the Zeiss Zen 2.6 (blue edition) at 
non-saturating conditions (12-bit dynamic range). 
 
Widefield fluorescence microscopy for validation of cell cycle dependent C7orf50 expression 
Cells were imaged on a Leica Dmi8 widefield microscope equipped with a 0.80 N/A 40x air 
objective and a Hamamatsu Flash 4.0 V3 camera using the LAS X software. The segmentation 
of each cell was performed using the Cell Profiler software4 using DAPI for nuclei 
segmentation. The mean intensity of the target protein and the cell cycle marker protein was 
measured in the nucleus. The cells were grouped into the G1 and G2 phases of the cell cycle 
by using the 0.2 and 0.8 quantile of ANLN or CCNB1 intensity levels in the nucleus and cell 
cycle dependent expression of C7orf50 was validated by comparing differences in expression 
levels between G1 and G2 cells. 
 
Laser microdissection 
To excise cells or nuclei we used the Leica LMD7 system, which we had adapted for automated 
single cell automation. High cutting precision was achieved using a HC PL FLUOTAR L 
63x/0.70 (tissue) or 40x/0.60 (cells cultures) CORR XT objective. We used the Leica Laser 
Microdissection V 8.2.3.7603 software (adapted for this project) for full automated excision 
and collection of more than 700 contours per hour. 
 
Leica LMD 7 cutting accuracy (Leica R&D, patent EP1276586) 
For 150x objective: !"!#" = 0.07µm 
 
Biological Image Analysis Software (BIAS) introduction 
A typical image analysis workflow in BIAS consists of multiple images processing steps, 
including image preprocessing, object segmentation, contour post-processing, feature 
extraction and statistical analysis, supervised or unsupervised machine learning methods for 
phenotype classification, cell selection and cell extraction (by a selected or supported micro-
dissection microscope). For each workflow step BIAS provides conveniently customizable 
modules. 
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Images were captured with a Zeiss Axio Scan.Z1 or AxioImager Z.2 microscope, both are 
supported by the analysis software with preservation of correct spatial information (spatial 
topology and size). Other types of microscopes with similar support include 3DHistech, 
Hamamatsu, GE IN Cell, Molecular Devices ImageXpress Micro, Leica SP, Perkin Elmer 
Opera and Operetta. It is also possible to import standard image files with editable image 
orientation and resolution. Illumination-correction algorithm, primarily CIDRE5 (within BIAS) 
were applied where it was necessary to solve the frequent ‘vignetting’ effect observable in raw 
microscopy images.  
Image preprocessing was followed by deep learning-based nucleus and cell segmentation 
modules (see segmentation methods and accuracy evaluation) further refined by unary and 
binary morphological operators (e.g.: dilation, erosion, cavity filling, addition and subtraction). 
For example, subtraction can be used to calculate the cytoplasm-only region from cell and 
nuclei masks. 
Results of different segmentation algorithms may be connected by a linking module to form 
complex structures, e.g. an abstract cell object might be constructed from a segmented nucleus, 
cytoplasm and proteins where each component can be analyzed individually or as a whole. 
Objects were forwarded to the feature extraction modules, configurable to extract properties 
from the selected image channels and cell components. A multitude of features can be retrieved 
from the image and contour data, such as shape (e.g.: area, perimeter, form factor, solidity etc.), 
intensity (e.g.: min, max, mean, total) or texture (e.g.: Haralick features) and represented in a 
feature matrix6. Features to be extracted may vary by experiments according to their specific 
requirements each, potentially containing up to hundreds or a few thousands per cell depending 
on the configuration. Features from the neighboring regions of each cell can be incorporated 
as well, to further improve accuracy where local neighborhoods might also contain valuable 
information for the cell phenotypes (such as in tissues)7.  The resulting feature matrices can be 
analyzed internally or exported to a 3rd party tool8. Subsequently reimport of extended feature 
matrices into BIAS is also possible to extend the statistical capabilities or simply to visualize 
the data in the plate overview. 
Internal analysis tools include simple, value-based statistics, manual gating, automatic feature 
space clustering and interactive supervised machine learning; additionally, these may also be 
combined. Final cell selection can depend on simple, value-based statistics or complex queries 
searching in multiple feature and classification matrices. 
With manual gating, two features can be represented in a two-dimensional coordinate system 
and with cluster centers defined manually, samples are displayed at their actual position in the 
coordinate system. K-Means clustering can automatically find a fixed number of cluster centers 
in the feature space with an arbitrary number of dimensions. 
During supervised machine learning, the biologist defines the phenotypes of interest and 
provides training samples (usually around a hundred samples for each class). Training is 
iterative and interactive, refinable and new phenotypes may be identified using an active 
learning technique9. A cross validation tool is provided to continuously monitor accuracy, so 
that when a satisfactory threshold is reached, all other cells in the whole experiment are 
classified. Different machine learning approaches are implemented in the BIAS software for 
various experimental needs. Such methods are 1) Multilayer perceptron (a feedforward 
artificial neural network), 2)  Support-vector machine (separates the feature space by 
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hyperplanes between the training samples), 3) Random forest (a number of decision trees 
trained to separate the training data into classes) and 4) Logistic regression (a statistical model 
that determines the probability of passing or failing the criteria of a certain class). These 
classification algorithms can analyze and classify tens of thousands of cells in a matter of 
seconds. 
Results of the feature extraction and classification phases can be summarized in the statistics 
module, in addition it also provides an interface where custom queries can be written in SQL 
language and executed on the cell information database containing feature and classification 
data for all cells in the experiment. Cross queries between different classification and feature 
matrices are also supported. Query templates and wizards are provided for the most common 
questions.  
The queries might be as simple as e.g. listing N items that have the highest value in a selected 
feature, or rather complex e.g. to calculate the sum and ratio of the areas of cells belonging to 
different classes). Results can be represented in graphs, heatmaps or used to filter cells for 
capturing by a suitable microscope.  
The visualization tool supports a virtually unlimited number of channels with adjustable 
intensity window, gamma and look-up-table settings. An interactive, zoomable overview of the 
whole experiment (let it be a slide or a plate) can be displayed, reflecting the changes in 
visualization or data processing real-time. The results of all processing steps could be overlaid 
on it, such as segmentation masks, feature heatmaps or phenotype classification as color-coded 
segments, etc. A schematic display of the multi-well plate helps the navigation, enabling 
manual selection of cross-field areas for isolation.  
The isolation and collection module uses a registration algorithm based on a marker or point-
of-interest (POI) to connect the coordinate systems of the source and the isolation microscopes 
as well as to transfer the contour points to that of the isolation microscope. The tool supports 
sorting cells into different collectors and also cutting components in order (e.g. cutting nuclei 
into a microplate well or collection cap first then remaining cytoplasm into another). Cells of 
interest can be selected manually or using the statistics module. To preserve object integrity, it 
allows the user to define cutting offsets or exclude touching regions thereby preventing 
undesirable laser-induced damage. 
 
Segmentation methods and accuracy evaluation 
NucleAIzer10 models were integrated into BIAS and customized for these experiments by 
retraining and refining the nucleus and cytoplasm segmentation models. Firstly, style transfer11 
learning was performed as follows. Given a new experimental scenario such as our melanoma 
or salivary gland tissue sections stained immunohistochemically, the acquisition of which 
produces such an image type no annotated training data exists for, preventing efficient 
segmentation with even powerful deep learning methods. With an initial segmentation or 
manual contouring by experts (referred to as annotation) a small mask dataset is acquired 
(masks represent e.g. nuclei) which is used to generate new mask images such that the spatial 
distribution, density and morphological properties of the generated objects (e.g. nuclei) are 
similar to those of the annotated images. The initial masks and their corresponding microscopy 
images are used to train a style transfer model that learns how to generate the texture of the 
microscopy images on the masks marking objects: foreground to mimic e.g. nuclei and 
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background for surrounding e.g. tissue structures. Parallelly, artificial masks of either nucleus 
or cytoplasm objects were created and input to the style transfer network that generated 
realistic-looking synthetic microscopy images with the visual appearance of the original 
experiment. Hence, with this artificially created training data (synthetic microscopy images 
and their corresponding, also synthetic masks) their applied deep learning segmentation model, 
Mask R-CNN, is prepared for the new image type and can accurately segment the target 
compartments. 
We benchmarked the accuracy of the segmentation approach on a fluorescent LCK-U2OS cell 
line as well as tissue samples of melanoma and salivary gland, and compared results to three 
additional methods, including two  deep learning approaches: unet4nuclei (denoted as M1 on 
Fig. 2A and S1)12 and CellPose (M3)13, alongside a widely-used, conventional adaptive 
threshold- and object splitting-based application (M2)4. We note that M1 is not intended for 
cytoplasm segmentation (see details in12 and below). Segmentation accuracy according to the 
F1 metric is displayed as bar plots (Fig. 2A, S1), while visual representation in a color-coded 
manner is also provided.  
unet4nuclei12 is optimized to segment nuclei on cell culture images, and 2) CellPose13 is an 
approach intended for either nucleus or cytoplasm segmentation on various microscopy image 
types, while CellProfiler4 is a conventional threshold- and object splitting-based software 
broadly used in the bioimage analysis community. unet4nuclei as its name suggests is primarily 
intended for nucleus segmentation and uses a U-Net-based network after pre-processing of 
input images, then post-processes detected objects. Cellpose uses a vector flow-representation 
of instances and its neural network (also based on U-Net) predicts and combines horizontal and 
vertical flows. unet4nuclei has successfully been applied in nucleus segmentation of cell 
cultures, while CellPose is able to generalize well on various image modalities even outside 
microscopy and can be used to segment nuclei and cytoplasms.  
We evaluated our segmentation performance (and comparisons) according to the F1-score 
metric calculated at 0.7 IoU (intersection over union) threshold. IoU also known as Jaccard 
index was calculated from the overlapping region of the predicted (segmented) object with its 
corresponding ground truth (real) object at a given threshold (see formulation below). True 
positive (TP), false positive (FP) and false negative (FN) objects were counted accordingly, if 
they had IoU greater than the threshold t (in our case 0.7), to yield the F1-score at this threshold 
(see formulation below). Considering the mean F1-scores measured, we conclude that the 
applied deep learning-based segmentation method10 available in BIAS produced segmentations 
on both nucleus and cytoplasm level in a higher quality than the compared methods; see results 
on Fig. 2A and S1. 
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Our evaluation results of nucleus and cell body segmentation on melanoma-, salivary gland 
tissues and U2OS cells is presented in (Supplementary Table 1). 
 

sample 

method 

M1 M2 M3 OUR 

U2OS cyto 0.0667* 0.5994 0.7205 0.7336 

Melanoma nuc 0.1126 0.4386 0.1801 0.5498 

Melanoma cyto 0.0058* 0.0549 0.4859 0.5536 

Salivary gland nuc 0.0476 0.5830 0.0160 0.7158 

Salivary gland cyto 0.0991* 0.0703 0.2312 0.4111 

Supplementary Table 1. F1-scores of the compared segmentation methods on our samples. The methods are as 
follows: M1 is unet4nuclei12, M2 is CellProfiler4, M3 is Cellpose13, while OUR refers to nucleAIzer10 
(implemented in BIAS). High scores are highlighted in bold. Asterisks mark that M1 is intended for nucleus 
segmentation but was applied to segment cytoplasm. 
 
Sample preparation for mass spectrometry 
Cell culture (nuclei or whole cells) and tissue samples were collected by automated laser 
microdissection into 384-well plates (Eppendorf 0030129547). For the collection of different 
U2OS nuclei classes (Fig. 3 and 4), we normalized nuclear size differences (resulting in 
different total protein amounts) by the number of collected objects per class. On average, we 
collected 267 nuclei per sample. For FFPE tissue samples of salivary gland and melanoma, 
(2.5 µm thick section cut in microtome) an area of 80,000 – 160,000 µm2 per sample was 
collected, an estimated number of 100-200 cells based on the average HeLa cell volume of 
2,000 μm3 (BNID 100434).  
20µl of ammonium bicarbonate (ABC) were added to each sample well and the plate closed 
with sealing tape (Corning, CLS6569-100EA). Following vortexing for 10 s, plates were 
centrifuged for 10 min at 2000g and heated at 95C for 30 min (cell culture) or 60 min (tissue) 
in a thermal cycler (Biorad S1000 with 384-well reaction module) at a constant lid temperature 
of 110 °C. 5 µl 5x digestion buffer (60% acetonitrile in 100 mM ABC) was added and samples 
heated at 75 °C for another 30 min. Samples were shortly cooled down and 1 µl LysC added 
(pre-diluted in ultra-pure water to 4 ng/µl) and digested for 4 h at 37 °C in the thermal cycler. 
Subsequently, 1.5 µl trypsin was added (pre-diluted in ultra-pure water to 4ng/µl) and 
incubated overnight at 37 °C in the thermal cycler. Next day, digestion was stopped by adding 
trifluoroacetic acid (TFA, final concentration 1% v/v) and samples vacuum-dried (approx. 1.5 
h at 60 °C). 4 µl MS loading buffer (3% acetonitrile in 0.2% TFA) was added, the plate 
vortexed for 10s and centrifuged for 5 min at 2000g. Samples were stored at -20 °C until LC-
MS analysis. 
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High-pH reversed-phase fractionation 
We used high-pH reversed-phase fractionation to generate a deep U2OS cell precursor library 
for data-independent (DIA) MS analysis (below). Peptides were fractionated at pH 10 with the 
spider-fractionator14. 30 μg of purified peptides were separated on a 30 cm C18 column in 100 
min and concatenated into 12 fractions with 90 s exit valve switches. Peptide fractions were 
vacuum-dried and reconstituted in MS loading buffer for LC-MS analysis.   
 
LC-MS analysis  
Liquid chromatography mass spectrometry (LC-MS) analysis was performed with an EASY-
nLC-1200 system (Thermo Fisher Scientific) connected to a modified trapped ion mobility 
spectrometry quadrupole time-of-flight mass spectrometer with about five-fold higher ion 
current15 (timsTOF Pro, Bruker Daltonik GmbH, Germany) with a nano-electrospray ion 
source (Captive spray, Bruker Daltonik GmbH). The autosampler was configured for sample 
pick-up from 384-well plates. 
Peptides were loaded on a 50 cm in-house packed HPLC-column (75µm inner diameter packed 
with 1.9µm ReproSilPur C18-AQ silica beads, Dr. Maisch GmbH, Germany).  
Peptides were separated using a linear gradient from 5-30% buffer B (0.1% formic acid, 80% 
ACN in LC-MS grade H2O) in 55 min followed by an increase to 60% for 5 min and 10 min 
wash at 95% buffer B at 300nl/min. Buffer A consisted of 0.1% formic acid in LC-MS grade 
H2O. The total gradient length was 70 min. We used an in-house made column oven to keep 
the column temperature constant at 60 °C.   
Mass spectrometric analysis was performed essentially as described in Brunner et al.15, either 
in data-dependent (ddaPASEF) (Fig. 5 and 6) or data-independent (diaPASEF) mode (Fig. 3 
and 4). For ddaPASEF, 1 MS1 survey TIMS-MS and 10 PASEF MS/MS scans were acquired 
per acquisition cycle. Ion accumulation and ramp time in the dual TIMS analyzer was set to 
100 ms each and we analyzed the ion mobility range from 1/K0 = 1.6 Vs cm-2 to 0.6 Vs cm-
2. Precursor ions for MS/MS analysis were isolated with a 2 Th window for m/z < 700 and 3 
Th for m/z >700 in a total m/z range of 100-1.700 by synchronizing quadrupole switching 
events with the precursor elution profile from the TIMS device. The collision energy was 
lowered linearly as a function of increasing mobility starting from 59 eV at 1/K0 = 1.6 VS cm-
2 to 20 eV at 1/K0 = 0.6 Vs cm-2. Singly charged precursor ions were excluded with a polygon 
filter (otof control, Bruker Daltonik GmbH). Precursors for MS/MS were picked at an intensity 
threshold of 1.000 arbitrary units (a.u.) and resequenced until reaching a ‘target value’ of 
20.000 a.u taking into account a dynamic exclusion of 40 s elution. For DIA analysis, we made 
use of the correlation of Ion Mobility (IM) with m/z and synchronized the elution of precursors 
from each IM scan with the quadrupole isolation window. The collision energy was ramped 
linearly as a function of the IM from 59 eV at 1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs 
cm−2. We used the ddaPASEF method for library generation16. 
 
Data analysis of proteomic raw files 
Mass spectrometric raw files acquired in ddaPASEF mode  (Fig. 5 and 6) were analyzed with 
MaxQuant (version 1.6.7.0)17,18. The Uniprot database (2019 release, UP000005640_9606) 
was searched with a peptide spectral match (PSM) and protein level FDR of 1%. A minimum 
of seven amino acids was required including N-terminal acetylation and methionine oxidation 
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as variable modifications. Due to omitted reduction and alkylation, cysteine 
carbamidomethylation was removed from fixed modifications. Enzyme specificity was set to 
trypsin with a maximum of two allowed missed cleavages. First and main search mass 
tolerance was set to 70 ppm and 20 ppm, respectively. Peptide identifications by MS/MS were 
transferred by matching four-dimensional isotope patterns between the runs (MBR) with a 0.7-
min retention-time match window and a 0.05 1/K0 ion mobility window. Label-free 
quantification was performed with the MaxLFQ algorithm19 and a minimum ratio count of one.  
For diaPASEF raw file analysis (Fig. 3 and 4), we used a hybrid library approach combining a 
12-fraction high-pH reversed-phase fractionated precursor library from U2OS cells with the 
directDIA search of the diaPASEF raw files. The hybrid library consisted of 178,948 
precursors, 127,049 peptides, 9,954 protein groups and was generated with the Spectronaut 
software (version 14.5.200813.47784, Biognosys AG, Schlieren, Switzerland) under default 
settings. Search parameters were according to default settings. Protein intensities were 
normalized using the ‘Local Normalization’ (Q-value complete) algorithm in Spectronaut 
based on a local regression model. A protein and precursor FDR of 1% was used. Decoy hits 
and proteins, which did not pass the Q-value threshold, were filtered out prior to data analysis.  
 
Bioinformatic analysis 
Proteomics data analysis was performed with Perseus20 and within the R environment 
(https://www.r-project.org/). MaxQuant output tables were filtered for ‘Reverse’, ‘Only 
identified by site modification’, and ‘Potential contaminants’ before data analysis. Data was 
stringently filtered to only keep proteins with 30% or less missing values (those displayed as 0 
in MaxQuant output). Missing values were imputed based on a normal distribution (width = 
0.3; downshift = 1.8) prior to statistical testing. Principal component analysis was performed 
in R. For multi-sample (ANOVA) or pairwise proteomic comparisons (two-sided unpaired t-
test), we applied a permutation-based FDR of 5% to correct for multiple hypothesis testing. An 
s0 value21 of 0.1 was used for the pairwise proteomic comparison in Fig. 5E.  Pathway 
enrichment analysis was performed in Perseus (Fig. 4A, Fisher’s exact test with Benjamini-
Hochberg FDR of 0.05) or ClusterProfiler22 (Fig. 4D and 5C, D). For all ClusterProfiler 
analyses, an FDR filter of 0.05 was used. Minimum category size was set to 20 and maximum 
size to 500.  
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