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Abstract 
Genomics technologies, such as ATAC-seq, ChIP-seq, and DNase-seq, have revolutionized          
molecular biology, generating a complete genome’s worth of signal in a single assay.             
Coupled with the use of genome browsers, researchers can now see and identify important              
DNA encoded elements as peaks in an analog signal. Despite the ease with which humans               
can visually identify peaks, converting these signals into meaningful genome-wide peak calls            
from such massive datasets requires complex analytical techniques. Current methods use           
statistical frameworks to identify peaks as sites of significant signal enrichment, discounting            
that the analog data do not follow any archetypal distribution. Recent advances in artificial              
intelligence have shown great promise in image recognition, on par or exceeding human             
ability, providing an opportunity to reimagine and improve peak calling. We present an             
interactive and intuitive peak calling framework, LanceOtron, built around image recognition           
using a wide and deep neural network. We hand-labelled 499Mb of genomic data, built              
5,000 models, and tested with over 100 unique users from labs around the world. In               
benchmarking open chromatin, transcription factor binding, and chromatin modification         
datasets, LanceOtron outperforms the long-standing, gold-standard peak caller MACS2 with          
its increased selectivity and near perfect sensitivity. Additionally, this command-line optional           
approach allows researchers to easily generate optimal peak-calls using only a web            
interface. Together, the enhanced performance, and usability of LanceOtron will improve the            
reliability and reproducibility of peak calls and subsequent data analysis. This tool highlights             
the general utility of applying machine learning to genomic data extraction and analysis.  

Main 
Gene regulation is central to variation observed amongst cell types and disease states, and              
studying it often requires locating sites of specific DNA-protein interactions; the experimental            
procedure of chromatin precipitation followed by high throughput sequencing (ChIP-seq) is           
the method of choice for finding these sites. Similarly, given the stark functional difference of               
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heterochromatin and euchromatin, identifying the regions of open and closed chromatin is            
also crucial to the study of epigenetics. Two commonly used assays for quantifying genome              
accessibility are ATAC-seq and DNase-seq. Taken together, these three sequencing-based,          
chromatin profiling assays are some of the most important experiments used to uncover             
genomic regulatory mechanisms1. 
 
Data from ATAC, ChIP, and DNase-seq are processed in a similar fashion: sequenced DNA              
fragments are aligned to the genome, and areas enriched for these fragments are recorded.              
Increased fragment density at true-positive biological events are called “peaks'', because of            
the characteristic pattern of fragments produced in these areas. Besides these regions,            
enrichment also occurs due to noise from experimental procedures2 or mapping errors,            
which are especially common in areas of low complexity3. Creating algorithms that can             
distinguish peaks from enriched noise, and which are also robust across bench equipment,             
sequencing depth, diverse tissue types, and chromosomal structure has remained a           
challenge.  
 
Numerous bioinformatic tools, called peak callers, have been developed to distinguish peaks            
from noise employing different strategies to various degrees of success4. Peaks are            
prioritised using statistical tests that compare signals from putative peaks to background,            
which is assumed to consist of noise generated randomly according to an archetypal             
distribution, such as Poisson 5. However background signal is nonrandom6, appearing at           
increased levels in areas of open chromatin 7, at sites with inherent sequence bias8 and over               
regions of varying copy number. As such, statistical tests often suffer from high false positive               
rates, but also leave room for potential false negatives, with the ratios of false positives to                
false negatives depending on the parameters defined 9. Statistical peak callers can be            
improved through the use of matched negative controls to calculate the level of background              
noise, increasing the time required and the costs of the experiment. While peak callers such               
as MACS2 5 do not strictly require negative control tracks, forgoing them may sacrifice             
performance 10. 
 
To address the well-known problems of peak callers, analysis pipelines employing quality            
control steps are common. The Encyclopedia of DNA Elements (ENCODE) consortium hosts            
numerous chromatin profiling assay datasets11, and as such has a robust set of guidelines              
which includes recommendations for input controls, sequencing depth, library complexity,          
and blacklist regions where mapping errors are more prone to occur12. Multiple replicates are              
encouraged, and procedures exist for combining peak calls for the most efficient reduction in              
error13. Although these extensive measures greatly improve peak calls, high-throughput          
visual inspection showed numerous erroneous peak calls remain 14. 
 
The ability, or inability, to reproduce published results is a prevalent concern amongst             
researchers15. This is, in part, due to the unintentional misapplication of statistics16.            
Command line peak callers such as MACS2 are routinely used with default settings rather              
than optimised parameters; aside from metaplots, no high-throughput methods allow direct           
investigation to quality check statistically significant, and nonsignificant peaks. Instead the           
significant regions are uploaded, along with a coverage track, to a genome browser such as               
UCSC17 or IGV18, where sections of the genome can be manually scanned or specific loci               
inspected. These tools make anything beyond a cursory inspection tedious, but because of             
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the propensity of the statistical tests to be flawed, thoroughly exploring and refining peak              
calls is an important, though often overlooked task. 
 
While forming robust statistical algorithms remains a challenge, it is often possible to call              
peaks from visual inspection using a genome browser. Rye et al. measured peak caller              
performance by creating a dataset of visually-verified peak calls, and inadvertently measured            
the performance of the humans in the process19. They found that transcription factors motifs              
were recovered more often from the manually labelled peaks than from the peak callers.              
Amazingly they also found that 80% of the software’s false positives could be detected even               
without an input track, because the human peak callers could identify that these regions              
“lacked the expected visual appearance of a typical ChIP-seq peak”. And while classifying             
regions by eye is seemingly dependent on an individual, Hocking et al. demonstrated a high               
consistency across labellers when judging peaks9. Visual inspection can be a credible, albeit             
impractical method for peak calling at a human genome scale. 
 
Deep learning neural networks have been extremely successful in a number of general             
pattern detection tasks, such as image classification and voice recognition 20. These           
techniques are being applied in biology as well, especially in genomics where there is an               
overabundance of data available for analysis21. Tools such as DeepSea 22 and Bassett23 take             
genomic sequence as input, and can predict regulatory genomic features with high accuracy.             
Proof of principle studies have also shown promise for applying these techniques to peak              
calling 9,24. 
 
Here we present LanceOtron, an open-source peak caller with a deep learning neural             
network, designed to increase selectivity without sacrificing sensitivity. LanceOtron considers          
the patterns of the aligned sequence reads, and their enrichment levels, and returns a              
probability that a region is a true peak with signal arising from a biological event. The                
user-friendly webtool has comprehensive filtering capabilities, and visualizations and         
interactive charts are generated automatically. LanceOtron is freely available at          
https://lanceotron.molbiol.ox.ac.uk. 

Results 

LanceOtron: a deep learning based peak caller with embedded 
visualization tools 
LanceOtron operates similarly to other peak callers, taking a coverage file as input and              
returning enriched regions with associated scores as output; three main modules are            
available depending on the analysis being carried out (Fig. 1a). Required for all modules is a                
coverage file, input as a bigwig track, which is both compact and readily visualized. With               
widely used peak callers such as MACS2, assessing the quality of results cannot be done               
directly, rather the user must upload their output to a genome browser. This is somewhat               
restrictive for judging the quality of a peak call, in that users are limited to scanning some                 
genomic regions to see if their results are sensible. To address this LanceOtron is built on                
the powerful MLV genome visualization software 14, which allows users to sort and filter             
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results, as well as make thumbnail images of their peaks (Fig. 1b, Supplementary video 1               
& 2).  
 
The core of LanceOtron’s peak scoring algorithm is a customized wide and deep model 25.              
First, local enrichment measurements are taken from the maximum number of overlapping            
reads in a peak compared to its surroundings - chromosome-wide as well as 10 kilobases               
(kb) to 100kb regions (in 10kb increments). These measurements are used in a logistic              
regression model, which produces an enrichment score. An additional 2kb of signal,            
centered on the peak, is also input into a convolutional neural network (CNN). The CNN               
uses the relationship between the number of overlapping reads at all 2,000 points, i.e. the               
shape, to determine if the region is a peak arising from a biological event or noise. Finally a                  
multilayer perceptron combines the outputs from CNN and logistic regression model, as well             
as the 11 local enrichment measurements to produce the overall peak score (Fig. 1c). 
 
LanceOtron can also use unsupervised machine learning techniques, PCA, t-SNE, and           
UMAP, to cluster peaks based on shape. This allows for rapid assessment of peak call               
quality. Even peak calls following the strictest guidelines may contain low quality peaks. In              
this example, LanceOtron was used to analyse data from the ENCODE experiment            
ENCSR391NPE (ChIP-seq analysis on H3K27ac binding in 22Rv1 cells, conducted in two            
biological replicates). Each replicate was peak called separately, and only regions present in             
both calls were carried forward to the final list of enriched regions. However upon inspection               
it is clear low quality peaks are present. Using LanceOtron’s deep learning based scoring,              
clustering, and visualization tools, these low quality regions can be readily identified (Fig.             
1d). 
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Benchmarking LanceOtron 
We benchmarked LanceOtron’s performance with the ENCODE recommended peak caller          
MACS2, both using default settings (with and without an input control track when available).              
We compared peak calls from transcription factor ChIP-seq, histone ChIP-seq, and open            
chromatin assays (ATAC-seq and DNase-seq). 

Transcription factor ChIP-seq 
Our transcription factor dataset was CTCF in spleen primary cells, downloaded from            
ENCODE (ENCSR692ILH). We hand labelled 10 megabases (Mb) of the dataset, marking            
areas which were obviously peaks or noise (see methods) resulting in 109 annotations.             
Despite MACS2 without input having the best sensitivity, LanceOtron with input had the best              
overall accuracy (F1 score). This is attributed to LanceOtron’s superior specificity while            
nearly matching MACS2’s sensitivity (Fig. 2a). 
 
While 10Mb is a considerable area to manually annotate, it represents a relatively small              
fraction of the human genome overall. To gain insight into the peak calls more generally, we                
performed motif analysis. The number of peaks called were similar between the different             
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methods, though MACS2 (without input) was slightly higher: LanceOtron, 18,625; MACS2,           
24,534; LanceOtron with input, 16,943; MACS2 with input, 16,901. Both peak calls from             
LanceOtron had the highest percentages of peaks which contained CTCF motifs: 36.2% with             
input, and 34.3% without. Percentage of the peak calls with motifs from MACS2 were 33.2%               
with input and 27.0% without (Fig. 2b). 
 
LanceOtron with input had the highest F1 score when compared to MACS2 with input, and               
the differences between them were 1,606 peaks exclusively called with LanceOtron and            
1,430 called with MACS2. Of these 86.3% of LanceOtron’s peak calls overlapped with             
promoters or enhancers compared to just 45.5% of MACS2 only peak calls (Fig. 2c). When               
inspecting the regions called exclusively by MACS2, only a handful of the top enriched              
regions showed strong enrichment compared with LanceOtron (Fig. 2d). Further examining           
these exclusive peak calls, MACS2 regions were generally found in regions with less signal,              
and with peaks that were more narrow with lower enrichment than LanceOtron only peaks              
(Fig. 2e ). 
 

 

Histone ChIP-seq 
Our histone ChIP-seq datasets were H3K27ac in HAP-1 cells (ENCSR131DVD) and           
H3K4me3 in MG63 cells (ENCSR579SNM). For H3K27ac, LanceOtron correctly identified all           
101 labelled regions (both with and without input), outperforming MACS2 (Fig. 3a).            
Performance was similar between peak callers in the H3K4me3 dataset, with MACS2 with             
input having slightly better sensitivity but LanceOtron with input having better precision,            
specificity, and F1 score (Fig. 3b ). 
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To understand calls made by the peak callers more generally, we counted the number of               
transcription start sites (TSSs) overlapping with the returned regions. Due to the frequency             
with which TSSs are found in the genome, we restricted the analysis to the top 5,000 peaks                 
called for each peak caller, and normalized the regions’ size to 1kb. For H3K27ac,              
LanceOtron peaks overlapped with 27.5% more TSSs than MACS2, and 19.6% more when             
using input. We observed similar results for the H3K4me3 data, with LanceOtron peaks             
intersecting 15.0% more TSSs than MACS2, which increased to 60.3% with input (Table 1). 
 
 

 
 
We also tested published datasets from Oh et al., who annotated peaks and noise for               
H3K27ac ChIP-seq in GM12878 cells and H3K4me3 in K562 cells24. Performance was            
consistent with our in-house labelled data, where MACS2 performed slightly better than            
LanceOtron on sensitivity, but LanceOtron besting MACS2 on precision, selectivity, and F1            
score for both the H3K27ac data (Fig. 3c) and H3K4me3 data (Fig. 3d). 

 LanceOtron MACS2 LanceOtro
n with 
input 

MACS2 
with input 

TSSs overlapping top H3K27ac peaks 10,847 8,505 10,906 9,115 

TSSs overlapping top H3K4me3 peaks 12,885 11,202 13,054 8,142 

Total ATAC peaks called 58,695 94,197   

% ATAC peaks in active regions (count) 15.0% (8,817) 7.6% 
(7,136) 

  

% ATAC peaks in inactive regions (count) 30.9% (18,149) 26.8% 
(25,198) 

  

Total DNase peaks called 16,719 67,461   

% DNase peaks in active regions (count) 17.6% (2,939) 7.1% 
(4,791) 

  

% DNase peaks in inactive regions (count) 36.9% (6,175) 26.5% 
(17,894) 
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ATAC and DNase-seq 
In-house data for ATAC-seq consisted of 196 labelled regions in the cell line MCF-7 from               
ENCODE (ENCSR422SUG). LanceOtron matched MACS2 performance for       
recall/sensitivity, and surpassed it on precision, sensitivity, and F1 score (Fig. 4a). 
 
Results were similar for our in-house DNase-seq data, consisting of 224 labelled regions in              
the cell line A549 from ENCODE (ENCSR000ELW). MACS2 outperformed LanceOtron for           
recall/sensitivity, but had a very high false positive rate. Consequently LanceOtron beat            
MACS2 on precision, sensitivity, and F1 score (Fig. 4b). 
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We also compared peak calling performance on GM12878 cells for ATAC (ENCFF576DMC)            
and DNase (ENCSR000EMT). Here we used published annotations from Tarbell and Liu 26,            
whereby they defined active and inactive (heterochromatin) areas of the genome using            
enhancer and promoter data with the software GenoSTAN27.  
 
For ATAC-seq peak calling on the annotated GM12878 data, both peak callers found a large               
number of peaks in heterochromatin: 18,149 and 25,198 regions for LanceOtron and            
MACS2 respectively. However LanceOtron had a larger percentage of peaks called in active             
areas of the genome, 15.0%, compared to MACS2 at 7.6%. Despite MACS2 calling 60%              
more peaks than LanceOtron, it found 1,681 fewer peaks in active areas of the genome.               
DNase performance with the annotated GM12878 followed the same general trend as            
ATAC-seq. Still a large number of peaks were found in heterochromatin: 6,175 for             
LanceOtron and 17,894 regions for MACS2. LanceOtron also had a larger percentage of             
peaks called in active areas of the genome (17.6%) compared to MACS2 (7.1%). MACS2              
once again called many more peaks than LanceOtron, 50,742 additional regions, but only             
3.6% of these were found in active areas of the genome (Table 1).  

Discussion 
LanceOtron is a deep learning based peak caller for genomic signal analysis, with a full               
user-friendly interface designed for interrogation of large datasets. Its CNN learns the shape             
of a region, and in combination with enrichment calculations, allows for more powerful             
analysis. Traditional peak callers return only those regions which cross a high statistical             
threshold. LanceOtron, however, returns all enriched regions above a relatively low           
threshold, along with their associated peak scores, p-values, etc. This makes LanceOtron            
akin to an automated annotation tool, returning a greater breadth of data about the              
experiment. It’s function as a peak caller is achieved by LanceOtron’s comprehensive            
filtering, further highlighting the importance of a powerful user interface. 
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Benchmarking transcription factor ChIP-seq data revealed that many of the unique regions            
found with LanceOtron were associated with enhancers or promoters compared with           
MACS2. Upon inspecting the DNase track for the cell type, it is clear many of the regions                 
missed by MACS were in regions of open chromatin. These areas also had some increase in                
signal on the input track as expected 7, however not enough to be statistically significant as               
determined by LanceOtron’s Poisson test. This could be due to the necessarily high p-value              
threshold set by MACS2 in order to better reduce false positives genome-wide, but at the               
cost of sensitivity in active regions of the genome. 
 
LanceOtron had a comprehensive development process during which over 100 unique users            
have tested the tool, with over 30 users creating 10 projects or more. We have learned how                 
labs around the world analyse their chromatin profiling assays, and we designed our             
workflow around this experience. One feature several groups have requested is the ability to              
peak call and compare multiple tracks simultaneously. As LanceOtron continues to develop            
we hope to bring this feature forward in future versions.  
 
Our module lineup was also informed by user feedback. Originally, we developed the “Find              
and Score Peaks'' module which used a bigwig track as its sole input. Our benchmarking               
shows that this module outperforms MACS2 and is on par with MACS2 with input, making               
this a good option when input is not available. The “Find and Score Peaks with Input”                
module builds on this, reducing false positives in areas of high signal due to increased noise.                
The “Score Peaks'' module allows users to upload peak calls made by other tools. This               
means groups can easily add LanceOtron to their current workflow to score their peaks with               
its neural network, visualize, and filter their results. This module is also important for data               
reproducibility or peer reviewing data. Peak calls made by other groups can easily be              
uploaded, scored, and visualized - or if the peak call was made with LanceOtron, it can just                 
be made public for easy review. 
 
In summary LanceOtron is a powerful peak caller and analysis tool for ATAC-seq, ChIP-seq,              
and DNase-seq. Across a range of different datasets and data types, LanceOtron            
outperformed the industry-standard MACS2. It is designed to accommodate current          
workflows as a visualization, annotation, and filtering tool, or to be used further upstream as               
a peak caller leveraging a powerful deep learning neural network alongside traditional            
statistical tests.  

Methods 

Deep learning model 

Training data 
The data used to train the neural network was obtained from ENCODE. To generate a               
complete list of experiments which met our specifications we used ENCODE’s REST API             
(scripts and outputs available on GitHub). We filtered the results to samples which were              
“released” status at the time of search inquiry, and aligned to human reference genome              
hg38 as BAM files; for H3K27ac, H3K4me3, and TF ChIP-seq experiments, the availability of              
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a corresponding control track was also required. While infrequent, samples were excluded if             
ENCODE metadata did not include information on single-end versus paired-end sequencing.           
The number of samples meeting this criteria was 3902 (74 ATAC, 911 DNase, 305              
H2K27ac, 463 H3K4me3, 2149 transcription factor samples). We sampled 10 paired-end           
datasets for each category at random from each experiment type, except in H3K4me3             
experiments where only 6 samples available were paired-end, and so 4 single end             
experiments were included. This resulted in 38 unique biosample types, 9 unique            
transcription factor ChIP-seq targets plus 2 histone ChIP-seq targets (Table 2). 
 

Experiment type ENCODE ID numbers 

Assay Target Tissue Experiment BAM file Control BAM 

ATAC-seq Open chromatin Breast 
epithelium 

ENCSR955JSO ENCFF656OYT  

ATAC-seq Open chromatin Tibial artery ENCSR630REB ENCFF168OTV  

ATAC-seq Open chromatin Foreskin 
keratinocyte 

ENCSR290YMN ENCFF799HAR  

ATAC-seq Open chromatin Adrenal gland ENCSR113MBR ENCFF436NOT  

ATAC-seq Open chromatin Foreskin 
keratinocyte 

ENCSR158XTU ENCFF784DSJ  

ATAC-seq Open chromatin Foreskin 
keratinocyte 

ENCSR677MJF ENCFF764CQI  

ATAC-seq Open chromatin Transverse 
colon 

ENCSR668VCT ENCFF377DAO  

ATAC-seq Open chromatin Sigmoid colon ENCSR548QCP ENCFF482HAC  

ATAC-seq Open chromatin Tibial nerve ENCSR831KAH ENCFF277DNH  

ATAC-seq Open chromatin Thyroid gland ENCFF710ELD ENCSR474XFV  

ChIP-seq H3K27ac RWPE1 ENCSR203KEU ENCFF708CBX ENCFF939LTT 

ChIP-seq H3K27ac SKNSH ENCSR564IGJ ENCFF380OTV ENCFF959FMO 

ChIP-seq H3K27ac Bipolar neuron ENCSR905TYC ENCFF751YAL ENCFF687LIL 

ChIP-seq H3K27ac GM23338 ENCSR729ENO ENCFF403VXK ENCFF754UFV 

ChIP-seq H3K27ac C42B ENCSR279KIX ENCFF913EZV ENCFF980IJT 

ChIP-seq H3K27ac 22Rv1 ENCSR391NPE ENCFF025ZEN ENCFF769UET 

ChIP-seq H3K27ac Foreskin 
keratinocyte 

ENCSR709ABP ENCFF085FAH ENCFF178GZR 

ChIP-seq H3K27ac Foreskin 
keratinocyte 

ENCSR709ABP ENCFF776HMQ ENCFF178GZR 

ChIP-seq H3K27ac Epithelial cell of 
prostate 

ENCSR910PDW ENCFF382XYO ENCFF213AZI 

ChIP-seq H3K27ac RWPE2 ENCSR987PNT ENCFF245ORL ENCFF169DGZ 
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ChIP-seq H3K4me3 SKNSH ENCSR975GZA ENCFF027SGQ ENCFF959FMO 

ChIP-seq H3K4me3 SKNSH ENCSR975GZA ENCFF245RXP ENCFF959FMO 

ChIP-seq H3K4me3 NCIH929 ENCSR082NQB ENCFF417RNS ENCFF446RUP 

ChIP-seq H3K4me3 NCIH929 ENCSR082NQB ENCFF067LLV ENCFF446RUP 

ChIP-seq H3K4me3 Bipolar neuron ENCSR849YFO ENCFF096QTT ENCFF687LIL 

ChIP-seq H3K4me3 Bipolar neuron ENCSR849YFO ENCFF950QWN ENCFF687LIL 

ChIP-seq H3K4me3 Muscle of leg ENCSR128QKM ENCFF552OGD ENCFF622XBJ 

ChIP-seq H3K4me3 Heart right 
ventricle 

ENCSR107RDP ENCFF897OOT ENCFF246SXV 

ChIP-seq H3K4me3 Gastrocnemius 
medialis 

ENCSR098OLN ENCFF310NMI ENCFF587DDD 

ChIP-seq H3K4me3 OCILY3 ENCSR548PZS ENCFF816RLY ENCFF691EEI 

ChIP-seq NR2C1 GM12878 ENCSR784VIQ ENCFF785FLS ENCFF322NTO 

ChIP-seq EP300 Ovary  ENCSR696LQU ENCFF405UYE ENCFF271JKY 

ChIP-seq NFXL1 GM12878 ENCSR746XEG ENCFF673BXM ENCFF322NTO 

ChIP-seq MXI1 Neural cell ENCSR934NHU ENCFF260PNL ENCFF056HWK 

ChIP-seq ZNF318 K562 ENCSR334HSW ENCFF373YTD ENCFF790TAN 

ChIP-seq CREB1 HepG2 ENCSR112ALD ENCFF011HOS ENCFF950AXC 

ChIP-seq CTCF RWPE1 ENCSR303GFI ENCFF204KRO ENCFF290UZX 

ChIP-seq RFX1 MCF7 ENCSR788XNX ENCFF804LEF ENCFF426RDP 

ChIP-seq CTCF Ascending aorta ENCSR960MDF ENCFF353ZVY ENCFF023NJF 

ChIP-seq E4F1 K562 ENCSR731LHZ ENCFF978NVP ENCFF910IKB 

DNase-seq Open chromatin Left arm bone ENCSR976XOY ENCFF205JXZ  

DNase-seq Open chromatin A673 ENCSR346JWH ENCFF348KWA  

DNase-seq Open chromatin T-helper 1 cell ENCSR000EQC ENCFF425YMJ  

DNase-seq Open chromatin Retina  ENCSR820ICX ENCFF441YDL  

DNase-seq Open chromatin Uterus  ENCSR129BZE ENCFF759POB  

DNase-seq Open chromatin NAMALWA ENCSR301OGM ENCFF554YJG  

DNase-seq Open chromatin SKMEL5 ENCSR000FEK ENCFF844BZM  

DNase-seq Open chromatin ELF1 ENCSR678ILN ENCFF433CFI  

DNase-seq Open chromatin Myocyte  ENCSR000EPD ENCFF042QTI  

DNase-seq Open chromatin Pancreas ENCSR828FVZ ENCFF984FKS  
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Each BAM file was downloaded directly from ENCODE, along with the corresponding control             
BAMs for H3K27ac, H3K4me3, and TF ChIP-seq experiments. If multiple replicates of the             
control experiments existed, only the first listed in ENCODE’s database was used for             
analysis. BAM files were sorted and indexed using Samtools 1.3 (samtools sort            

filename.bam and samtools index filename.bam.sorted commands respectively).       
Bigwig file coverage maps were created from the BAM files using the DeepTools 3.0.1              
commands: bamCoverage --bam filename.bam.sorted -o filename.bw      

--extendReads -bs 1 --normalizeUsing RPKM for paired-end sequenced experiments.         
For single-end sequenced experiments the average fragment length was obtained from           
ENCODE and used with the --extendReads flag, making the command: bamCoverage           

--bam filename.bam.sorted -o filename.bw --extendReads     

averageFragmentLength -bs 1 --normalizeUsing RPKM.  
 
Putative peak calls were carried out on all datasets, whereby regions would be verified as               
either peak or noise based on visual inspection. Coordinates for the regions being assessed              
were determined three ways. The MACS2 peak caller was used on default settings, macs2              

callpeak -t filename.bam.sorted -c control_filename.bam.sorted -n      

sample_label -f BAM -g hs -B -q 0.01 for H3K27ac, H3K4me3, and transcription             
factor ChIP-seq datasets. For ATAC and DNase, which lack control tracks, the following             
command was used: macs2 callpeak -t filename.bam.sorted -n sample_label -f          

BAM -g hs -B -q 0.01. The second and third peak call methods were based on labelling                 
regions based on their fold enrichment compared to the mean signal. Coverage maps of              
sequenced reads were first smoothed by applying a rolling average of a given window size.               
If this smoothed signal was greater than the mean multiplied by a fold enrichment threshold,               
the coordinate was marked as enriched; adjacent enriched regions were then merged. Five             
different smoothing windows were used (100bp, 200bp, 400bp, 800bp, 1600bp) as well as             
five different enrichment thresholds (1, 2, 4, 8, 16). Method two compared the smoothed              
signal to the mean of chromosome-wide signal multiplied by fold enrichment. Method three             
was similar except the smoothed signal was compared to either the mean of the              
chromosome, surrounding 5kb, or surrounding 10kb, whichever value was highest (i.e.           
max[chromosome mean, 5kb mean, 10kb mean]). 
 
From each dataset a 1Mb continuous region was selected at random for each chromosome              
for autosomes and sex chromosomes only. If the start of the randomly selected region was               
near the end of the chromosome, the area considered was from that point to the               
chromosome end, then from the chromosome start extending until a full 1MB was covered.              
Peaks called from all 3 methods which started within the random region were made available               
for labelling. For both of the mean-based methods, a peak call was made for each               
permutation of the smoothing window and enrichment threshold parameters, and all 25 calls             
were combined - this meant the presence of multiple overlapping candidate peaks in some              
cases. A python implementation of BEDTools28 (pybedtools) was used to find overlapping            
peaks, and only one selected at random was considered for visual inspection.  
 
Only candidate peaks which were obviously peaks or noise were labelled as such. Visual              
inspection was carried out using MLV14, with control tracks overlaid when available. Regions             
were inspected one at a time, until 100 verified peaks were found for the dataset or all of the                   
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regions were assessed. Entire 1Mb regions were assessed (no early stopping), with the             
order of chromosomes randomized. A total of 736,753 regions were labelled this way (5,016              
peaks and 731,737 noise regions) covering 499Mb.  
 
The candidate peak selection algorithm was also called on these tracks (see below), and the               
regions overlapping with the hand labelled peaks were also included in the training data,              
resulting in an additional 3,447 regions. Noise regions were sampled down to match the              
number of peak regions (8,500 were selected). Prioritization was given to regions labelled             
noise with the highest signal, and all regions with a max height in the 25th percentile or                 
greater were included (3,658) for training, with the remaining noise regions randomly            
sampled. Ultimately 16,963 regions were used for training: 8500 noise regions plus 8,463             
peaks (ATAC-seq: 1,926; DNase-seq: 2,097; H3K27ac ChIP-seq: 1,651; H3K4me3         
ChIP-seq: 1,806; transcription factor ChIP-seq: 983). 

Wide and deep convolutional neural network to learn shape and 
enrichment of regions 
LanceOtron’s machine learning architecture is a type of wide and deep neural network,             
combining enrichment values, logistic regression, and a CNN. The logistic regression model            
took as inputs the enrichment values, while the CNN used the 2kb of signal centered on the                 
region of interest. The outputs of these two models, along with the 11 enrichment values,               
were input into a multilayer perceptron, which output the final peak score.  
 
The logistic regression model was trained separately with the same training data, and all              
coefficients and model parameters saved. The wide and deep model was trained with the              
logistic regression component locked, and with loss distributed 70:30 to          
wide-and-deep-output:CNN-only-output. By penalizing the model on the CNN separately, it          
actively encouraged predictions from the 2kb of signal, i.e. the shape of the peak, to be                
accurate in absence of enrichment information.  
 
To determine the optimal structure and hyperparameters, a brute force method of building             
many models with different configurations was carried out. In total 5,000 models were             
trained and tested using the python package Keras Tuner, though performance was robust             
across a range of configurations (Supplementary fig. 1). Model performance was assessed            
by measuring the number of correctly predicted classifications of enriched regions from data             
unseen to the model. The top 10 performing models were then subjected to 5-fold cross               
validation, and the architecture from the top performer was used. 

Candidate peak selection 
To optimize resources, candidate peaks are selected for their enrichment, whereby signal is             
extracted and passed to LanceOtron’s neural network. We developed an algorithm which            
acts as a loose filter, allowing even modestly enriched regions through, and also helps to               
center the area around the highest signal, improving model performance. First the raw signal              
is smoothed by calculating the rolling mean for the surrounding 400bp, and any coordinate              
where the signal is fold*mean-chromosome-signal (4-fold enrichment above mean initially) is           
marked as enriched. Adjacent enriched regions are combined, and if the size is between              
50bp and 2kb it is considered a candidate peak. Regions smaller than 50bp are discarded,               

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428108doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428108


and regions above 2kb are recursively reevaluated at a fold higher threshold until the region               
size is between 50bp and 2kb, or the region is greater than 20-fold enriched. 

Peak caller benchmarking 

Labelling testing data and calculating model performance 
Testing datasets were also obtained from ENCODE (Table 3), but were not used in              
LanceOtron’s training data. Each track was downloaded as a BAM file, and converted to              
bigwig using the same deeptools commands given above for in training data preparation.             
Chromosomes were shuffled (mitochondrial and alternative mapping chromosomes were         
excluded), and 1Mb was labelled for peaks or noise; regions which were not clearly either               
were excluded. For CTCF, H3K27ac, and H3K4me3 ChIP-seq datasets, 10 chromosomes           
each were labelled in this manner, and for ATAC and DNase, three chromosomes each.              
True positives, false positives, true negatives, and false negatives were determined by            
intersecting peak calls from LanceOtron and MACS2 with these labelled data using            
BedTools. True positives were found by using the command bedtools intersect -a            

peak_call.bed -b labelled_peaks.bed -u -wa. False negatives used bedtools         

intersect -a peak_call.bed -b labelled_peaks.bed -v -wa. True negatives used          
the command bedtools intersect -a peak_call.bed -b labelled_noise.bed -v         

-wa, while false positives used bedtools intersect -a peak_call.bed -b          

labelled_noise.bed -u -wa. 
 

 

Motif analysis 
A custom motif matching script was written to match CTCF sites using a simple Python               
regex function. The motif position weight matrix (PWM) was downloaded from JASPAR29            
and the genomic coordinates matching the motif (and reverse complement) were recorded            
as a bed file. The matching sequence had to be the same length, with all nucleotides present                 
at 75% or higher in the PWM as exact matches. With the bed file of the motif coordinates                  
made, we once again employed BEDTools to find intersections with the peak calls.  
 
Bed files which were exclusively LanceOtron or MACS2, as well as the intersections with              
promoter or enhancer regions, and TSSs were also found using BEDTools. The bed files              

Experiment type ENCODE ID numbers 

Assay Target Tissue Experiment BAM file Control BAM 

ATAC-seq Open chromatin MCF-7 ENCSR422SUG ENCFF346MIJ  

ChIP-seq CTCF Spleen ENCSR692ILH ENCFF903NKV ENCFF376BTL 

ChIP-seq H3K27ac HAP-1 ENCSR131DVD ENCFF742SZS ENCFF247DSQ 

ChIP-seq H3K4me3 MG63 ENCSR579SNM ENCFF996ZSR ENCFF381RWF 

DNase-seq Open chromatin A549 ENCSR000ELW ENCFF410CDT  
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listing the coordinates of the promoters or enhancers were from GenoSTAN27, and for TSSs              
we used RefTSS30. 
 
The heat map of the coverage was made using the deeptools command: computeMatrix             

reference-point -S CTCF_spleen_ENCFF656CCY.bw -R    

CTCF-spleen_LoT-only-peaks.bed CTCF-spleen_MACS2-only-peaks.bed  

--referencePoint center -a 1000 -b 1000 -out       
CTCF-spleen_LoT-and-MACS2_matrix.tab.gz 

Followed by the command: plotProfile -m      
CTCF-spleen_LoT-and-MACS2_matrix.tab.gz -out CTCF-spleen_LoT-and-MACS2.png   

--samplesLabel "Peak caller exclusive regions" --regionsLabel "LanceOtron       

only" "MACS2 only" --plotType=heatmap 

Code availability 
Code for the deep learning model is available at https://github.com/LHentges/LanceOtron          
with the webtool found at https://github.com/Hughes-Genome-Group/mlv.  
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Supplementary Materials 

Functionality of LanceOtron’s user interface 
LanceOtron features a rich graphical user interface, accessible using any web browser, and             
allows peak calls to be made without the use of the command line. Using the web tool to                  
perform a peak call is demonstrated in supplementary video 1:          
https://youtu.be/k8GrIp55vDg . Furthermore, exploring and filtering data is also easily carried          
out with the graphical interface (supplementary video 2: https://youtu.be/M5ox8XI-U4Q). 
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