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Abstract

ATAC-seq, ChlP-seq, and DNase-seq have revolutionized molecular biology by allowing
researchers to identify important DNA-encoded elements genome-wide. Regions where
these elements are found appear as peaks in the analog signal of an assay’s coverage
track, and despite the ease with which humans can visually categorize these regions,
meaningful peak calls from whole genome datasets require complex analytical techniques.
Current methods focus on statistical tests to classify peaks, reducing the information-dense
peak shapes to simply maximum height, and discounting that background signals do not
completely follow any known probability distribution for significance testing. Deep learning
has been shown to be highly accurate for image recognition, on par or exceeding human
ability, providing an opportunity to reimagine and improve peak calling. We present the peak
calling framework LanceOtron, which combines multifaceted enrichment measurements with
deep learning image recognition techniques for assessing peak shape. In benchmarking
transcription factor binding, chromatin modification, and open chromatin datasets,
LanceOtron outperforms the long-standing, gold-standard peak caller MACS2 through its
improved selectivity and near perfect sensitivity. In addition to command line accessibility, a
graphical web application was designed to give any researcher the ability to generate
optimal peak calls and interactive visualizations in a single step.
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Introduction

Gene regulation is central to cell type specific function and identity, and is dysregulated in
disease. Understanding the genomic basis of gene regulation requires mapping regions of
protein binding or chromatin modification using methods such as ChIP-seq. Similarly,
identifying active regions, as detected by altered chromatin accessibility using ATAC-seq or
DNase-seq, provides cell type specific maps of functional regions in the genome. Integrated
data from these assays form the high-resolution maps for the main types of genomic
elements (enhancers, promoters, and boundary elements) which dictate gene expression in
a cell type specific manner'. Therefore, the accurate extraction of biologically meaningful
data from such assays provides the foundations of current functional genomics research and
is critical to understanding gene regulation in health and disease.

Data from ATAC-seq, ChlP-seq, and DNase-seq are processed in a similar fashion: enriched
DNA fragments are sequenced, aligned to the genome, and areas enriched for these
fragments are recorded. These data appear as tracks of analog signal across genomic
coordinates, and increases in fragment density at true-positive biological events are called
“‘peaks" because of the characteristic pattern of fragments produced in these areas. Besides
these regions, enrichment also occurs due to biases and noise in the experimental
procedures? or systematic mapping errors common to areas of low complexity®. Creating
algorithms that can distinguish peaks from such experimental and computational noise, and
are robust across methodologies, sequencing depth, diverse tissue types, and chromosomal
structure has remained a challenge.

Traditionally, real peaks are distinguished from noise using statistical tests that compare
enrichment from the region to background, which is assumed to consist of signal generated
randomly. While the Poisson distribution models this better than other distributions®,
background is in fact nonrandom?®, appearing at increased levels in areas of open
chromatin®, at sites with inherent sequence bias and over regions of varying copy number’.
This must be considered when reviewing significance from statistical peak callers, as
misclassification will occur at a higher rate than the p-value suggests. Relying solely on
these significance scores may lead to high false positive rates, but also leaves room for
potential false negatives, with the ratios of these errors depending on the parameters
selected. Exacerbating this default settings are routinely used, reducing accuracy nearly
10% on average from tuned parameters when using statistical peak callers®. With these
tools, errors may be reduced by using matched negative controls (also known as “input
tracks”) to calculate the level of background noise, though this increases the time and costs
of the experiment. While peak callers such as MACS2° do not strictly require negative
control tracks, forgoing them may sacrifice performance™. Input tracks do control for some
experimental bias but are still sensitive to chromatin activity, making statistical tests more
prone to false negatives®.

To address the well-known problems of peak callers, analysis pipelines employing quality
control steps are common. The Encyclopedia of DNA Elements (ENCODE) consortium hosts
numerous chromatin profiling assay datasets''> and has developed a robust set of
guidelines including recommendations for input controls, sequencing depth, library
complexity, and exclusion list regions where mapping errors are more prone to occur™.
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Multiple replicates are encouraged, and procedures exist for combining peak calls for the
most efficient reduction in error™. Although these extensive measures greatly improve the
reproducibility of peak calls, high-throughput visual inspection showed numerous erroneous
peak calls remain'®.

The inability to reproduce published results is a prevalent concern amongst researchers and
is due in part to the unintentional misuse of statistics’®. These issues include overstating the
meaningfulness of the statistical test results and conflating significance with effect'” - traps
commonly used peak callers fall prey to. Peak callers relying on statistical models simplify
the complex analog signal of a region into a single value (maximum height) and use it to
calculate a p-value. Enrichment is calculated against a background signal incorrectly
assumed to follow a known distribution, and this sole measurement is then falsely equated
with peak quality and used to filter results. Quality control is typically limited to uploading the
significant regions and coverage track to a genome browser such as UCSC" or IGV,
where sections of the genome can be manually scanned. Using only these tools makes
anything beyond a cursory inspection tedious and impractical, but because of the incomplete
link between statistical test results and peak quality, thoroughly exploring and refining peak
calls is of particular importance.

Though extremely time consuming when done at scale, researchers have been shown to
effectively judge the quality of peaks using a genome browser. Rye et al. measured peak
caller performance by creating a dataset of visually verified peak calls using the UCSC
genome browser, and inadvertently measured the performance of the humans in the
process®. They found that transcription factor motifs, known to be associated with true
biological signals, were recovered more often from the manually labeled peaks than from the
peak callers. Amazingly they also found that 80% of the software’s false positives could be
detected even without an input track, because the human peak callers could identify that
these regions “lacked the expected visual appearance of a typical ChlP-seq peak’.
Furthermore, while classifying regions by eye is seemingly dependent on an individual,
Hocking et al. demonstrated a high consistency across labelers when judging peaks®. Visual
inspection can be a credible method for peak calling, though to do so comprehensively for
an entire human genome would be nearly impossible.

Convolutional neural networks (CNNs), a class of deep learning algorithms, have been
extremely successful in a number of general pattern detection tasks such as voice
recognition and image classification?’. Indeed, error rates as low as 3.6% have been
achieved for image classification?, even surpassing the human error rate of 5.1% for the
same dataset®. These techniques are being applied in biology as well, especially in
genomics where there is an overabundance of data available for training and analysis®.
Tools such as DeepSea® and Bassett?® take genomic sequences as input and can predict
regulatory genomic features with high accuracy. Proof of principle studies have also shown
promise for applying these techniques to peak calling®?’.

Here we present LanceOtron, a peak caller utilising deep learning and packaged with a
graphical user interface for integrated quality control. LanceOtron improves upon current
tools by calculating a multitude of enrichment metrics for each region being assessed and
combines these with a CNN trained to recognise the characteristic shape of peaks. This
model is designed for open chromatin, transcription factor and chromatin modification
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ChIP-seq data, and achieves both high sensitivity and selectivity. Our user-friendly webtool
has comprehensive filtering capabilities, built-in genome browser, and automatically
generated interactive charts. LanceOtron is freely available at
https://LanceOtron.molbiol.ox.ac.uk/.

Results

LanceOtron: a deep learning based peak caller with embedded
visualization tools

The core of LanceOtron’s peak scoring algorithm is a customized deep neural network
strategically combined with local enrichment measurements. These enrichment
measurements are taken from the maximum number of overlapping reads in a peak
compared to its surroundings - chromosome-wide as well as 10 kilobases (kb) to 100 kb
regions in 10 kb increments. The measurements are then used in a logistic regression
model, which produces an enrichment score. A base pair resolution view of the signal over a
2 kb window, centered on each peak, is then encoded and input into LanceOtron’s CNN. The
CNN uses the relationship between the number of overlapping reads at all 2,000 points, i.e.,
the shape, to determine if the region is a peak arising from a biological event or noise.
Finally, a multilayer perceptron combines the outputs from CNN and logistic regression
model, as well as the 11 local enrichment measurements to produce an overall peak quality
metric called Peak Score (Fig. 1a). As this is a supervised machine learning algorithm,
training data is required to provide examples of the shapes and enrichments for the peak
and noise regions. For this we used 50 datasets from open chromatin, transcription factor
and chromatin modification ChIP-seq experiments (Supplementary Table 1) reaching a
total of 736,753 labeled regions covering 499 Mb of genome (Methods).

LanceOtron extracts genomic data from a bigwig track, which has the benefits of being both
compact and readily visualized. With widely used peak callers such as MACS2, assessing
the quality of results cannot be done directly, rather the user must upload their output to a
genome browser. This is somewhat restrictive for judging the quality of a peak call, in that
the output file and genome browser are disconnected, meaning users are limited to
haphazardly scanning some genomic regions to see if their results are sensible. To address
this LanceOtron is built on the powerful MLV genome visualization software's, which allows
users to sort and filter results, as well as visualizing peaks and their metadata en masse.
Clustering peaks based on shape and quality is built-in via the unsupervised machine
learning techniques PCA?, t-SNE?°, and UMAP?. This allows for rapid assessment of data
quality, structure and the appropriateness of the output of the algorithm for the current
dataset (Fig. 1b, Supplementary video 1 & 2).

LanceOtron’s has three main modules, each taking a coverage file as input and returning
enriched regions with associated scores as output. 1) Find and Score Peaks, which first
labels enriched regions as candidate peaks, then scores them using LanceOtron’s deep
learning model 2) Find and Score Peaks with Inputs performs the same function as the first
module but additionally calculates the p-values of regions based on enrichment compared to
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a separate input control track 3) Score Peaks, which does not find candidate peaks, but
rather the neural network scores genomic locations provided as an additional file.

The first two modules, Find and Score Peaks and Find and Score Peaks with Inputs, employ
LanceOtron’s candidate peak calling algorithm. This works by applying a 25-way enrichment
test, consisting of different smoothing window-threshold combinations (Methods). This allows
for various ways for a region to be considered enriched, with the aim of generating an
overcomplete set of all possible areas of interest to present to the neural network for
assessment. The ethos of LanceOtron is different from existing peak callers, which include
or exclude peaks from the output based on parameters and cut-offs. LanceOtron’s aim is to
identify all potentially enriched regions, score these using machine learning and return the
complete dataset in a manner that can be examined and queried in its entirety. This is made
feasible through the comprehensive filtering and powerful data exploration tools
LanceOtron’s graphical interface offers. Furthermore, by calculating the comprehensive
Peak Score, p-values can be used at relaxed thresholds as a means of excluding peaks
found in the input tracks, rather than as the sole means for judging peak quality.

The final module, Score Peaks, uses LanceOtron’s neural network component in isolation
from the candidate peak identifier. This allows users to analyze the quality of peak calls from
other tools, publications or databases. Using this reanalysis capability, we have found that
publicly available peak calls, even following the strictest guidelines, may contain large
numbers of low-quality peaks. For example, LanceOtron was used to reanalyze peaks calls
from ENCODE ChIP-seq for H3K27ac from 22Rv1 prostate cancer epithelial cells
(ENCSR391NPE). As part of the ENCODE pipeline, two biological replicates were
independently peak called and only peaks present in both were included. Using
LanceOtron’s deep learning based scoring, clustering, and visualization tools it is clear that
many very low quality peaks remain in the datasets despite requiring independent calls
(LanceOtron 22Rv1 H3K27ac project)(Fig. 1¢). Large amounts of similarly low-quality peaks
can be identified in many other public data sets based on similar statistical peak calling
approaches.
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Fig. 1. LanceOtron, a deep learning based peak caller overview. a, Overview of LanceOtron’s neural network. i, Local
enrichments are calculated against background from 10kb to 100kb regions in 10kb increments, plus whole chromosome. ii, The
enrichment values are used as inputs for a logistic regression model. iii, Signal from the central 2 kilobases (kb) is fed into a
convolutional neural network (CNN). iv, The output from the CNN, logistic regression model, and local enrichment values are all
input into a multilayer perceptron, which produces the overall peak score for a given region. b, Peak calls are visualized with
interactive bed file, charts, clustering, and linked genome browser. Filtering can be applied using LanceOtron’s peak score, p-
value, height, genomic coordinates, or any other criteria based on column in the interactive bed file. c, Peak call retrieved from
ENCODE, but scored with LanceOtron’s model. i, Peak calls are clustered and visualized using LanceOtron interactive t-SNE plot,
with screen captures from the image thumbnail panel for ii, high and iii, low scoring regions as assessed by LanceOtron’s neural
network.

Benchmarking LanceOtron

We benchmarked LanceOtron’s performance with the ENCODE recommended peak caller
MACS?2, both using default settings (with and without an input control track when available).
We compared peak calls from transcription factor ChlP-seq, histone ChiP-seq, and the open
chromatin assays ATAC-seq and DNase-seq. For a complete numerical listing of
performance benchmarks for all labeled datasets see Supplementary Table 2.

Transcription factor ChlP-seq

Our transcription factor dataset was CTCF in spleen primary cells, downloaded from
ENCODE (ENCSR692ILH). We hand labeled 10 megabases (Mb) of the dataset, marking
areas which were obviously peaks or noise (Methods) resulting in 109 human curated peak
annotations. When no input control track was used, both LanceOtron and MACS2 achieved
perfect sensitivity, detecting all labeled peaks in the dataset, but MACS2 had far lower
selectivity and overall F1 score. With input, LanceOtron outperformed MACS2 in precision,
recall/sensitivity, selectivity, and F1 score. Comparing across peak call types, LanceOtron
without input actually achieved higher scores than MACS2 with input across all metrics
(LanceOtron spleen CTCF projects: without input; with input)(Fig. 2a).

To gain insight into the peak calls genome wide, we performed motif analysis. The number of
peaks called were similar between the different methods, though MACS2 without input was
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slightly higher: LanceOtron, 19,291; MACS2, 24,534; LanceOtron with input, 17,398; MACS2
with input, 16,901. Without input, LanceOtron called fewer peaks with motifs than MACS2
but called fewer peaks in total, resulting in a larger percentage of the overall peak call
containing motifs: 32.3% for LanceOtron versus 27.0% for MACS2. When inputs were used,
LanceOtron had both a larger count of peaks containing CTCF motifs as well as a larger
percentage of the peak call with motifs: 34.9% versus 33.2% (Fig. 2b).

We further investigated the differences between LanceOtron with input and MACS2 with
input peak calls, finding 1,970 LanceOtron only and 1,471 MACS2 only regions. The
transcription factor being tested for in this experiment, CTCF, is often associated with
promoters and enhancers®, and we found 87.6% of peaks found exclusively with
LanceOtron overlapped with promoters or enhancers compared to just 45.8% of MACS2
only peak calls (Fig. 2c). When visualizing the top enriched regions called exclusively by
each peak caller, LanceOtron’s peaks have strikingly more signal than MACS2 (Fig. 2d).
Indeed, this trend holds when inspecting the average signal of the exclusive peak calls;
MACS2 only regions were found in regions with less surrounding signal, containing peaks
which were narrower and with very low enrichment compared to LanceOtron only peaks. It
seems that the MACS2-only regions are a sporadic sampling of the numerous peaks close
to noise found throughout the genome, however the peaks that MACS2 missed are relatively
strongly enriched. These missing peaks are excluded by MACS2 because of the increase in
control signal, however some increased signal from the control track is expected when the
region is found in areas of open chromatin®, which can be seen associated with the
LanceOtron only peaks (Fig. 2e). Using the outcome of a statistical test as the sole criteria of
categorizing genomic regions means striking a balance between calling false positives and
false negatives. While the stringent cut-off set by MACS2 helps reduce false positives
genome wide, here it does so at the cost of false negatives. Because LanceOtron
additionally uses the shape of the peak, the statistical threshold can be relaxed, thus
preventing these false negatives without trading them for a plethora of false positives.
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Fig. 2. Benchmarking LanceOtron against MACS2 for peak calling transcription factor ChiP-seq. a, Model performance metrics
using labelled genomic regions of an ENCODE CTCF ChlIP-seq dataset. b, Comparing the number of motifs contained the in peak
calls generated from LanceOtron and MACS2. c, Venn diagram of peak calls from LanceOtron and MACS2. Regions which did not
intersect were assessed for overlap with promotors or enhancers. d, Thumbnail images from the most highly enriched regions
called exclusively by either LanceOtron (top) or MACS2 (bottom). e, Average coverage of the regions called exclusively by either
LanceOtron (top) or MACS2 (bottom) for CTCF experimental track, control track, and DNase-seq open chromatin track.

Histone ChlP-seq

Our histone ChIP-seq datasets were H3K27ac in HAP-1 cells (ENCSR131DVD) and
H3K4me3 in MG63 cells (ENCSR579SNM). For H3K27ac, the top sensitivity was achieved
with three peak calls: LanceOtron, both with and without input, and MACS2 without input.
LanceOtron outperformed MACS2 in the remaining metrics of precision, selectivity, and F1
score. The same performance was achieved both with and without input for the LanceOtron
peak calls, highlighting the power of its deep neural network (LanceOtron HAP-1 H3K27ac
projects: without input; with input)(Fig. 3a). In the H3K4me3 dataset, specificity was equal
between LanceOtron and MACS2 with input, and LanceOtron outperformed MACS2 across
all peak call types for the remaining metrics (LanceOtron MG63 H3K4me3 projects: without

input; with input)(Fig. 3b).

We also tested published datasets from Oh et al., who annotated peaks and noise for
H3K27ac ChlP-seq in GM12878 cells and H3K4me3 in K562 cells?’. Performance was
generally consistent with our in-house labeled data, and though MACS2 performed slightly
better than LanceOtron on sensitivity, LanceOtron outperformed MACS2 on precision,
selectivity, and F1 score for both the H3K27ac data (LanceOtron GM12878 H3K27ac
project)(Fig. 3¢c) and H3K4me3 data (LanceOtron K562 H3K4me3 project)(Fig. 3d).
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Fig. 3. Benchmarking LanceOtron against MACS2 for peak calling histone ChiIP-seq. a, Model performance metrics using 10 Mb
of labelled genomic regions of ENCODE ChiIP-seq datasets for H3K27ac in HAP-1 cell line, and b, H3K4me3 in MG63 cell line. c,
ChlIP-seq dataset labelled by Oh et al. for H3K27ac in GM12878 cell line and d, H3K4me3 in K562 cell line.
To further investigate the histone mark ChlP-seq peak calls, we counted the number of
transcription start sites (TSSs) overlapping with the peak calls, as TSSs are generally
modified with H3K27ac and H3K4me3. Due to the frequency with which TSSs are found in
the genome, we restricted the analysis to the top 5,000 peaks called for each peak caller
and normalized the regions’ size to 1 kb. This had the added benefit of being resilient to
peak caller parameter changes, as the top peaks were unlikely to change based on
parameters. For H3K27ac, LanceOtron performance was very similar with and without input,
increasing from 2,806 to 2,812 peaks when the input track was included. Both LanceOtron
peak calls had more overlap with TSSs than MACS2, which had 2,367 and 2,591 with input.
We observed similar results for the H3K4me3 data, with LanceOtron finding 3,472 peaks
intersecting TSSs, increasing slightly to 3,501 with input control. MACS2 had better
performance without input, though not reaching LanceOtron levels, at 3,335 and decreasing
down to 2,589 with input (Table 1).


https://doi.org/10.1101/2021.01.25.428108

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428108; this version posted August 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Top enriched peaks intersecting TSSs

LanceOtron MACS2

% top H3K27ac ChlP-seq in HAP-1 peaks 56.1% (2,806 / 5,000) 47.3% (2,367 / 5,000)
overlapping TSSs (count)

% top H3K4me3 ChlIP-seq in MG63 peaks 69.4% (3,472 / 5,000) 66.7% (3,335 /5,000)
overlapping TSSs (count)

% top ATAC-seq in MCF-7 peaks overlapping 44.4% (2,218 / 5,000) 21.7% (1,086 / 5,000)
TSSs (count)

% top DNase-seq in A549 peaks overlapping 43.3% (2,164 / 5,000) 23.0% (1,151 /5,000)

TSSs (count)

LanceOtron with input | MACS2 with input

% top H3K27ac ChlP-seq in HAP-1 peaks 56.2% (2,812 / 5,000) 51.8% (2,591 / 5,000)
overlapping TSSs (count)

% top H3K4me3 ChiIP-seq in MG63 peaks 70.0% (3,501 / 5,000) 51.8% (2,589 / 5,000)
overlapping TSSs (count)

GM12878 open chromatin peaks intersecting active regions

LanceOtron MACS2
% ATAC-seq peaks in active regions (count) 9.2% (5,648 / 60,962) 7.1% (6,679 / 94,197)
% DNase-seq peaks in active regions (count) 11.4% (2,871 / 25,183) 7.8% (5,285 /67,461)

Table 1. LanceOtron and MACS2 peak call comparison for transcription start sites (TSSs), and for active regions in open
chromatin. Percentages and counts of peaks intersecting TSSs are given for 5,000 regions of LanceOtron and MACS2 peak calls,
selected for being most enriched (highest Peak Score or g-value for LanceOtron and MACS2 respectively). Percentages and
counts are also shown for open chromatin peaks found in active areas of the genome.

ATAC-seq and DNase-seq

In-house data for ATAC-seq consisted of regions in the MCF-7 cell line from ENCODE
(ENCSR422SUG). LanceOtron outperformed MACS2 across all metrics (LanceOtron MCF-7
ATAC-seq project)(Fig. 4a). Results were similar for our in-house DNase-seq data in the
A549 cell line from ENCODE (ENCSRO00ELW). MACS2 outperformed LanceOtron for
recall/sensitivity but had a very high false positive rate. Consequently, LanceOtron
outperformed MACS2 on precision, sensitivity, and F1 score (LanceOtron A549 DNase-seq
project)(Fig. 4b). As with the histone datasets, we also intersected the top 5,000 peaks,
normalized to 1 kb, with TSSs. LanceOtron’s top peaks had nearly double the number of
intersections with TSSs compared with MACS2 for DNase-seq (2,164 versus 1,151) and
over double for ATAC-seq peaks (2,218 versus 1,086) (Table 1).
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Fig. 4. Benchmarking LanceOtron against MACS2 for calling open chromatin. a, Model performance metrics using labelled
genomic regions of an ENCODE ATAC-seq dataset in MCF-7 cell line and b, DNase-seq in A549 cell line.

We also compared peak calling performance on GM12878 cells for ATAC-seq
(ENCFF576DMC) and DNase-seq (ENCSRO00EMT). Here we used published annotations
from Tarbell and Liu*?, whereby they defined active areas of the genome using enhancer and
promoter data with the software GenoSTAN®. The number of peaks called for these
datasets were considerably different from each peak caller. For ATAC-seq, 60,962 peaks
were called using LanceOtron and 94,197 peaks for MACS2; DNase-seq, 25,183 peaks
were called using LanceOtron and 67,461 peaks for MACS2. For both ATAC-seq and
DNase-seq the raw counts of peaks found in active areas were higher with MACS2, however
as a percentage of the total peak call, MACS2 was lower than LanceOtron for both
experiment types (LanceOtron GM12878 projects: ATAC-seq; DNase-seq)(Table 1).

Discussion

LanceOtron is a deep learning based peak caller for genomic signal analysis, with a full
user-friendly interface designed for interrogation of large datasets. Here it outperformed the
current gold standard algorithm, MACS2, in each of our experiments. LanceOtron’s CNN,
trained on open chromatin, transcription factor and chromatin modification data, learns the
shape of the signal and uses this in combination with enrichment calculations to identify
biologically relevant regions. Traditional peak callers return only those regions which cross a
high statistical threshold. When using LanceOtron’s candidate peak calling algorithm
however, all enriched regions above a relatively low threshold are returned, along with their
associated peak scores, p-values, heights, widths, and other properties. This makes
LanceOtron akin to an automated annotation tool, returning a greater breadth of data about
the experiment. It's function as a peak caller is realized using LanceOtron’s comprehensive
data visualization, filtering and data handling to generate output data sets with defined
characteristics.

Benchmarking the transcription factor CTCF ChlP-seq data showed that peaks uniquely
identified by LanceOtron were enriched for enhancers or promoters, as would be expected
based on the biology of the transcription factor being analyzed. In our testing some real
peaks appeared to be absent from the MACS2 dataset. Inspection of the DNase-seq track
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made it clear that many of the regions missed by MACS2 were in regions of open chromatin.
These areas sonicate more readily®, and are known to have increased signal in input tracks,
however this increase in control signal did not preclude these regions from being recognized
using LanceOtron as it did for MACS2. The loss of these regions in the MACS2 analysis is
likely due to a combination of its reliance on the signal in the input tracks and its high p-value
threshold to better reduce false positives genome wide, but at the cost of sensitivity in active
regions of the genome. LanceOtron peaks were shown to be enriched for the CTCF binding
motif more often than MACS2, providing biological evidence that the differences in peaks
called by LanceOtron are actually improvements over traditional analysis. Though
outperformed by LanceOtron, MACS2 actually achieved its second-best overall performance
score on the CTCF dataset (F1 score, first best on H3K4me3). This is perhaps not surprising
as MACS2 was designed for peak calling transcription factor binding experiments. While the
narrow binding pattern of H3K4me3 closely resembles the distribution of read coverage seen
in transcription factor binding, MACS2 performance suffered when the genomic signal
deviated from this pattern, especially true in ATAC-seq and DNase-seq. When no input track
was available, MACS2 overall performance further declined. This is in contrast to
LanceOtron, whereby performance was only slightly lower without an input track, and even
outperformed MACS2 with input for overall F1 score on every test where this comparison
was available (Supplementary Table 2).

LanceOtron’s dual focus of deep learning on big data and generation of rich interactive
visualizations are each computationally expensive in their own right. Yet despite this, the
average time to perform a peak call on the 13 datasets benchmarked here, plus
automatically generate the interactive charts and genome browser, was just over an hour to
run within a web browser (mean time 67 minutes, standard deviation 11 minutes). The
speed that LanceOtron can carry out analysis, requiring only a basic bigwig track and using
a web interface, also means that it can form part of the review process when a manuscript is
under consideration. While often a session of data is provided during review, this is seldom
utilized due to time constraints and the necessity of accessing high performance computing
facilities. LanceOtron remedies this, providing a convenient outlet for group leaders, bench
biologists, and bioinformaticians alike to visualize and assess from internal or external
sources. In addition, peak calls made with LanceOtron can easily be made public for
assessment by reviewers and colleagues directly, as they have been here. Improving access
to the analysis process is beneficial to the larger molecular biology community and helps to
address the growing concern of reproducibility in science.

LanceOtron had a comprehensive development process during which over 100 unique users
tested the tool, with over 30 users creating 10 projects or more. We have learned how labs
around the world analyze their chromatin profiling assays, and we designed our workflow
around this experience. A strength of using supervised machine learning approaches is that
analysis can improve as more training data is added to the model; as our user base grows,
we can refine our peak calls even further. Our focus to date has been on the most commonly
used experiments where we believed there was the greatest potential for improvement.
However, unlike hardwired statistical algorithms, CNN-based algorithms can easily be
trained to deal with new signal types and distributions not covered in the original training
sets. The same architecture can potentially be used to learn different types of genomics
data, for example CAGE transcription start site signals or methylomics which are currently
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challenging to extract signal from noise; exemplifying this, LanceOtron has even been
adapted for analysing base pair resolution chromosome conformation capture®.

In summary, LanceOtron is a powerful peak caller and analysis tool for ATAC-seq, ChlIP-seq,
and DNase-seq. Across a range of different datasets and data types, LanceOtron
outperformed the industry-standard MACS2. It is designed to accommodate current
workflows as a visualization, annotation, filtering and peak calling tool, leveraging a powerful
deep learning neural network to use peak shape information alongside enrichment data.

Methods

Deep learning model

Training data

The data used to train the neural network was obtained from ENCODE. To generate a
complete list of experiments which met our specifications we used ENCODE’s REST API
(scripts and outputs available on GitHub). We filtered the results to samples which were
“released” status at the time of search inquiry and aligned to human reference genome hg38
as BAM files; for H3K27ac, H3K4me3, and transcription factor ChlP-seq experiments, the
availability of a corresponding control track was also required. While infrequent, samples
were excluded if ENCODE metadata did not include information on single-end versus
paired-end sequencing. The number of samples meeting these criteria was 3,902 (74 ATAC,
911 DNase, 305 H2K27ac, 463 H3K4me3, 2,149 transcription factor samples). We sampled
10 paired-end datasets for each category at random from each experiment type, except in
H3K4me3 experiments where only 6 samples available were paired-end, and so 4 single
end experiments were included. This resulted in 38 unique biosample types, 9 unique
transcription factor ChiP-seq targets plus 2 histone ChlP-seq targets (Table 2).

Each BAM file was downloaded directly from ENCODE, along with the corresponding control
BAMs for H3K27ac, H3K4me3, and transcription factor ChlP-seq experiments. If multiple
replicates of the control experiments existed, only the first listed in ENCODE’s database was
used for analysis. BAM files were sorted and indexed using Samtools®® 1.3 (samtools sort
filename.bam and samtools index filename.bam.sorted commands respectively).
Bigwig file coverage maps were created from the BAM files using deepTools®* version 3.0.1
commands: bamCoverage --bam filename.bam.sorted -0 filename.bw
--extendReads -bs 1 --normalizeUsing RPKM for paired-end sequenced experiments.
For single-end sequenced experiments the average fragment length was obtained from
ENCODE and used with the --extendReads flag, making the command: bamCoverage
--bam filename.bam.sorted -0 filename.bw --extendReads
averageFragmentLength -bs 1 --normalizeUsing RPKM.

Putative peak calls were carried out on all datasets, followed by classification as either peak
or noise based on visual inspection. Coordinates for the regions being assessed were
determined three ways. The MACS2 peak caller was used on default settings, macs2
callpeak -t  filename.bam.sorted -c control_filename.bam.sorted -n
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sample_label -f BAM -g hs -B -q 0.01 for H3K27ac, H3K4me3, and transcription
factor ChlP-seq datasets. For ATAC-seq and DNase-seq, which lack control tracks, the
following command was used: macs2 callpeak -t filename.bam.sorted -n
sample_label -f BAM -g hs -B -q 0.01. The second and third peak call methods
focused on labeling regions based on their fold enrichment compared to the mean signal.
Coverage maps of sequenced reads were first smoothed by applying a rolling average of a
given window size. If this smoothed signal was greater than the mean multiplied by a fold
enrichment threshold, the coordinate was marked as enriched; adjacent enriched regions
were then merged. Methods two and three used five smoothing windows at different base
pair (bp) resolutions (100 bp, 200 bp, 400 bp, 800 bp, 1600 bp) as well as five different
enrichment thresholds (1, 2, 4, 8, 16). Method two compared the smoothed signal to the
mean of chromosome-wide signal multiplied by fold enrichment. Method three was similar
except the smoothed signal was compared to either the mean of the chromosome,
surrounding 5 kb, or surrounding 10 kb, whichever value was highest (i.e. max[ chromosome
mean, 5 kb mean, 10 kb mean]) multiplied by fold enrichment.

From each dataset a 1 Mb continuous region was selected at random for each chromosome
for autosomes and sex chromosomes only. If the start of the randomly selected region was
near the end of the chromosome, the area considered was from that point to the
chromosome end, then from the chromosome start extending out until a full 1 Mb was
covered. Peaks called from all 3 methods which started within the random region were made
available for labeling. For both of the mean-based methods, a peak call was made for each
permutation of the smoothing window and enrichment threshold parameters, and all 25 calls
were combined - this meant the presence of multiple overlapping candidate peaks in some
cases. A python implementation of BEDTools*” (pybedtools) was used to find overlapping
peaks, and only one selected at random was considered for visual inspection.

Only candidate regions which were obviously peaks or noise were labeled as such. Visual
inspection was carried out using MLV'®, with control tracks overlaid when available. Regions
were inspected one at a time, until 100 verified peaks were found for the dataset or all of the
regions were assessed. Entire 1 Mb regions were assessed (no early stopping), with the
order of chromosomes randomized. A total of 736,753 regions were labeled this way (5,016
peaks and 731,737 noise regions) covering 499 Mb.

Additional labels were generated using an algorithm. First the raw signal was smoothed by
calculating the rolling mean for the surrounding 400 bp, and any coordinate where the signal
was 4-fold*mean-chromosome-signal was marked as enriched. Adjacent enriched regions
were combined, and if the size was between 50 bp and 2 kb it was considered a candidate
peak. Regions smaller than 50 bp were discarded, and regions above 2 kb were recursively
re-evaluated at a 1-fold higher threshold until the region size was between 50 bp and 2 kb,
or the region was greater than 20-fold enriched. If these candidate peaks intersected with
the previously labeled peaks, these regions were then also labeled peaks, resulting in an
additional 3,447 labels for a total of 8,463 peaks (ATAC-seq: 1,926; DNase-seq: 2,097;
H3K27ac ChlIP-seq: 1,651; H3K4me3 ChIP-seq: 1,806; transcription factor ChlP-seq: 983).
Noise regions were down sampled with prioritization given to regions with the highest signal.
All noise regions with a max height in the 25th percentile or greater were included (3,658),
and equal numbers below the 25th percentile were randomly sampled.
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These labeled data were used for training the first phase of the model. Afterwards we scored
the training data with this model to identify any mislabeled data or model misclassifications;
from this process 24 peaks and 1,187 noise regions were added to the dataset. Ultimately
16,990 regions were used for training: 8,503 noise regions plus 8,463 peaks.

Wide and deep convolutional neural network to learn shape and
enrichment of regions

LanceOtron’s machine learning architecture is a type of wide and deep neural network®,
combining enrichment values, logistic regression, and a CNN. The logistic regression model
takes as inputs the enrichment values, while the CNN uses the 2 kb of signal centered on
the region of interest. The outputs of these two models, along with the 11 enrichment values,
are input into a multilayer perceptron, which outputs a peak quality metric (called Peak
Score) with values ranging from 0 to 1.

The 11 enrichment values consisted of Poisson-based p-values, using maximum height and
average signal, calculated from 10kb to 100kb regions in 10kb increments as well as
chromosome-wide enrichment. While this is an internal model parameter, and not used for
significance thresholding, we opted to use the p-value because of the increased
interpretability, though numerous enrichment metrics could have been used to yield similar
results. These p-values are also returned to the user as an additional calculated
measurement; indeed the results of a traditional statistical peak caller could be mimicked by
simply using p-values as the sole filtering metric.

The logistic regression model was trained separately with the same training data, and all
coefficients and model parameters saved. The wide and deep model was then trained with
the logistic regression component locked, and with loss distributed 70:30 to
wide-and-deep-output:CNN-only-output. By penalizing the model on the CNN separately, it
actively encouraged predictions from the 2 kb of signal, i.e., the shape of the peak, to be
accurate in absence of enrichment information.

To determine the optimal structure and hyperparameters, a brute force method of building
many models with different configurations was carried out. In total 5,000 models were
trained and tested using the python package Keras Tuner, though performance was robust
across a range of configurations. Model performance was assessed by measuring the
number of correctly predicted classifications of enriched regions from data unseen to the
model. The top 10 performing models were then subjected to 5-fold cross validation, and the
architecture from the top performer was used.

Candidate peak selection

To optimize resources, candidate peaks are selected for their enrichment above the mean
chromosome signal, whereby the signal is extracted and passed to LanceOtron’s neural
network. We developed an algorithm which acts as a loose filter, allowing even modestly
enriched regions through, which also centers the area around the highest signal and
improves model performance. First the raw signal is smoothed by calculating the rolling
mean for five different window sizes, 100 bp, 200 bp, 400 bp, 800 bp, and 1600 bp. Next any
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coordinate where the signal is greater than fold*mean-chromosome-signal (across 5 different
fold enrichments: 2, 4, 8, 16, and 32) is marked as enriched. Each permutation of the rolling
mean window size and fold threshold is considered a different definition of enrichment. The
number of enrichments is tracked at each coordinate, forming a genome wide map, and
regions with 5 or more concurring definitions of enrichment are further evaluated. If the
region’s size is between 50 bp and 2 kb it is considered a candidate peak. Regions smaller
than 50 bp are discarded, and regions above 2 kb are recursively increased by an additional
required enrichment definition until the region size is between 50 bp and 2 kb, or the region
is considered enriched under all 25 definitions.

Calculating p-value from an input control track

A standard p-value assessment based on the Poisson distribution is performed when using
LanceOtron’s Find and Score Peaks with Inputs module, which can be used in conjunction
with the peak quality metric output from LanceOtron’s deep learning model. The mean signal
expected from background, 4, is determined using either the mean signal in the input control
track (Aipu) Or the mean signal in the input control track plus 1 kb (1), whichever is more
stringent. P-values are then computed using the average count of overlapping reads (N,)
within the given candidate region.

p-value =1 — pPois(Nm,e,/l = max[linput: /hkb])»

where pPois is the Poisson cumulative distribution function:

Na'l]e .
e Al

Zi!

i=0

Peak caller benchmarking

Labeling testing data and calculating model performance

Testing datasets were also obtained from ENCODE but were not used in LanceOtron’s
training data (Supplementary Table 1). Each track was downloaded as a BAM file and
converted to bigwig using the same deepTools commands given above for in training data
preparation. Chromosomes were shuffled (mitochondrial and alternative mapping
chromosomes were excluded), and 1 Mb was labeled for peaks or noise; regions which were
not clearly either were excluded. For CTCF, H3K27ac, and H3K4me3 ChlP-seq datasets, 10
chromosomes each were labeled in this manner for a total of 122 labels (55 positive peaks
and 67 noise regions), 101 labels (45 positive peaks and 56 noise regions), and 224 labels
(129 positive peaks and 95 noise regions) respectively. For ATAC-seq and DNase-seq, 3
chromosomes each were labeled, resulting in 196 ATAC labels (101 positive peaks and 95
noise regions) and 224 DNase labels (114 positive peaks and 110 noise regions). True
positives, false positives, true negatives, and false negatives were determined by
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intersecting peak calls from LanceOtron and MACS2 with these labeled data using
BEDTools. True positives were found by using the command bedtools intersect -a
peak_call.bed -b 1labeled peaks.bed -u -wa. False negatives used bedtools
intersect -a peak_call.bed -b labeled peaks.bed -v -wa. True negatives used the
command bedtools intersect -a peak_call.bed -b labeled noise.bed -v -wa
while false positives used bedtools intersect -a peak _call.bed -b
labeled noise.bed -u -wa.

For peaks which were exclusively found with LanceOtron or MACS2, BEDTools was also
used to find intersections which occurred at promoter or enhancer regions, as well as TSSs.
The bed files listing the coordinates of the promoters or enhancers were from GenoSTAN®?,
and for TSSs we used RefTSS*.

The heat map of the coverage was made using the deeptools command: computeMatrix

reference-point -S CTCF_spleen_ENCFF656CCY.bw -R
CTCF-spleen_LoT-only-peaks.bed CTCF-spleen_MACS2-only-peaks.bed
--referencePoint center -a 1000 -b 1000 -out
CTCF-spleen_LoT-and-MACS2_matrix.tab.gz

Followed by the command: plotProfile -m
CTCF-spleen LoT-and-MACS2 matrix.tab.gz -out CTCF-spleen LoT-and-MACS2.png
--sampleslLabel "Peak caller exclusive regions" --regionslLabel "LanceOtron

only" "MACS2 only" --plotType=heatmap.

Motif analysis

A custom motif matching script was written to match CTCF sites using a simple Python
regex function. The motif position weight matrix (PWM) was downloaded from JASPAR*® and
the genomic coordinates matching the motif (and reverse complement) were recorded as a
bed file. The matching sequence had to be the same length, with all nucleotides present at
75% or higher in the PWM as exact matches. With the bed file of the motif coordinates
made, we once again employed BEDTools to find intersections with the peak calls.

Code availability

The LanceOtron webtool peak caller can be used at hitps:/Lan tron.molbiol.ox.
with the source code and command line algorithm implementation found at
https://github.com/LHentges/LanceOtron.
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Supplementary Materials

Functionality of LanceOtron’s user interface

LanceOtron features a rich graphical user interface, accessible using any web browser, and
allows peak calls to be made without the use of the command line. Using the web tool to
perfform a peak call is  demonstrated in supplementary video 1:
https://youtu.be/k8Grlp55vDg. Furthermore, exploring and filtering data is also easily carried
out with the graphical interface, demonstrated in supplementary video 2:

https://voutu.be/M50x8X1-U4Q.

Supplementary Table 1 - ENCODE datasets used for training

data and testing data

Training Data
Experiment ENCODE ID numbers
Assay Target Tissue Experiment BAM file Control BAM
ATAC-seq Open chromatin | Breast ENCSR955JS0O ENCFF6560YT
epithelium
ATAC-seq Open chromatin | Tibial artery ENCSR630REB | ENCFF1680TV
ATAC-seq Open chromatin | Foreskin ENCSR290YMN | ENCFF799HAR
keratinocyte
ATAC-seq Open chromatin | Adrenal gland ENCSR113MBR | ENCFF436NOT
ATAC-seq Open chromatin | Foreskin ENCSR158XTU ENCFF784DSJ
keratinocyte
ATAC-seq Open chromatin | Foreskin ENCSR677MJE | ENCFF764CQl
keratinocyte
ATAC-seq Open chromatin | Transverse ENCSR668VCT | ENCFF377DAO
colon
ATAC-seq Open chromatin | Sigmoid colon ENCSR548QCP | ENCFF482HAC
ATAC-seq Open chromatin | Tibial nerve ENCSR831KAH | ENCFF277DNH
ATAC-seq Open chromatin | Thyroid gland ENCFF710ELD ENCSR474XFV
ChlP-seq H3K27ac RWPE1 ENCSR203KEU | ENCFF708CBX ENCFF939LTT
ChlP-seq H3K27ac SKNSH ENCSR5641GJ ENCFF3800TV ENCFF959FMO
ChlP-seq H3K27ac Bipolar neuron ENCSR905TYC | ENCFF751YAL ENCFF687LIL
ChlP-seq H3K27ac GM23338 ENCSR729ENO | ENCFF403VXK ENCFF754UFV
ChiP-seq H3K27ac C42B ENCSR279KIX ENCFF913EZV ENCFF9801JT
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ChIP-seq H3K27ac 22Rv1 ENCSR391NPE | ENCFF025ZEN ENCFF769UET

ChlP-seq H3K27ac Foreskin ENCSR709ABP | ENCFFO085FAH ENCFF178GZR
keratinocyte

ChlP-seq H3K27ac Foreskin ENCSR709ABP | ENCFF776HMQ | ENCFF178GZR
keratinocyte

ChlP-seq H3K27ac Epithelial cell of | ENCSR910PDW | ENCFF382XYO ENCFF213AZI
prostate

ChlP-seq H3K27ac RWPE2 ENCSR987PNT | ENCFF2450RL ENCFF169DGZ

ChlP-seq H3K4me3 SKNSH ENCSR975GZA | ENCFF027SGQ | ENCFF959FMO

ChiP-seq H3K4me3 SKNSH ENCSR975GZA | ENCFF245RXP ENCFF959FMO

ChlP-seq H3K4me3 NCIH929 ENCSR082NQB | ENCFF417RNS ENCFF446RUP

ChlP-seq H3K4me3 NCIH929 ENCSR082NQB | ENCFF0O67LLV ENCFF446RUP

ChlP-seq H3K4me3 Bipolar neuron ENCSR849YFO | ENCFF096QTT ENCFF687LIL

ChlP-seq H3K4me3 Bipolar neuron ENCSR849YFO | ENCFF950QWN | ENCFF687LIL

ChlP-seq H3K4me3 Muscle of leg ENCSR128QKM | ENCFF5520GD | ENCFF622XBJ

ChlP-seq H3K4me3 Heart right ENCSR107RDP | ENCFF89700T | ENCFF246SXV
ventricle

ChlP-seq H3K4me3 Gastrocnemius | ENCSR0980OLN | ENCFF310NMI ENCFF587DDD
medialis

ChIP-seq H3K4me3 OCILY3 ENCSR548PZS | ENCFF816RLY ENCFF691EEI

ChlP-seq NR2C1 GM12878 ENCSR784VIQ ENCFF785FLS ENCFF322NTO

ChlP-seq EP300 Ovary ENCSR696LQU | ENCFF405UYE ENCFF271JKY

ChlP-seq NFXLA1 GM12878 ENCSR746XEG | ENCFF673BXM ENCFF322NTO

ChlP-seq MXI1 Neural cell ENCSR934NHU | ENCFF260PNL ENCFF056HWK

ChlP-seq ZNF318 K562 ENCSR334HSW | ENCFF373YTD ENCFF790TAN

ChlP-seq CREB1 HepG2 ENCSR112ALD | ENCFF011HOS ENCFF950AXC

ChlP-seq CTCF RWPE1 ENCSR303GFI ENCFF204KRO ENCFF290UZX

ChlP-seq RFX1 MCF7 ENCSR788XNX | ENCFF804LEF ENCFF426RDP

ChlP-seq CTCF Ascending aorta | ENCSR960MDE | ENCFF3532VY ENCFFO023NJF

ChlP-seq E4F1 K562 ENCSR731LHZ | ENCFF978NVP ENCFF910IKB

DNase-seq Open chromatin | Left arm bone ENCSR976X0QY | ENCFF205JXZ

DNase-seq Open chromatin | A673 ENCSR346JWH | ENCFF348KWA

DNase-seq Open chromatin | T-helper 1 cell ENCSRO00EQC | ENCFF425YMJ

DNase-seq Open chromatin | Retina ENCSR820ICX ENCFF441YDL
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DNase-seq Open chromatin | Uterus ENCSR129BZE | ENCFF759P0OB

DNase-seq Open chromatin | NAMALWA ENCSR3010GM | ENCFF554YJG

DNase-seq Open chromatin | SKMEL5 ENCSRO0O0OFEK | ENCFF844BZM

DNase-seq Open chromatin | ELF1 ENCSR678ILN ENCFF433CFlI

DNase-seq Open chromatin | Myocyte ENCSROOOEPD | ENCFF042QTI

DNase-seq Open chromatin | Pancreas ENCSR828FVZ ENCFF984FKS

Testing Data

Experiment ENCODE ID numbers

Assay Target Tissue Experiment BAM file Control BAM
ATAC-seq Open chromatin | MCF-7 ENCSR422SUG | ENCFF346MIJ

ChlP-seq CTCF Spleen ENCSR692ILH ENCFF903NKV ENCFF376BTL
ChiP-seq H3K27ac HAP-1 ENCSR131DVD | ENCFF742SZS ENCFF247DSQ
ChlP-seq H3K4me3 MG63 ENCSR579SNM | ENCFF996ZSR ENCFF381RWF
DNase-seq Open chromatin | A549 ENCSROO0OELW | ENCFF410CDT

Supplementary Table 2 - numerical listing of performance

benchmarks for all datasets

CTCF ChlIP-seq in spleen

LanceOtron MACS2 LanceOtron with input | MACS2 with input
Precision 0.946 0.768 0.981 0.926
Recall/sensitivity | 1.000 1.000 0.981 0.943
Selectivity 0.953 0.750 0.984 0.938
F1 score 0.972 0.869 0.981 0.935
H3K27ac ChlIP-seq in HAP-1

LanceOtron MACS2 LanceOtron with input | MACS2 with input
Precision 0.981 0.854 0.981 0.907
Recall/sensitivity | 0.981 0.981 0.981 0.907
Selectivity 0.981 0.827 0.981 0.904
F1 score 0.981 0.914 0.981 0.907
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H3K27ac ChlIP-seq in GM12878

LanceOtron MACS2
Precision 0.937 0.862
Recall/sensitivity | 0.961 0.974
Selectivity 0.932 0.836
F1 score 0.949 0.915
H3K4me3 ChlIP-seq in MG63
LanceOtron MACS2 LanceOtron with input MACS2 with input
Precision 0.969 0.920 0.992 0.968
Recall/sensitivity | 0.992 0.920 0.992 0.976
Selectivity 0.957 0.892 0.989 0.957
F1 score 0.980 0.920 0.992 0.972
H3K4me3 ChlIP-seq in K562
LanceOtron MACS2
Precision 0.821 0.753
Recall/sensitivity | 0.986 1.000
Selectivity 0.773 0.652
F1 score 0.896 0.859
ATAC-seq in MCF-7
LanceOtron MACS2
Precision 1.000 0.852
Recall/sensitivity | 0.980 0.970
Selectivity 1.000 0.821
F1 score 0.990 0.907
DNase-seq in A549
LanceOtron MACS2
Precision 0.971 0.752
Recall/sensitivity | 0.935 0.981
Selectivity 0.973 0.681
F1 score 0.953 0.851
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