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ABSTRACT

We propose a new framework for estimating neuroimaging-derived “brain-age” at a local level within
the brain, using deep learning. The local approach, contrary to existing global methods, provides
spatial anatomical information on patterns of brain ageing. We trained a U-Net model on brain
MRI scans from n=3463 healthy people to produce individualised 3D maps of brain-predicted age.
Testing on n=692 healthy people resulted in a median (across subject) mean absolute error (within
subject) of 9.0 years. Performance was more accurate (MAE around 7 years) in the prefrontal cortex
and periventricular areas. We also introduce a new voxelwise method to reduce the age-bias when
predicting local brain-age “gaps”. To validate local brain-age predictions, we tested the model in
people with mild cognitive impairment or dementia using data from OASIS3 (n=267). Different
local brain-age patterns were clearly evident between healthy controls and people with mild cognitive
impairment or dementia, particularly in subcortical regions, with the accumbens, putamen, pallidum,
hippocampus and amygdala. Comparing groups based on mean local brain-age over regions-of-
interest resulted in large effects sizes, with Cohen’s d values >1.5, for example when comparing
people with stable and progressive mild cognitive impairment.
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1 Introduction1

Brain ageing is associated with cognitive decline and an increased risk of neurodegenerative disease, though these2

effects vary greatly between individuals. Brain atrophy, often measured using structural MRI, is commonly seen in3

many neurological diseases [1, 2] and in normal ageing. Even hippocampal atrophy, which is often thought to be4

characteristic of Alzheimer’s disease can be seen in many other neurological and psychiatric conditions, respectively5

in normal ageing [3]. Evidently, both healthy ageing and dementia can affect the same brain regions [4]. This fact6

complicates research into the earliest stages of age-related neurodegenerative diseases, as determining what changes7

are ‘normal’ and what are pathological is challenging. Brain-Age offers a way of establishing if changes in the brain8

are abnormal or not for a given age. The difference between chronological age and “brain-predicted age” obtained9

from neuroimaging data has been provided insights into the relationship between brain ageing and diseases, and may10

be a useful biomarker for predicting clinical outcomes [5, 6, 7]. For example, in Alzheimer’s Disease (AD), patients11

have previously been shown to have older-appearing brains, and that individuals with mild cognitive impairment (MCI)12

who had an older-appearing brain were increasingly likely to progress to dementia within three years [8, 9, 10, 11].13

However, despite the large growing literature employing the brain-age paradigm [12, 13], current approaches tend to14

generate brain-age predictions at a global level, with a single value per brain image. While some efforts have been15

made to derive patterns of ‘feature importance’ or similar from brain-age models [14, 15, 16, 17], these patterns are at16

population-level, and do not apply to the individual.17

Localized Brain Predicted Age Obtaining a finer grained picture of patterns of brain-ageing for a given brain18

disease is likely to provide several benefits. Firstly, neuroanatomical patterns should enable inferences to be made19

about mechanisms underlying the clinical manifestation of the disease. Secondly, better predictive discrimination20
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between clinical groups should be possible, as different groups are likely to be associated with different spatial patterns21

of age-related brain changes, even in the case where ‘global’ brain-age differences are similar. Thirdly, the local22

individualised maps should enable fine-grain characterisation of brain changes over time, as disease progresses or in23

response to treatment. Finally, spatial patterns of brain-age could be used to discover clinically-relevant subgroups in a24

data-driven manner, for example using clustering techniques.25

Related work Limited prior work on local predictions of brain-age are available. Of note, is the early work26

of Cherubini et al. [18], who used linear regression models with voxel-level features derived from voxel-based27

morphometry and diffusion-tensor imaging to demonstrate reasonable prediction results in a small sample of healthy28

people (n=140). This approach of using a separate linear regression model for each voxel is limited as it does not29

incorporate contextual information from neighbouring voxels, and is insensitive to non-linear relationships. Other30

studies have provided ‘patch’ level information on brain-age, subsequently averaging predictions across brain regions31

to arrive at a global-level prediction [19, 20]. In Bintsi et al. [20], the authors use a ResNet [21] for each 3D block,32

reporting MAE values between 2.16 and 4.19 depending on block origin. While these approaches are promising, the33

size of the patch limits spatial resolution which results in less insightful inference in clinical settings. For example,34

semantic dementia is associated with a relatively localised spatial pattern of atrophy, often the left anterior and middle35

temporal lobe [22, 23], which could be overlooked by brain-age prediction models that lack spatial resolution.36

Contributions The goal of this work was to develop an accurate local brain-age model, by incorporating voxelwise37

information using recent developments in deep learning. U-Nets [24], which are typically used for tumor [25] or organ38

[26] segmentation, provide an excellent framework for voxelwise predictions, as their specific architecture enables the39

inclusion of contextual information into individual predictions. Here, we introduce a deep learning algorithm that is40

trained to predict localised brain-age, producing high-resolution maps of brain-predicted age differences (brain-PAD41

maps) covering the entire brain (see Figure 1). We hypothesised that brain-PAD would smoothly vary across regions42

of the brain, and in dementia patients we would see higher values in regions previously associated with AD-related43

atrophy. We provide an in-depth analysis of the structural differences seen in people with MCI and AD patients. We44

also examine the reliability of local brain-age predictions, both within and between scanners.45

2 Methods46

2.1 Participants47

To train, test and validate our local brain-age model, we collated the following T1-weighted MRI brain scan datasets.48

Unless otherwise mentioned, studies were reviewed and approved by the local ethics committees. All participant data49

were from publicly accessible databases.50

2.1.1 Healthy datasets for training/testing51

Healthy training dataset is composed of 2001 healthy individuals with a male/female ratio of 1016/985, with a52

mean age of 36.95±18.12, aged 18-90 years. This dataset was itself an amalgam of 14 individual datasets, as used in53

our previous brain-age research [27].54

Dallas Lifespan Brain Study (DLBS) is a major effort designed to understand the antecedents of preservation and55

decline of cognitive function at different stages of the adult lifespan, with a particular interest in the early stages of a56

healthy brain’s march towards Alzheimer Disease. For our purpose we have selected solely the T1-weighted MRI scans,57

totaling n=315 healthy participants aged 18-89 years.58

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) neuroimaging dataset is part of larger project which59

is trying to use epidemiological, behavioural and neuroimaging data to understand how individuals can best retain60

cognitive abilities into old age. The dataset consists of n=652 T1-weighted MRI scans from participants aged 18-8861

years.62

Southwest University Adult Lifespan Dataset (SALD) comprises a large cross-sectional sample (n = 494; age63

range = 19-80) undergoing a multi-modal (sMRI, rs-fMRI, and behavioral) neuroimaging. Only T1-weighted MRI64

were used here. The goals of the SALD are to give researchers the opportunity to map the structural and functional65

changes the human brain undergoes throughout adulthood and to replicate previous findings.66

Wayne State The Wayne State longitudinal data set for the Brain Aging in Detroit Longitudinal Study, comprises 20067

healthy individuals, with n=302 total anatomical scans across two waves of data collection. All the participants were68
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Figure 1: Local brain-PAD maps for randomly sampled subjects from clinical groups in cross-sectional OASIS3 dataset.
Positive values indicate an increased pattern of local volume differences compared to healthy ageing patterns at the
respective age. HC = Healthy Controls, pMCI = progressive MCI, sMCI = stable MCI, AD = Alzheimer’s Disease.

screened by the local research centres to be free from neurological or psychiatric disorders according to well established69

protocols. All of the neuroimaging data were acquired either at 1.5T or 3T using standard T1-weighted sequences.70

Within-scanner reliability dataset Here we used data from the Imperial College London project, STudy Of Relia-71

bility of MRI (STORM). The study comprises of 20 subjects with a male-female ratio of 12/8, with a mean age at the72

first scan undertaken of 34.05 ± 8.71 . The participants were scanned for the second time at an average distance of73

28.35 ± 1.09 days. All participants were free from any neurological or psychiatric disorders. Data were acquired using74

a Siemens Verio 3T scanner.75

Scanner calibration dataset 11 participants took place in this two-centre study, having a mean age at first scan of76

30.88 ±6.16 and with a male/female ration of 7/4. The two scanning sites were at Imperial College London, where a77

Siemens Verio 3T was used, whereas a Philips Ingenia 3T scanner was used at the Academic Medical Center Amsterdam.78

The average time interval between scans was of 68.17 ±92.23 days.79

2.1.2 Dementia datasets for testing clinical suitability of Local brain-age80

OASIS3 is a retrospective compilation of data for >1000 participants that were collected across several ongoing81

projects through the WUSTL Knight ADRC over the course of 30 years. Participants include n=609 cognitively normal82

adults and n=489 individuals at with MCI or dementia ranging in age from 42-95 years. Using Clinical Dementia Rating83
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scale(CDR) scores, we classified participants as healthy control (HC), stable MCI, progressive MCI or AD, as detailed84

in Table 1. Follow-up CDR scores used to define MCI status were from at least 3 years after baseline assessments.85

Characteristics HC
(n=128)

sMCI
(n=29)

pMCI
(n=29)

AD
(n=78)

Males/Females, n 70/58 15/14 18/11 33/45
Age, mean (SD) years 68.14 (9.40) 76.44 (6.81) 75.72 (7.68) 75.02 (8.90)

Age, range years 42.66-97.11 59.2-94.44 49.38-93.93 50.35-95.58
Baseline CDR 0.0 0.5 0.5 ≥ 1.0

Follow-up CDR 0.0 0.5 ≥ 1.0 -
Table 1: Demographic characteristics for the OASIS3 dataset. CDR = Clinical Dementia Rating scale, HC = Healthy
Controls, pMCI = progressive MCI, sMCI = stable MCI, AD = Alzheimer’s Disease.

2.2 Data pre-processing86

All T1-weighted brain MRI scans were pre-processed using the Statistical Parametric Mapping (SPM12) software87

package (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). This entailed tissue segmentation into grey88

matter (GM) and white matter (WM), followed by a nonlinear registration procedure using the DARTEL algorithm [28]89

to the Montreal Neurological Institute 152 (MNI152) space, subsequently followed by resampling to 1.5mm3 with a90

4mm smoothing kernel.91

2.3 Statistical analysis92

Standard effect sizes To assess the magnitude of differences in local brain-PAD values between different groups, we93

used the standardised effect size Cohen’s d:94

d =
m1 −m2√

(count1−1)∗var1+(count2−1)∗var2
count1+count2−2

(1)

where mk is the mean, vark represents the variance, whereas countk defines the number of subjects within group k. In95

all subsequent analysis using Cohen’s d we perform the analysis at voxel-level between Brain-PAD scores from two96

different groups.97

Intraclass Correlation Coefficient The intraclass correlation coefficient (ICC) is used to test the reproducibility of a98

certain quantitative measurement made by a specified number of observers which rate the same subject. The original99

formula is given as follows:100

r =
1

Ns2

N∑
n=1

(xn,1 − x̃)(xn,2 − x̃) (2)

where x̃ = 1
2N

∑N
n=1(xn,1 + xn,2) and s2 = 1

2N {
∑N

n=1(xn,1 − x̃)2 +
∑N

n=1(xn,2 − x̃)2}101

Here, we used ICC[2,1] as defined by Shrout and Fleiss [29]. The interval of values ranges from [−1, 1] with values102

closer to 1 denoting that the observers (i.e., MRI scans or scanners) agree with each other.103

2.4 Local “Brain-age” Prediction104

We used a fully convolutional neural network (CNN) inspired by the U-Net architecture introduced in Ronneberger105

et al. [24]. Our network architecture is illustrated in Figure 2. Input images were the output from SPM12 pre-106

processing, representing voxelwise volume of GM and WM. These images were split into overlapping 3-dimensional107

blocks of size 52 voxels isotropic. The convolutional layers in our network used an isotropic 3x3x3 filter, convolved108

over the input image after which element-wise multiplication with the filter weights and subsequent summation was109

performed at each location. Subsequently, to allow for non-linear modelling, we passed the obtained values through an110

“activation function”; we used a LeakyReLu with alpha=0.2. LeakyReLu(α) are defined by the following equation111

LeakyReLu(x) = max(x, 0) +min(x ∗ α, 0), thus allowing a small, non-zero gradient when the unit is not active.112
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Figure 2: U-Net architecture for voxel-level brain-age prediction. Raw T1 scans are pre-processed through the
DARTEL pipeline in SPM12, obtaining modulated gray and white matter segmentations registered to MNI152 template.
Additional auxilliary block-level brain-age loss functions are added at each level of the U-Net to facilitate training.

The convolution operation is also controlled by its stride, which is how many pixels/voxels are skipped after every113

element-wise weight multiplication and summation. Downsampling increases the effective field of view or “receptive114

field” of layers higher in the hierarchy. We set the stride equal to 1 unless mentioned otherwise.115

For the downsampling part of the U-Net we used at each scale two consecutive 3D 3x3x3 filter kernels with an initial116

number of channels = 64, which get multiplied by 2 as we progress down the downsampling path. For downsampling117

we used 2x2x2 average pooling.118

For the upsampling part of the U-Net we inverted the downsampling architecture, with the downsampling layers being119

replaced by 2x2x2 upsampling layers. At each convolution we used a squeeze-and-excite unit. Squeeze & Excite120

networks were introduced in Hu et al. [30] and can be viewed as computationally less intensive method of performing121

attention over the channels of a given feature block.122

Besides the voxel-level mean absolute error cost function on the output layer we introduced two additional cost functions123

at the two other scales of the architecture. We applied global average pooling followed by a dense layer to predict124

brain-age at block-level. During training, we observed that the addition of these auxiliary loss functions helped stabilise125

the learning process.126

2.5 Removing bias in brain age at voxel level127

Subtracting chronological age from estimated brain age provides a measure of the difference between an individual’s128

predicted and chronological age, also known as the brain-age ‘gap’, brain-predicted age difference (brain-PAD) or129

brain-age ‘delta’. A so-called ‘regression dilution’ has been commonly observed in brain-age prediction algorithms,130

caused by noise in the neuroimaging features leading to a greater under- or over-estimate of age, the further away a131

sample is from the training set mean age. In other words, the under-estimation of brain-predicted age for older subjects132

and over-estimation for younger subjects. Two main classes of approaches to fixing this problem have been reported:133

∆ = α ∗Age+ β (3)

where ∆ is the brain-age delta of a group of subjects from an external dataset that is used specifically for adjusting the134

bias. α and β are the parameters of a linear regression with the covariate Age representing chronological age.135

Then, to obtain the bias-adjusted age we have the following equation:136

∆adjusted = ∆− α ∗Age+ β (4)
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Another approach involves using the brain-predicted age in the linear regression. de Lange and Cole [31] showed that137

using either formulation results in the same statistical outcome.138

Our approach involved using an independent dataset of participants, not present in either the training or testing set,139

which was stratified into different age bins, with an interval of 5 years. We then averaged their voxel-level brain-age140

delta values to obtain a 3D heatmap to use for de-biasing. We show additional results using the first approach in the141

supplementary material.142

3 Results143

3.1 Model performance in independent healthy test datasets144

We tested the local brain-age model on healthy participants combined from the OASIS3 (n = 128), AIBL (n = 83)145

and Wayne State (n = 200) datasets. When first averaging the local MAE values within each individual to derive146

participant-level MAEs, the median MAE across subjects was 9.751 years (Figure 3c). The MAE of the model varied in147

different brain regions. We observed lower MAE values were observed locally in the prefrontal cortex and subcortical148

regions and higher MAE in the occipital lobe, cerebellum and brainstem (Figure 3b).149

(a) (b)

Figure 3: Left : Histogram of unadjusted, averaged MAE values across subjects for each voxel. Right: Axial slices
showing the spatial heterogeneity in averaged across subjects MAE values.

3.2 Reliability of local brain-age150

Using local brain-age values for both the test-retest dataset and between-scanner dataset, ICC was calculated per voxel.151

For the test-retest dataset, the vast majority of voxels were ICC<0.90, with a median of ICC=0.98. This indicated very152

high test-retest, or within-scanner, reliability, of local brain-age predictions. We observed comparatively lower ICC153

values at the extremities of the brain, evident in Figure 4b. This could potential be attributed to residual misregistration154

or partial volume effects. For the between-scanner analysis the reliability was lower, with median voxel-level ICC =155

0.623. Interestingly, the pattern of ICC varied across the brain, with higher values observed in the prefrontal cortex and156

lower values in more inferior regions, particularly the brainstem and cerebellum (Figure 4d).157
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(a) Within-scanner variability (b) Within-scanner variability

(c) Between-scanner variability (d) Between-scanner variability

Figure 4: Upper left: Histogram of Intraclass Correlation Coefficients computed at voxel-level on STORM dataset.
Values above 0.9 indicate strong agreements. Upper right: ICC values at different views on the axial plane on
test-retest (i.e., within-scanner) dataset (n=20). Bottom left: Histogram of Intraclass Correlation Coefficients computed
at voxel-level on between-scanner reliability dataset (n=11, Siemens and Philips scanners). Bottom right: ICC values
at different axial slices from the between-scanner dataset.
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3.3 Differences in local brain-age patterns between healthy controls, patients with mild cognitive impairment158

and dementia159

(a) (b)

Figure 5: Left - Voxel-level : Histogram at voxel-level of Brain-PAD scores of certain clinical groups from OASIS3.
Brain-PAD after applying the bias-adjustment scheme is calculated for every voxel and then aggregated to the mean
across all subjects. Histograms in the plot are composed of the mean Brain-PAD values for all voxels in the brain;
Right - Global-level : Adjusted predictions averaged across voxels for each subject; HC = Healthy controls, sMCI=
stable MCI, pMCI = progressive MCI, AD = Alzheimer’s disease

We examined patterns of local brain-age algorithm in the context of MCI and dementia using the cross-sectional160

OASIS3 dataset. Firstly, we investigated if the global level brain-predicted age corresponds to previously reported161

differences from models that direct predict global brain age. We averaged local brain-age (after bias correction) across162

voxels per individual to generate a global brain age and then calculate Brain-PAD. The median Brain-PAD values were:163

0.95 years for healthy controls, 2.83 years for stable MCI (sMCI), respectively 4.94 years for progressive MCI (pMCI)164

and 4.63 years for AD patients.165

Disease Groups HC sMCI pMCI AD

HC - «0.001 «0.001 «0.001
sMCI 0.0369 - «0.001 «0.001
pMCI 0.0007 0.1611 - «0.001
AD 0.0004 0.4141 0.3714 -

Table 2: Independent t-test results between disease groups in OASIS3 for global brain-age prediction in lower triangular
part of the matrix. Paired t-test results results between disease groups in OASIS3 for voxel-level brain-age prediction in
upper triangular part of the matrix.

To assess the significance of group differences we performed an independent two-sample t-test, with differences between166

cognitively impaired groups and healthy controls being significant (HC-AD p-value=0.0004; HC-sMCI p-value=0.0369;167

HC-pMCI=0.0007). Between groups with varying degrees of cognitive impairment, the lowest p-value was reported168

between sMCI-pMCI at 0.1611, whereas the other two combinations were also insignificant (AD-sMCI p-value=0.4141;169

AD-pMCI=0.3714). In comparison, we note that our proposed algorithm is capable to estimate a positive median local170

brain-PAD score for sMCI (3.266), thereby managing to differentiate between sMCI and HC. On the OASIS3 dataset,171

we get an estimated median local brain-PAD score of 7.7 years (5.663) for pMCI, respectively of 4.229 for AD (Figure172

5). By comparing brain-age difference locally, differing patterns between between all disease groups are evident (Table173

2).174

From Figure 6 we can observe that the most striking differences are in the temporal lobe and subcortical regions when175

comparing AD to HC, which is in line with literature. For a more in-depth look at differences between disease groups,176

we expand the analysis to subcortical ROIs. The accumbens, putamen, pallidum and hippocampus were the most177
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Figure 6: Cohen’s d maps for different combinations of clinical groups in cross-sectional OASIS3. Positive values
indicate a positive effect for the first group. HC=Healthy Controls; pMCI = progressive MCI; sMCI = stable MCI;
AD=Alzheimer’s Disease.

Subcortical ROI name AD vs. HC Left pMCI vs sMCI Left AD vs. HC Right pMCI vs sMCI Right

Brain-Stem 1.82 0.53 - -
Amygdala 4.41 1.43 4.00 1.57
Caudate 4.69 1.69 4.41 1.47
Cerebral Cortex 1.98 0.81 1.93 0.89
Cerebral WM 5.29 2.48 4.32 2.56
Hippocampus 4.95 1.72 5.77 2.65
Lateral Vent 0.30 0.11 0.27 0.09
Pallidum 11.80 5.91 13.31 8.31
Putamen 15.59 6.82 10.66 5.13
Thalamus 4.02 1.60 4.80 2.11
Accumbens 30.02 9.60 31.00 9.80

Table 3: Cohen’s d values for different subcortical ROIs from the Oxford-Harvard atlas. Higher values indicate a
positive effect size for the first disease group specified. Values of above absolute value 0.2 are regarded as having a
significant effect.

discriminative ROIs in terms of Cohen’s d scores both for separating AD from HC and sMCI from pMCI (Table 3).178

We also provide histograms of the local brain-PAD scores for each disease group per subcortical ROI to get a better179

intuition being the Cohen’s d scores (Figure 7). We notice that the high Cohen’s d scores for the accumbens are due to180

the low variance in predictions occurring in that region.181

4 Discussion182

In this paper, we introduced an algorithm capable of reliably estimating neuroimaging derived age at a high resolution183

compared to existing models in literature. Having obtained a voxel-level distribution of mean absolute error values184

centred at 9.0 years, the accuracy of our proposed model is behind the current state of the art for global-level brain age185

prediction [32], which currently gravitates towards 3.0 years, or even in comparison with patch-level results [20] that186

are in an interval between 2.5 and 4.0 years, albeit using large blocks. Nevertheless, we provide results on the testing set187
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(a) Left hemisphere (b) Right hemisphere

Figure 7: Subcortical ROI-based difference in voxel level Brain-PAD scores averaged across subjects from clinical
groups from OASIS3. X axis registers Brain-PAD values within the given ROI; HC = Healthy controls, sMCI= stable
MCI, pMCI = progressive MCI, AD = Alzheimer’s disease

with no post-hoc bias-adjustment. Furthermore, it is worth mentioning that our model is assessed on a multi-site testing188

set with a flat chronological age histogram spanning ages between 18 and 90 as opposed to an age interval between 45189

and 90, which is usually seen in papers assessed on UK Biobank [32, 20].190

As biomarker of brain health, brain-age models may have clinical utility. To this end, we assessed the usefulness of191

local brain-age in a clinically-relevant setting, by exploring brain-ageing in dementia at a finer-grained scale then192

previous brain-age research. [33] highlights that in the early stages of AD, accelerated degeneration occurs in the medial193

temporal lobe (MTL), eventually affecting the amygdala, entorhinal and parahippocampal cortices [34, 35, 36]. In the194

case of discerning between pMCI versus sMCI, the authors reported that the amygdala and the inferior lateral ventricle195

were the most discriminative. Taking into account the Cohen’s d values between local brain-PAD values within ROIs196

from the Oxford-Harvard atlas, we have observed that the accumbens, putamen, pallidum, hippocampus and amygdala197

were the most discriminative of the subcortical regions. Our findings are in line with previous work. For example, [37]198

showed that the highest discriminative power between AD and HC was present in the volume of the amygdala, with199

other MTL regions such as the hippocampus also highly discriminative, whereas [38] has observed a prominent loss of200

GM in the putamen for AD. As a prospective clinical application, the ROI-based BrainPAD values can be used by an201

additional classifier to distinguish between pMCI and sMCI. Results on cortical ROIs are provided in the supplementary202

material.203

Previous work involving brain-age and dementia have obtained “brain-AGE” scores of -0.2 for sMCI, 6.2 for pCMI and204

6.7 for AD on the ADNI dataset [9]. Our results are mostly in line with these previous findings, with the exception that205

for sMCI we obtained a positive median value of 2.83 years. However, we did not find any studies using OASIS3, so206

for our results we obtain a higher median local brain-PAD for pMCI (4.94 years) than for AD (4.63 years).207

Biomarkers derived from neuroimaging have potential to provide clinically-relevant information about dementia and208

related conditions. While previous studies has reported standardised effect sizes from global brain-age, we used atlas209

ROIs to summarise regional values of local brain-PAD and generate Cohen’s d values from pairwise group comparisons.210

Using conventional hippocampal volumetric measures, Henneman et al. [39] reported baseline effect size of 0.73211

when comparing controls and MCI groups, and 0.33 when comparing MCI and AD patients. With our local brain-age212

framework, the control-MCI effect size for the hippocampus (average bilaterally) was d = 5.45 and the MCI-AD effect213

size was d = 0.48. Using voxel-based morphometry, [40] generated Cohen’s d values for the hippocampus (d = 0.6) and214

amygdala (d = 0.45), when comparing sMCI and pMCI patients. Here, our local brain-age framework resulted in d =215

2.18 for the hippocampus and d = 1.5 for the bilateral amygdala. This suggests that use of the brain-age paradigm to216

capture local age-related changes, relative to a healthy ageing model, could increase statistical power in experimental217

research and clinical trials, relative to conventional imaging biomarkers.218

Out proposed U-Net local brain-age framework has some strengths and weaknesses to consider. Our model showed219

excellent test-retest reliability, giving confidence that the model could be applied longitudinally to assess individual220

patterns of brain-ageing changes. However, the between-scanner reliability was moderate, similar to our previous work221

using deep learning to predict brain age [27]. In the latter work, brain-age prediction was performed directly on raw222
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MRI scans, hence the deep learning model is picking up on site artefacts. One might expect that after preprocessing raw223

structural MRI scans through DARTEL these site effects might be partially eliminated. However, this is not the case as224

previous research [41] has demonstrated. Consequently, one drawback of the current algorithm is the requirement to225

have a healthy population from a given site, as site or scanner effects may result in the local brain-PAD distribution not226

being centred at zero. Future work should explore scanner harmonisation techniques to remove scanner effects [42].227

In terms of model accuracy, local brain-age was not able to match its global-level models. However, this is to be228

expected as each predicted voxel has a field-of-view of 123 voxels, each of 1.5mm3, providing far less information than229

global models receive. Interestingly, regions such as the occipital lobe, brainstem and cerebellum has poorer accuracy230

than other brain areas. This may be due to local image noise or artefacts in the MRI data, more complex patterns of231

ageing in these areas not detected by our model, or potentially a lack of pronounced age-related changes to tissue232

volume in these regions.233

Our results at testing time do not take into consideration bias correction as our proposed bias adjustment technique uses234

the actual chronological age for removing age-related bias, in opposition to the predicted age which is often used for235

improving predictive results. We note that we have attempted a bias-adjustment scheme reliant on a mass univariate236

linear regression which takes the predicted age for each voxel in part, but the results were only marginally improved as237

the voxel-level brain age delta distribution is noisy. Examples of some distributions and the fitted linear regressions238

are given in the supplementary material. Nevertheless, our bias adjustment technique is adequate for eliminating age239

related biases when the end goal is group comparison as opposed to predictive accuracy [31]. We noticed that age240

related negative correlations are eliminated at global level (taking the average over debiased voxel-level predictions).241

However upon closer inspection at voxel-level, there are slight issues for subjects between 18 and 55 years, with certain242

voxels exhibiting high brain age delta values (see supplementary materials). For subjects above 55 years, our bias243

adjustment technique is capable to eliminate age-related bias, thus enabling accurate statistical inference for clinical244

datasets involving older subjects.245

By using a U-Net trained with the ground truth voxel-level regression objective given by a three-dimensional block246

filled with the chronological age, we encourage the network to emphasize the context encoded in its lower layers. As247

the individual voxel location we are aiming to obtain a prediction for is not necessarily related to the imposed ground248

truth output, the U-Net architecture is biased towards using the context information. Hence, in the worst case scenario249

where no voxel-level relationship is learned, the true resolution of our voxel-level predictions is actually blocks of 123250

voxels. While this means that our resolution is not necessarily at the voxel-level, 123 voxels is still substantially higher251

resolution compared to existing models in literature. In the 3D block approach of Bintsi et al. [20], blocks are much252

larger, 643 voxels. Hence, any block-level age prediction will be biased towards the global-level brain age prediction as253

the blocks include a substantial portion of the overall brain. Moreover, in splitting the whole brain into blocks, naturally254

some blocks will include non-brain tissue or empty space, which will naturally reduce the amount of discriminative255

information present there, reducing the validity of results for regions within the respective block.256

This paradigm can not only be applied to local-brain age prediction, but the final output can be composed of any other257

biomarker, such as polygenic risk score, MMSE scores or blood sample biomarkers. Whereas predicting deviations258

from normal ageing is well-motivated as one cannot easily evaluate the positive or negative accelerated ageing of the259

brain from a structural scan, all the aforementioned biomarkers can be easily obtained in a clinical setting, then the260

motivation stems mostly from gaining a mechanistic understanding of the relation between for example a structural261

MRI scan and the respective biomarker value. One potential research avenue for local brain-age is in disease subtyping,262

where one can use the local brain-age heatmaps to obtain clusters of different facets of accelerated brain ageing in a263

certain disease. Furthermore, another interest might be in exploring local brain-age’s suitability in longitudinal datasets.264

VBM constitutes an alternative to LocalBrainAge, being the de facto method to quantitatively assess differences between265

groups at voxel-level [43]. A common criticism of brain-age prediction in general is whether it brings added value266

compared to a standard VBM pipeline. We consider the two approaches to be in essence equivalent. In VBM pipelines,267

one assesses the statistical differences between a control group and a diseased group. BrainPAD implicitly measures268

this deviation of the diseases group from what constitutes a normative pattern of ageing, by placing the subject on a269

density of what a normative pattern constitutes for a given age. We leave for further work the comparison between270

VBM and LocalBrainAge.271

Conclusion We have introduced a new algorithm that is capable of reliably estimating brain-age locally, providing272

high resolution maps revealing information on spatial patterns of age-related changes to brain volume. We were able273

to demonstrate the potential of this approach in clinical settings by mapping differences in local brain-PAD scores at274

patients with cognitive impairment and dementia.275
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Data and code availability statement The data used in these experiments are available on applica-276

tion to the relevant studies. The code used is available at https://github.com/SebastianPopescu/277

U-NET-for-LocalBrainAge-prediction alongside the pre-trained models.278
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