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Abstract

The correspondence between the activity of artificial neurons in convolutional
neural networks (CNNs) trained to recognize objects in images and neural
activity collected throughout the primate visual system has been well docu-
mented. Shallower layers of CNNs are typically more similar to early visual
areas and deeper layers tend to be more similar to later visual areas, pro-
viding evidence for a shared representational hierarchy. This phenomenon
has not been thoroughly studied in the auditory domain. Here, we com-

pared the representations of CNNs trained to recognize speech (triphone
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recognition) to 7-Tesla fMRI activity collected throughout the human audi-
tory pathway, including subcortical and cortical regions, while participants
listened to speech. We found no evidence for a shared representational hi-
erarchy of acoustic speech features. Instead, all auditory regions of interest
were most similar to a single layer of the CNNs: the first fully-connected
layer. This layer sits at the boundary between the relatively task-general in-
termediate layers and the highly task-specific final layers. This suggests that
alternative architectural designs and/or training objectives may be needed
to achieve fine-grained layer-wise correspondence with the human auditory
pathway.

Keywords: CNNs, similarity analysis, 7T fMRI, subcortical, speech,

auditory cortex

Highlights
e Trained CNNs more similar to auditory fMRI activity than untrained
e No evidence of a shared representational hierarchy for acoustic features
e All ROIs were most similar to the first fully-connected layer
e CNN performance on speech recognition task positively associated with
fmri similarity
1 1. Introduction

2 The use of deep neural networks (DNNs) as models of biological neural
3 networks has been discussed as an opportunity for synergy between neuro-

s+ science and artificial intelligence (Barrett et al., 2019, Marblestone et al.
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s 2016, Richards et al., 2019). The paradigm of comparing DNN activity to
s neural activity has been most thoroughly explored in research on the pri-
7 mate visual system. Seminal work by DiCarlo & Cox proposed that visual
s object recognition is accomplished via successive layers of nonlinear trans-
o formations that effectively untangle visual inputs, linearizing the boundaries
10 between object manifolds (DiCarlo and Cox} 2007). Similar language has
u  been used to describe how DNNs accomplish recognition tasks (Bengio et al.,
12 2013)). Several studies have now reported that state-of-the-art (SOTA) ma-
13 chine learning systems, trained only to maximize their performance on a
14 specific task, without any explicit goal to mimic neural activity, appear to
15 learn representations that are similar to those found in the brains of animals
16 engaged in a similar task (Kriegeskorte, 2015). For example, the output layer
17 of Alexnet (Krizhevsky and Hinton, [2012)) has been found to be highly pre-
18 dictive of spiking responses to natural images in inferior temporal cortex and
v intermediate layers to be highly predictive of V4 responses (Cadieu et al.,
20 [2014, Yamins et al., |2014). Similar comparisons have been made between
21 modern convnets and the human visual system as recorded with functional
» magnetic resonance imaging (fMRI) (Khaligh-Razavi and Kriegeskorte, 2014,
2 |Agrawal et al. 2014] Eickenberg et al., 2017, (Glcli and van Gervenl 2016)).
2 The most convincing demonstration that modern convnets learn representa-
s tions that are meaningful to neurons in the primate visual system is work
2 from Bashivan et al.| (2019) showing that task-optimized DNNs can be used
27 to control the activity of macaque V4 neurons. They found that stimuli syn-
s thesized to maximally activate specific units in the DNN also drove activity

2 of matched sites in V4 well beyond their maximum firing rate in response to
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s natural images.

31 Comparisons of DNNs to biological sensory pathways often come with
» claims of shared representation hierarchy. Regions of interest (ROIs) along
;3 some pathway are mapped to layers of a DNN based on their similarity. Early
s layers in the network tend to be more similar to early ROIs in the pathway
s and late layers to late ROIs (Cichy et al., 2016}, |Giigli and van Gerven, 2015)).
s These results suggest that DNNs are not just learning representations that
57 are similar to single regions, but rather that they constitute models of an
;s entire hierarchy of sensory processing. However, not all studies have found
» evidence of shared hierarchy. Cadena et al.| (2019) compared representations
w0 at several layers of a convnet trained on ImageNet to neural activation in the
s mouse visual cortex. While they found their network outperformed classical
2 predictive models, they found no evidence for a shared hierarchy and no
s benefit over a random network whose weights had never been trained. The
s authors suggest that networks trained on more ethologically valid tasks may
s be required to capture the functional organization of the rodent visual cortex.
46 Relatively few experiments have compared DNNs trained on acoustic
x tasks to biological auditory systems. Kell et al. (2018) trained convnets
ss on speech and music tasks and compared their learned representations to
s fMRI responses in human auditory cortex. They found that intermediate
so. DNN representations explained more variance in auditory cortex responses
51 than a spectrotemporal modulation-based baseline model. To assess the exis-
52 tence of a shared hierarchy, they looked only at voxels that showed a reliable
53 response to sound and layers of their network which were predictive of voxel

s« activity across auditory cortex. They found that the most predictive layers
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ss of primary auditory cortex were intermediate layers, while the most predic-
ss tive layers of secondary auditory cortex were deeper layers. From this, they
sz conclude that the hierarchical distinction between primary and secondary
s auditory cortex is mirrored in their convnet (Kell et al., 2018). Giiglii et al.
so also reported evidence for a shared hierarchy in human auditory cortex, but
o0 they only analyzed the superior temporal gyrus (STG). They used represen-
o tational similarity analysis (RSA) to compare representations learned in a
s DNN trained to predict tags from excerpts of musical audioH They found a
s gradient of complexity across STG where anterior voxel clusters were more
s« similar to early layers while posterior voxel clusters were more similar to late
s layers (Giigli et all 2016). While both of the above studies report evidence
s for a shared hierarchy between human auditory cortex and DNNs trained on
ez sound, they report different spatial patterns of similarity gradients.

68 Several different analysis tools are used to compare representations. The
s ultimate goal of these analyses is to quantify the similarity of two represen-
70 tations, but similarity is an ambiguous term that must be defined by the
7 experimenter. In many of the aforementioned studies, an encoding analysis
22 is performed where firing rate or voxel activity is predicted by a regularized
7z linear model of the neural network activity. According to this approach, a
7 representation is similar to another to the extent that it can be linearly pre-
75 dicted from the other. There are other notions of representational similarity
7 that have been explored to study DNNs. Singular value canonical correla-

77 tion analysis (SVCCA) and projection-weighted canonical correlation anal-

!Tags are descriptive text annotations like genre or instrumentation labels.
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78 ysis (pwCCA) have been used to characterize how network representations
7 change over training, to compare representations in different architectures,
so and to understand the difference between networks that memorize and net-
s works that generalize (Raghu et al.; [2017, Morcos et al., 2018]). Kornblith et
s2 al. recently proposed that, given two networks of identical architecture and
g3 training, differing only in their random initialization, a meaningful notion
s« of similarity should find their corresponding layers to be most similar (i.e.
s layer 1 in network A should be most similar to layer 1 in network B). Of
s the tested metrics, which included SVCCA, pwCCA and linear regression,
&z Centered Kernel Alignment (CKA) was the only method which found that
ss corresponding layers were most similar to each other, achieving an accuracy
so of 99.3% on the layer identification task. The next best metric, linear re-
o gression, achieved only 45.4%. This result may be related to the fact that
o CKA is only invariant to orthogonal transformations and isotropic scaling,
> unlike canonical correlation analysis (CCA), which is invariant to any linear
o3 invertible transformation, and linear regression, which is invariant to any
u linear invertible transformation of the predicted variables (Kornblith et al.,
s 2019). Representational similarity analysis (RSA) (Kriegeskorte et al., 2008)),
o6 commonly employed in fMRI analysis, is similar to CKA with a linear ker-
o nel except that CKA is based on dot-product similarity and RSA typically
e uses correlation-based metrics. CKA provides a general framework with in-
o terpretable units, proven convergence rates, and the option to use different
w0 kernels.

101 Here, we use CKA to quantify the similarity between representations

102 learned in convnets trained on speech and activity throughout the human
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103 auditory pathway during speech listening, as measured with 7-Tesla (7T)
s fMRI. The high spatial resolution of 7T fMRI allows us to simultaneously
105 measure activity from auditory cortex as well as subcortical auditory regions,
s which are often omitted from auditory fMRI analyses due to their small size.
w7 Since significant auditory processing occurs in brainstem and midbrain re-
s gions, this provides us with several distinct regions with a relatively known
w9 connectivity structure with which to compare the convnet representations.
o To the best of our knowledge, ours is the first study to compare DNN repre-
m  sentations to activity throughout the human subcortical and cortical auditory
2 pathway. If there exists a shared hierarchy between the convnets and the hu-
u3  man auditory pathway, the pattern of similarity should at least distinguish
s between cortical and subcortical regions. We visualized the results of the
us similarity analysis as similarity matrices with network layers as the rows and
us auditory ROIs as the columns. Evidence of a shared hierarchy would man-
ur ifest as a diagonal pattern in one such similarity matrix, where shallower
us layers are more similar to early regions and deeper layers more similar to
o later regions. While we found that our trained networks were more similar
120 to the brain than an untrained network, we found no such diagonal pattern.
121 Instead we found that, on average, nearly all ROIs are most similar to the

122 first fully-connected layer.

123 2. Material and methods

s 2.1. Participants

125 Six healthy participants (aged 28-31, three women, three men) with nor-

126 mal hearing and no known neurological disorders were recruited to partici-
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17 pate. All participants provided written informed consent prior to the first
128 MRI session. All participants also consented to their data being made pub-
19 licly availableﬂ The native languages of the participants were English (one

10 subject), German (three participants) and Dutch (two participants).

w 2.2. Ezrperimental Stimul

132 To facilitate comparison with the convnets, we selected utterances from
133 the same corpus that the networks were trained on. Such a comparison is
14 complicated by the fact that, although the networks were only trained on
135 phonetic labels, human listeners will perceive the meaning and higher-level
s structure of speech, even if not instructed to do so. Therefore, to make the
17 experimental conditions as similar as possible for both human and network
138 listeners, we transformed the natural speech to remove higher-level structure
139 while preserving the original phonemes. This quilting procedure, described
1o below, allowed us to focus our comparison on representational transforma-
11 tions only up to the sub-word level in both the convnets and the human
12 auditory system.

143 The audio corpora from which the stimuli were constructed were the
e same datasets that were used in (Thompson et al. [2019a) and (Thompson
s et al., | 2019b)), which are owned by Nuance Communications. Each of the
us three datasets, one for English, Dutch and German, contained 64-83 hours
7 of spoken text read by several native speakers in a quiet room. The datasets
1 also included phonetic transcriptions established in a forced alignment with

ue text transcriptions.

2MRI data will be made available on openneuro.org at publication time.
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150 The quilting procedure, adapted from (Overath et al., 2015), chops a
151 sound file into small segments and reorders the segments according to a
152 heuristic designed to hide the seams of the quilt (the segment boundaries) ]
153 A random segment is chosen as the first segment in the quilt. Subsequent seg-
152 ments are chosen to best match the segment-to-segment boundaries in the
155 chochleogram of the original audio. In this way, temporal patterns longer
156 than the segment length are destroyed while minimizing the artefacts intro-
157 duced by reordering the segments.

158 Instead of using fixed segment lengths, as in (Overath et al., 2015), we
159 used the provided phonetic boundaries to divide the speech into variable
1o length segments containing single phonemes. The resulting quilts are out-
11 of-order sequences of phonemes, preserving phonetic information while de-
162 stroying the words and semantic content of the speech. The larger the input
13 corpus relative to the desired quilt length, the more effectively the seams of
e the quilt will be hidden. Therefore, we selected the 60 speakers (30 women
165 and 30 men) with the longest set of utterances in each language. Given all the
166 utterances from a single speaker as input, the quilting procedure generated
17 a one-minute quilt. The experimental stimuli consisted of 180 one-minute
s speech quilts (60 per English, Dutch and German). The final stimuli were
160 filtered to account for the frequency response profile of the foam-tip ear-

1o phones over which the stimuli were presented in the scanner.

3Original sound quilting code can be found here:

http://mcdermottlab.mit.edu/downloads.html.
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o 2.3 Ezxperimental Protocol

172 The experimental procedures were approved by the ethics committee of
3 the Faculty for Psychology and Neuroscience at Maastricht University (ap-
e proval code ERCPN-167_09_05_2016). Magnetic resonance images were col-
s lected over two sessions on separate days, each consisting of 10 functional
e runs. Nine speech quilts were presented in each run, grouped into blocks
7 of three quilts from the same language. Within a block, the quilts were
s presented one after another with no interruption. Blocks were separated by
179 short periods of rest which were sometimes followed by a question asking
180 participants to identify the language of the speech presented in the preced-
11 ing block. The purpose of this question was to ensure that participants were
1.2 awake and paying attention to the stimuli. Participants used a button box
183 to indicate their response. To save time, this vigilance question was not
18+ asked after every block. However, the design was such that the participants
155 could not easily predict whether they would be questioned and so had to
18 pay attention during every block. Each run contained one block for each
17 language. The stimuli were presented in a different pseudo-random order for

188 each participant.

w0 2.4. MRI Acquisition Parameters

190 Images were acquired at Maastricht University, Maastricht, Netherlands
01 on a 7T Siemens MAGNETOM scanner (Siemens Medical Solutions, Erlan-
12 gen, Germany), with 70 mT/m gradients and a head RF coil (Nova Medical,
103 Wilmington, MA, USA; single transmit, 32 receive channels). Foam pads

194 were used to minimize head motion.

10
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s 2.4.1. Anatomical

196 At the start of each session, a T1-weighted (T1w) image and a proton
107 density weighted (PDw) image were acquired using a 3D MPRAGE se-
s quence [voxel size=1.0mm isotropic; repetition time (TR)=2370 ms; echo
wo time (TE)=2.31 ms; flip angle=5°; generalized auto-calibrating partially
20 parallel acquisitions (GRAPPA)=3 (Griswold et al., |2002); field of view
20 (FOV)=256 mm; 256 slices, phase encoding direction: anterior to posterior,

200 inversion time (TI) for T1w only=1500 ms].

203 2.4.2. Functional

204 Functional MRI data were acquired with a 2-D Multi-Band Echo Planar
205 Imaging (2D-MBEPI) sequence (Steen Moeller et al.l 2010, [Setsompop et al.,
206 2012). In order to include the entire brainstem and thalamus as well as
207 primary and secondary auditory cortex, slices were arranged in a coronal
28 oblique orientation (TR=1700 ms; TE=20 ms; flip angle=70°; GRAPPA=3;
200  Multi-Band factor=2; FOV=206 mm; 1.7 mm isotropic voxels; phase encode

210 direction inferior to superior).

2.5, MRI Preprocessing

212 The MRI preprocessing was performed using fMRIPrep 1.4.1 (Esteban

23 et al.|[2018a; [Esteban et al.2018b; RRID:SCR_016216), which is based on

2e - Nipype 1.2.0 (Gorgolewski et al.[2011; (Gorgolewski et al.[2018; RRID:SCR._002502).
a5 The following description was prepared by fMRIPrep.

a6 2.5.1. Anatomical data preprocessing
217 T1-weighted (T1lw) images were corrected for intensity non-uniformity

28 (INU) with N4BiasFieldCorrection (Tustison et al.,2010), distributed with

11
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20 ANTs 2.2.0 (Avants et al., 2008, RRID:SCR_004757). The T'1w-reference was

20 then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh
21 workflow (from ANTSs), using OASIS30ANTSs as target template. Brain tis-

22 sue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-

23 matter (GM) was performed on the brain-extracted T1lw using fast (FSL

24 5.0.9, RRID:SCR_002823, |Zhang et al., 2001). A Tlw-reference map was

»s computed after registration of 2 Tlw images (after INU-correction) using

»s mri robust template (FreeSurfer 6.0.1, Reuter et al) 2010). Brain surfaces

27 were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847,

»s Dale et al.;[1999), and the brain mask estimated previously was refined with

29 a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

20 derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438,
21 |Klein et al, 2017). Volume-based spatial normalization to one standard

2 space (MNI152NLin2009cAsym) was performed through nonlinear registra-

23 tion with antsRegistration (ANTSs 2.2.0), using brain-extracted versions

24 of both T1w reference and the T1w template. The following template was

235 selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical tem-

26 plate version 2009¢ (Fonov et al.| 2009, RRID:SCR_008796; TemplateFlow

277 ID: MNI152NLin2009cAsym).

238 2.5.2. Functional data preprocessing

239 For each of the 20 BOLD runs per subject (across all sessions), the
20 following preprocessing was performed. First, a reference volume and its
2 skull-stripped version were generated using a custom methodology of fM-
22 RIPrep. The BOLD reference was then co-registered to the T1w reference

23 using bbregister (FreeSurfer) which implements boundary-based registra-

12
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24 tion (Greve and Fischl, 2009). Co-registration was configured with nine
25 degrees of freedom to account for distortions remaining in the BOLD ref-
25 erence. Head-motion parameters with respect to the BOLD reference (trans-
27 formation matrices, and six corresponding rotation and translation parame-
ug ters) are estimated before any spatiotemporal filtering using mcflirt (FSL
20 5.0.9, |Jenkinson et al., |2002). BOLD runs were slice-time corrected using
0 3dTshift from AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR_005927).
1 'The BOLD time-series, were resampled to surfaces on the following spaces:
2 fsaverageb. The BOLD time-series (including slice-timing correction when
23 applied) were resampled onto their original, native space by applying a sin-
4 gle, composite transform to correct for head-motion and susceptibility distor-
5 tions. These resampled BOLD time-series will be referred to as preprocessed
56 BOLD in original space, or just preprocessed BOLD. The BOLD time-series
7 were resampled into standard space, generating a preprocessed BOLD run in
g [‘MNI152NLin2009cAsym’] space. First, a reference volume and its skull-
0 stripped version were generated using a custom methodology of fMRIPrep.
w0 Several confounding time-series were calculated based on the preprocessed
21 BOLD: framewise displacement (FD), DVARS and three region-wise global
x2  signals. FD and DVARS are calculated for each functional run, both using
23 their implementations in Nipype (following the definitions by Power et al.,
264 |2014]). The three global signals are extracted within the CSF, the WM, and
»s the whole-brain masks. Additionally, a set of physiological regressors were
6 extracted to allow for component-based noise correction (CompCor,|Behzadi
27 et al 2007). Principal components are estimated after high-pass filtering the

28 preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-

13
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20 Off) for the two CompCor variants: temporal (tCompCor) and anatomical
20 (aCompCor). tCompCor components are then calculated from the top 5%
on variable voxels within a mask covering the subcortical regions. This subcorti-
o2 cal mask is obtained by heavily eroding the brain mask, which ensures it does
213 not include cortical GM regions. For aCompCor, components are calculated
oz within the intersection of the aforementioned mask and the union of CSF
a5 and WM masks calculated in T1w space, after their projection to the native
26 space of each functional run (using the inverse BOLD-to-T1w transforma-
27 tion). Components are also calculated separately within the WM and CSF
s masks. For each CompCor decomposition, the k£ components with the largest
79 singular values are retained, such that the retained components’ time series
20 are sufficient to explain 50 percent of variance across the nuisance mask (CSF,
21 WM, combined, or temporal). The remaining components are dropped from
22 consideration. The head-motion estimates calculated in the correction step
283 were also placed within the corresponding confounds file. The confound time
2sa  series derived from head motion estimates and global signals were expanded
25 with the inclusion of temporal derivatives and quadratic terms for each (Sat-
26 (terthwaite et al. [2013)). Frames that exceeded a threshold of 0.5 mm FD
27 or 1.5 standardised DVARS were annotated as motion outliers. All resam-
s plings can be performed with a single interpolation step by composing all the
20 pertinent transformations (i.e. head-motion transform matrices, susceptibil-
200 ity distortion correction when available, and co-registrations to anatomical
21 and output spaces). Gridded (volumetric) resamplings were performed us-
20 ing antsApplyTransforms (ANTSs), configured with Lanczos interpolation to

203 minimize the smoothing effects of other kernels (Lanczos|,|1964). Non-gridded

14
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204 (surface) resamplings were performed using mri vol2surf (FreeSurfer).

205 2.6. Regions of Interest

206 We extracted blood oxygenation level-dependent (BOLD) signal at spe-
207 cific regions of interest (ROIs) along the auditory pathway: cochlear nucleus
28 (CN), superior olivary complex (SOC), inferior colliculus (IC), medial genic-
200 ulate nucleus (MGN), Heschl’s gyrus (HG), planum temporale (PT), planum
w0 polare (PP), superior temporal gyrus anterior portion (STGa), and superior
;1 temporal gyrus posterior portion (STGp). We used the subcortical region
w2 definitions from the atlas recently published by [Sitek et al.| (2019)] Corti-
503 cal regions were defined using the Harvard-Oxford parcellation included in
s« FSL 5.0 and accessed through nilearn 0.5.2 (Abraham et all 2014]). ROI
s definitions included both left and right hemispheres. A simple General Lin-
w5 ear Model (GLM) sound vs no-sound contrast was calculated using nistats
so7 0.0.1b1 to select cortical voxels that respond to sound for subsequent anal-
w08 ysis. Nilearn’s NiftiMasker was used to extract multi-voxel activity from
50 each of the ROIs. The masks for the cortical regions took the intersection
s with the subject’s brain mask, as prepared by fMRIPrep, and the map of sig-
su  nificant (p < .05 uncorrected) voxels in the sound vs no-sound contrast. To
sz improve the signal-to-noise-ratio (SNR), the NiftiMasker detrended, stan-

a3 dardized, and removed confounding variables (as calculated by fMRIPrep

4Due to the small size of CN and SOC and the difficulty of inter-subject alignment
of the brainstem, we cannot be completely certain that the activity we extracted truly
corresponds to activity in these small brainstem regions. However, the participants in the
present study were also participants in the auditory fMRI sessions reported in (Sitek et al.

2019), providing some assurance that these region definitions are reasonable.
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s and described above).

sis 2.7. Convolutional Neural Network Activations

316 The convnets analyzed here are a subset of those analyzed in (Thomp-
a7 son et al [2019a). All networks were trained to perform context-dependent
sis phone (triphone) classification. Here we look only at the nine freeze-trained
a9 networks, which outperformed all other models in [Thompson et al.| (2019a).
120 These nine networks consisted of three monolingual networks for each of
a1 the three languages (English, Dutch and German) and six transfer networks
322 which were first trained on one language and then freeze-trained on another.
23 In all cases, all parameters were updated for 100 epochs and then the net-
s24  works were freeze-trained for an additional 100 epochs. Freeze training refers
»s  to the procedure by which layers are gradually removed from the set of train-
26 able variables over the course of training and in order of depth. Previous
27 work has shown that freeze training can speed up training (Raghu et al.,
2 2017) and facilitate transfer across related tasks (Thompson et al., 2019a).
29 All networks were of identical architecture and consisted of nine convolu-
10 tional layers followed by three fully connected layers. The layers were as
s follows, where triplets specify the filter size and number of feature maps in
;2 each convolutional layer and the singletons specify how many units in each
s fully connected layer: (7, 7, 1024), (3, 3, 256), (3, 3, 256), (3, 3, 128), (3, 3,
1 128), (3, 3, 128), (3, 3, 64), (3, 3, 64), (3, 3, 64), (600), (190), (9000). The
15 input data were 45-dimensional mel-frequency filterbank features calculated
16 at a rate of one frame every 10 ms.

337 For every network, the activation in response to the original (unquilted)

138 speech stimuli was recorded. For convolutional layers, the average activation
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;39 within each feature map was recorded. For fully connected layers, the acti-
s vation at each unit was recorded. Only the activation in response to every
s second frame of the audio features was saved. Subsequently, the network
s activations were segmented according to the same phonetic boundaries and
a3 were quilted according to the same segment order that was used when gen-
sa  erating the experimental stimuli. This produced 180 sequences of network
us activations for each network, corresponding the 180 speech quilts presented

a6 1n the scanner.

wr 2.8. CKA Similarity Analysis

CKA is a matrix correlation method, similar to representational similar-
ity analysis (RSA) or canonical correlation analysis (CCA). CKA takes two
matrices X and Y as input: in this case, one for the BOLD responses and
one for the convnet responses to the same stimuli. CKA can be expressed as
a normalized version of the Hilbert-Schmidt Independence Criterion (HSIC)
(Cortes et al., 2012).

. HSIC(K, L)
CRAMK, L) = fs1c(xk, K)BSIC(L, 1) (1)

where K;; = k(x;,%;) and L;; = I(x;,%;) correspond to two kernels. |Gretton
et al.| (2005) proved that HSIC converges to the population value at a rate
of 1/y/n. The standard HSIC varies between 0 and 1 where 0 indicates
independence between X and Y. When using a linear kernel, CKA is simply:

Y TXf
IXTXE 1Y TY |7
ss which is equivalent to the RV-coefficient (Robert and Escoufier] [1976)).

CKA(X,Y) = (2)
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349 Here we calculated CKA with a radial basis function (RBF) kernel and
0 an unbiased estimator of the dot product similarity. The choice of the RBF
1 kernel is based on several preliminary network-to-network and brain-to-brain
32 comparisons where the representational hierarchy is known. As described in
53 the Supplemental Material, RBF CKA was most sensitive to the represen-
54 tational similarities of interest. To make CKA less biased, the dot product
35 stimilarity in the standard CKA is replaced with the unbiased HSIC, as de-
16 scribed in [Song et al. (2007) and as implemented in the Google colab that
37 was released with Kornblith et al| (2019). This unbiased RBF CKA metric
38 varies between -1 and 1.

350 The matrices X and Y to be compared must have the same number of
w0 Tows, corresponding to time points or observations, but can differ in the num-
s1 ber of columns, corresponding to voxels or units. Since the temporal rate of
2 TMRI is much slower than that of our acoustic features, temporal rescaling
3 and alignment is required. The preprocessed BOLD timeseries from each
ss  ROI and each run were upsampled to match the frame rate of the network
35 activations (one frame every 20 ms) using pandas (McKinney} 2010, [2011)).
w6 1his strategy allowed us to preserve the temporal resolution of the network
7 activations without need for summary or binning. The quilted network ac-
s tivations were then aligned to the corresponding BOLD timeseries, setting
w0 timepoints when no stimulus was presented to zero. Since the timing of the
s experimental runs and the stimuli presentation order was different for each
s subject, this resulted in one matrix per subject per run for each layer of each
sz convnet.

373 The Glover model of the hemodynamic response function (HRF) (kernel

18
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wa  length=32 seconds), as implemented in nistats 0.0.1b0, was convolved with
sis the network activations. We extracted and concatenated only the time seg-
s ments corresponding to the blocks of continuous auditory stimulation from
sz both the fMRI and network activity. The first six seconds of each block were
sis  excluded from the analysis to allow for the HRF to ramp up. Thus, the to-
w0 be-analyzed fMRI activity does not include the on/off response at the onset
ss0  of the stimulus blocks. Responses to each block were trimmed to exactly
s 8599 frames, which, when concatenated, resulted in matrices with 515940
sz rows for both the fMRI and neural network activity. CKA similarity was

;3 then calculated for all ROI-layer pairs

s 2.8.1. Neural similarity score

To quantify the similarity between a given ROI and network layer, we
also calculate the CKA similarity between each ROI and the layers of an
untrained network. This untrained network has the same architecture as the
trained models, but its parameters have been randomly initialized and never
updated. If training has increased the correspondence to the brain, the CKA
scores for a trained network should be greater than that of the untrained
network. We capture the effect of training on similarity by calculating the
difference of standardized CKA scores between a trained network of interest
and an untrained network, which we refer to here as the neural similarity
score for brevity. Within each subject, the CKA scores are standardized
using the mean p; and standard deviation o calculated over all models and
ROI-layer pairs. The CKA scores of the untrained network are standardized
using the same mean and standard deviation. The neural similarity score ¢;,

is a difference of z-scores which reflects the similarity achieved by model m
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in subject s relative to the untrained model.

s Ckam — s Ckaun rained — Ms
¢m = - : (3)

2 2
05 05

s Thus a neural similarity score of 1 indicates that the similarity achieved by
6 the trained model is 1 standard deviation greater than that achieved by the
;7 untrained network. As previous work has shown, it is crucial to compare
s trained networks to a random network to verify that the observed similarity
;9 can be attributed to the optimization and is not inherited from the similarity
20 of the input features and/or architecture alone (Kell et al., |2018] |(Cadena

301 |et al., 2019).

32 3. Results

303 We calculated the CKA similarity for each network, subject, and ROI-
s layer pair. The results of these analyses can be summarized in similarity
35 matrices whose rows correspond to layers of a network and whose columns
36 correspond to the auditory ROIs. Figure [1| shows the grand mean similarity
7 matrix (left), the mean similarity matrix for the untrained network (middle),
33 and the mean neural similarity score matrix (right). Training increased net-
30 work similarity to the auditory ROISs, as evidenced by the fact the the neural
w0 similarity scores for the trained layers are all positive (Figure [Ig). However,
w1 we find no evidence of a shared hierarchy, which would manifest itself as
w2 a diagonal pattern of high neural similarity scores where shallow layers are
w03 more similar to early ROIs and deeper layers are more similar to later ROIs.
ss  This hypothesized diagonal pattern also does not occur in the raw CKA sim-

ws ilarity scores, neither for the trained nor untrained networks (Figure [La-b).
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ws Instead, for all ROIs, the first fully connected layer (fc1) achieves the highest
w7 raw CKA similarity and the highest neural similarity score. This pattern
ws  does not occur in the similarity matrix for the untrained network, suggesting

w0 that it was introduced by training and not by the architecture.
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Figure 1: Grand Average Similarity. No shared representational hierarchy is observed.
(Left) Raw CKA similarity averaged over participants and networks. (Middle) Raw
CKA similarity for the untrained network, averaged over participants. (Right) Neural
similarity score averaged over participants and networks. The similarity matrix contains no
negative values, showing that training increased correspondence, but there is no diagonal
pattern to indicate a shared hierarchy. Instead, for all ROIs, the first fully connected layer

(fcl) is most similar.

410 We calculated the average neural similarity score matrix for each net-
a1 work to investigate how the different training curricula would affect the cor-
a2 respondence. Figure [2| displays nine similarity matrices arranged in a grid.
a3 The monolingual models, which were only ever trained on one language, are
s along the diagonal of the grid. The off-diagonal matrices correspond to the

a5 transfer networks which were first trained on one language and subsequently
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a6 freeze trained on another. The patterns observed in the grand average are
a7 largely replicated in the network-specific similarity matrices. Layer fcl gen-
s erally achieves high neural similarity scores and none of the networks show
a0 any clear evidence for a shared hierarchy. The neural similarity score for
a0 layer fc2 is near or below 0 for the monolingual networks but well above zero
w1 for the transfer networks. Receiving training on two languages rather than
222 one increased the correspondence between layer fc2 and the auditory ROIs.
423 We hypothesized that the differences between models observed in Figure
2 may be related to the models’ accuracy on the phone classification task on
25 which they were trained. In Figure[3] we plot the peak neural similarity score
w6 as a function of triphone classification accuracy. The lines show the linear
w7 regression fit for each language-subject pair. All slopes are positive, indicat-
w28 ing a positive relationship between model accuracy on the speech recognition

w20 task and the peak similarity with the human auditory pathway.

20 4. Discussion

431 Our experimental results clearly demonstrated that training our convnets
s32 on the triphone recognition tasks increased their representational similarity
a3 to the collected auditory fMRI activity. This demonstrates that our experi-
« mental design and analysis was sufficiently sensitive to reveal training-related
w5 effects on representational similarity. However, unlike the previous results of
s |Kell et al.| (2018) and |Giiclii et al.| (2016)), this similarity did not manifest in
a7 a pattern of shared hierarchy; shallower layers were not most similar to early
a3 regions and deeper layers were not more similar to later regions. Instead, the

a0 first fully-connected layer, fc1, achieved the highest similarity score across all
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Figure 2: Average Neural Similarity Score. Each similarity matrix shows the effect of

training on CKA similarity averaged over the six participants. The subtitles of the form

“Language 1 to Language 2” indicate that the network was first trained on Language 1

and then freeze trained on Language 2. Training generally increased the correspondence

between brain and networks. Layer fcl shows the highest neural similarity score and there

is little evidence for shared hierarchy (no diagonal pattern). In some layers of certain

networks, training did not affect or actually reduced the ROI-layer similarity (shown in

white and blue). Layer fc2 yields greater neural similarity for the networks that were

trained on two languages, which also performed better on the triphone recognition task.
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Figure 3: Peak Neural Similarity Score vs Model Accuracy. There are nine points
per subject for the nine different network models. Lines show the linear regression fit
to the three models (one monolingual and two transfer) for each language and subject.
Triphone classification accuracy indicates the top-1 test accuracy achieved by each model.
For all language-subject pairs, there is a positive relationship between model accuracy
and the correspondence to the human brain. However the effect is largest for the German
models, owing to the lesser neural similarity score for the German monolingual model.
Parenthetical in the legend indicate the native language of each subject. The regression

statistics are reported in the Supplemental Information.
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a0 ROIs, followed by the second fully-connected layer, fc2.

aa1 This apparent discrepancy may be best explained by reference to the dif-
a2 ferent cost functions employed and stimuli classes presented. In fact, our re-
a3 sults are not inconsistent with previously reports of shared hierarchy. Rather,
as our work constitutes a stricter test of the shared hierarchy hypothesis and
ws our results suggest the limits of such claims. While we focused specifically
wms on the purely acoustic transformations between spectrogram features and
w7 triphones for exclusively speech stimuli, both Kell et al| (2018)) and |Giigli
ws let al.| (2016]) trained networks on tasks at a higher level of abstraction such
mo as word and musical genre recognition and used on a wide variety of natural
o sounds, effectively analyzing a broader span of auditory features from low-
ss1 level spectral features up to high-level semantic categories. Recall that the
s2 primary evidence of shared representational hierarchy in [Kell et al. (2018)
i3 was a relatively coarse grain distinction between primary auditory cortex,
sse which was better predicted by shallower layers and secondary auditory cor-
ss5  tex, which was better predicted by deeper layers. It is possible that we may
s have also found a similar distinction had we trained our networks to rec-
w7 ognize words. Future work will need to continue to probe the granularity
s of any shared representational hierarchy, for example by testing the shared
w0 hierarchy hypothesis on subsets of network layers.

460 There is a large diversity of experimental design and analysis approaches
w1 employed for the evaluation of representational models. We were inspired by
w2 previous fMRI studies which used continuous acquisition during continuous
w3 stimulation, for example natural movies, as in the studyforrest dataset. It’s

w4 been shown that single trial (i.e. without repetition) measurements during
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w5 movie watching contain sufficient information to train successful decoding
w6 models (Hu et al.; 2017) and that functional alignment across subjects based
w7 on such single trial measurements can improve decoding performance rela-
w8 tive to single-subject decoding (Haxby et al., 2011, Bazeille et al., 2020).
wo  Experimental designs of this type sacrifice reliable responses to individual
w0 conditions in favor of maximizing the diversity of stimuli presented (which
m  aids generalization) and the number of brain volumes collected. Similarity
a2 analyses like CKA benefit from a large number of observations differently
a3 than a classical GLM contrast analysis where a robust, reliable response to a
s small number of conditions is most important. In this way, the optimal design
a5 for a similarity analysis may be similar to that of functional alignment. In
a6 order to align two representational spaces, either between two brains or be-
a7 tween model and brain, the stimulus trajectory should maximally explore the
as stimulus space of interest. This is why we opted for a continuous stimulation
a0 paradigm and approximately two hours of unique speech stimuli, in contrast
o to previous studies which presented a much smaller number of sounds and
w1 analyzed responses averaged over several repetitions. A systematic compari-
s2 son of different experimental design and analysis methods is needed to tease
w3 apart the effect of such choices.

484 We found that all layers were most similar to fcl on average. Kell et al.
a5 (2018) similarly found that the median variance explained across auditory
s cortex was maximal at deep but not the deepest layers. This common
w7 Observation may be related to the notion of dimensionality expansion and
ss  compression in DNNs. Recent work describes a two-stage process by which

a0 trained DNNs perform a task. The first stage, which might be call ‘fea-
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w0 ture extraction’; is characterized by increasing intrinsic dimensionality (di-
w1 mensionality expansion) in the early layers of the network. The second,
w2 dimensionality compression, is characterized by decreasing intrinsic dimen-
w03 sionality in the last layers of the network, as the network projects the data
w0 t0 a low-dimensional manifold from which the target can be linearly decoded
w5 (Recanatesi et al., 2019, |Ansuini et al., [2019)). Our layer fc1 may be the last
w6 expansion’ layer before the ‘compression’ of the final layers. From Thompson
o7 let al.| (2019a), we know that layer fcl is at the barrier between the interme-
ws diate layers which are largely transferable between languages, and the final
a0 layers which are highly task specific. In Thompson et al. (2019b), layer fcl
so0 was the deepest layer to show a high degree a similarity in networks trained
s on different languages. The last layers of networks trained on narrowly de-
s2  fined tasks such as triphone recognition may simply learn representations
s03 that are more task-specific than any representations employed by the hu-
s« man brain, whose ultimate goal during speech listening is typically natural
sos language understanding, not phoneme recognition. However, fc2 was also
s found to be relatively similar, but only for the models which were trained
so7 on two languages rather than one. These networks benefited from twice the
s amount of training data as the models trained on only one language and dis-
so0  played superior generalization as a result. Our analysis revealed that these
s more generalizable, less language-specific penultimate representations were
su  also more similar to activity in the auditory brain.

512 Alternative architectures, cost functions, training procedures, or measure-
si3 ment modalities may be required to achieve a layer-to-ROI correspondence for

s low-level acoustic speech features. Given the low temporal-resolution of fMRI
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si5 and the temporal nature of sound, incorporating faster measurements such as
si6  electroencephalography, magnetoencephalography, or electrocorticograpahy
sz may reveal common patterns that cannot be detected with fMRI. Future
si8 - work may want to explore non-convolutional model architectures as there
si9 are a number of reasons why convnets may not be ideal architectures for
s0 audio spectrogram features. Auditory objects display differently in spectro-
s grams than visual objects in images. In particular, auditory objects tend to
s2  be less local than visual objects; the part of the spectogram corresponding
523 to a particular sound object is often distributed across several frequencies
s« and time points. Additionally, auditory objects do not occlude each other
s55 as visual objects in images do. Instead, overlapping auditory objects in a
s26  spectrogram will combine additively. In this way, the inductive bias of con-
sz volutional filters is less appropriate for traditional spectrogram-like features
s (Wyse, 2017) and thus perhaps less likely to yield brain-like representations.
s20  Recurrent or autoregressive architectures, which have been very successful in
s audio synthesis (Oord et al.; 2016)), may be ideal candidates to investigate in

s31 future work.

s Acknowledgments

533 This work was supported by NWO Vici-Grant 453-12-002 and the Dutch
s Province of Limburg, an operating grant from the Canadian Institutes of
s35 Health Research (MOP 201309), the Erasmus Mundus Student Exchange
53 Network in Auditory Cognitive Neuroscience, a Mitacs-Accelerate intern-
s37  ship, and doctoral scholarships from the Fonds de Recherche du Québec —

s3s  Nature et technologies and Natural Sciences and Engineering Research Coun-

28


https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s cil (CREATE). Speech audio was provided by Nuance Communications.

se0 References

s« D. G. Barrett, A. S. Morcos, J. H. Macke, Analyzing biological and artifi-
542 cial neural networks: challenges with opportunities for synergy?, Current
s¢s  Opinion in Neurobiology 55 (2019) 55-64. doi:10.1016/j.conb.2019.01.
544 007.

sss A. H. Marblestone, G. Wayne, K. P. Kording, Towards an integration of
546 deep learning and neuroscience, Frontiers in Computational Neuroscience

se7 10 (2016) 94. doii10.3389/fncom.2016.00094.

sas B. A. Richards, T. P. Lillicrap, P. Beaudoin, Y. Bengio, R. Bogacz, A. Chris-
549 tensen, C. Clopath, R. P. Costa, A. de Berker, S. Ganguli, C. J. Gillon,
550 D. Hafner, A. Kepecs, N. Kriegeskorte, P. Latham, G. W. Lindsay, K. D.
551 Miller, R. Naud, C. C. Pack, P. Poirazi, P. Roelfsema, J. Sacramento,
552 A. Saxe, B. Scellier, A. C. Schapiro, W. Senn, G. Wayne, D. Yamins,
553 F. Zenke, J. Zylberberg, D. Therien, K. P. Kording, A deep learning
sse  framework for neuroscience, Nature Neuroscience 22 (2019) 1761-1770.

555 doii10.1038/s41593-019-0520-2.

sss J. J. DiCarlo, D. D. Cox, Untangling invariant object recognition, Trends in

ss7 Cognitive Sciences 11 (2007) 333-341. doi:10.1016/j.tics.2007.06.010.

sss Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and
559 new perspectives, IEEE Transactions on Pattern Analysis and Machine

sco  Intelligence 35 (2013) 1798-1828.

29


http://dx.doi.org/10.1016/j.conb.2019.01.007
http://dx.doi.org/10.1016/j.conb.2019.01.007
http://dx.doi.org/10.1016/j.conb.2019.01.007
http://dx.doi.org/10.3389/fncom.2016.00094
http://dx.doi.org/10.1038/s41593-019-0520-2
http://dx.doi.org/10.1016/j.tics.2007.06.010
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ss. - N. Kriegeskorte, Deep neural networks: a new framework for modelling bio-
562 logical vision and brain information processing, Annual Review of Vision

s Science 1 (2015) 417-446.

ses A, Krizhevsky, G. E. Hinton, ImageNet Classification with Deep Convolu-
565 tional Neural Networks, in: Advances in Neural Information Processing

566 Systems, 2012.

ss7 C. Cadieu, H. Hong, D. L. K. Yamins, Deep Neural Networks Rival the
568 Representation of Primate I'T Cortex for Core Visual Object Recognition,
se0o , PLoS Computational Biology 10 (2014) €1003963. doi:10.1371/journal.
570 pcbi.1003963.

sn. D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert,
572 J. J. DiCarlo, Performance-optimized hierarchical models predict neu-
573 ral responses in higher visual cortex., Proceedings of the National
su Academy of Sciences of the United States of America 111 (2014) 8619-
575 24. doii10.1073/pnas. 1403112111,

st 5.-M. Khaligh-Razavi, N. Kriegeskorte, Deep Supervised, but Not Unsuper-
577 vised, Models May Explain IT Cortical Representation, PLoS Computa-
s tional Biology 10 (2014) €1003915. doi:10.1371/journal .pcbi.1003915.

sto P. Agrawal, D. Stansbury, J. Malik, J. L. Gallant, Pixels to Voxels: Modeling
ss0  Visual Representation in the Human Brain, arXiv (2014) 1407.5104 [q—
581 blONC]

ss2 - M. Eickenberg, A. Gramfort, G. Varoquaux, B. Thirion, Seeing it all: Convo-

30


http://dx.doi.org/10.1371/journal.pcbi.1003963
http://dx.doi.org/10.1371/journal.pcbi.1003963
http://dx.doi.org/10.1371/journal.pcbi.1003963
http://dx.doi.org/10.1073/pnas.1403112111
http://dx.doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

583 lutional network layers map the function of the human visual system, Neu-

s« rolmage 152 (2017) 184-194. doi:10.1016/j .neuroimage.2016.10.001.

sss U. Glcli, M. A. J. van Gerven, Increasingly complex representations of
586 natural movies across the dorsal stream are shared between subjects, Neu-

se7  rolmage (2016) 6-13. doi:10.1016/j.neuroimage.2015.12.036.

sss  P. Bashivan, K. Kar, J. J. DiCarlo, Neural population control via deep image

s.0  synthesis, Science 364 (2019). doi:10.1126/science.aav9436.

s0o R. M. Cichy, A. Khosla, D. Pantazis, A. Torralba, A. Oliva, Comparison of
501 deep neural networks to spatio-temporal cortical dynamics of human visual
502 object recognition reveals hierarchical correspondence, Scientific Reports

s3 6 (2016). doi:10.1038/srep27755.

sa U, Gliclii, M. A. J. van Gerven, Deep Neural Networks Reveal a Gradient in
595 the Complexity of Neural Representations across the Ventral Stream, The
sos , Journal of Neuroscience 35 (2015) 10005-10014. doi:10.1523/JNEUROSCI .
597 5023-14.2015.

s OS. A. Cadena, F. H. Sinz, T. Muhammad, E. Froudarakis, E. Cobos, E. Y.
599 Walke, J. Reimer, M. Bethge, A. S. Tolias, A. S. Ecker, How well do
600 deep neural networks trained on object recognition characterize the mouse
601 visual system?, in: Real Neurons & Hidden Units NeurIPS Workshop,
602 2019.

o3 A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, J. H. Mc-
604 Dermott, A Task-Optimized Neural Network Replicates Human Auditory

31


http://dx.doi.org/10.1016/j.neuroimage.2016.10.001
http://dx.doi.org/10.1016/j.neuroimage.2015.12.036
http://dx.doi.org/10.1126/science.aav9436
http://dx.doi.org/10.1038/srep27755
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

605 Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hi-

s  erarchy, Neuron 98 (2018) 630-644. doii10.1016/j.neuron.2018.03.044.

sz U. Gigclii, J. Thielen, M. Hanke, M. A. J. van Gerven, Brains on Beats, in:
608 Advances in Neural Information Processing Systems, 2016, p. 1606.02627.

s0o M. Raghu, J. Gilmer, J. Yosinski, J. Sohl-Dickstein, SVCCA: Singular Vector
610 Canonical Correlation Analysis for Deep Understanding and Improvement,

1 NeurIPS (2017).

6

-

sz A. S. Morcos, M. Raghu, S. Bengio, Insights on representational similarity

es  in neural networks with canonical correlation, NeurIPS (2018).

s1a 5. Kornblith, M. Norouzi, H. Lee, G. Hinton, Similarity of Neural Network
615 Representations Revisited, ICLR workshop on Debugging Machine Learn-
ing Models (2019).

6

=
o

sz N. Kriegeskorte, M. Mur, P. Bandettini, Representational similarity analysis
618 - connecting the branches of systems neuroscience., Front. in Systems

so  Neuroscience 2 (2008).

20 J. A. F. Thompson, M. Schonwiesner, Y. Bengio, D. Willett, How transfer-
621 able are features in convolutional neural network acoustic models across

622 languages?, Proceedings of the IEEE International Conference on Audio,

&3 Speech and Signal Processing (ICASSP) (2019a).

e« J. A. F. Thompson, Yoshua Bengio, M. Schonwiesner, The effect of task and
625 training on intermediate representations in convolutional neural networks
626 revealed with modified RV similarity analysis, in: Cognitive Computa-

627 tional Neuroscience, 2019b.

32


http://dx.doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ss 1. Overath, J. H. McDermott, J. M. Zarate, D. Poeppel, The cortical analysis
629 of speech-specific temporal structure revealed by responses to sound quilts,

s0  Nature Neuroscience 18 (2015) 903-911. doi:10.1038/nn.4021.

es1. M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus,
632 J. Wang, B. Kiefer, A. Haase, Generalized Autocalibrating Partially Par-
3 allel Acquisitions (GRAPPA), Magnetic Resonance in Medicine 47 (2002)
634 1202-1210. doii10.1002/mrm.10171.

35 Steen Moeller, E. Yacoub, C. A. Olman, E. Auerbach, J. Strupp, N. Harel,
636 K. Ugurbil, Multiband Multislice GE-EPI at 7 Tesla, With 16-Fold Accel-
637 eration Using Partial Parallel Imaging With Application to High Spatial
638 and Temporal Whole-Brain FMRI, Magnetic Resonance in Medicine 63
3 (2010). doiz10.1161/CIRCULATIONAHA. 110.956839.

sa0 K. Setsompop, B. A. Gagoski, J. R. Polimeni, T. Witzel, V. J. Wedeen, L. L.
641 Wald, Blipped-controlled aliasing in parallel imaging for simultaneous
642 multislice echo planar imaging with reduced g-factor penalty, Magnetic

s3  Resonance in Medicine 67 (2012) 1210-1224. doi:10.1002/mrm.23097.

saa  O. Esteban, C. Markiewicz, R. W. Blair, C. Moodie, A. I. Isik, A. Erra-
645 muzpe Aliaga, J. Kent, M. Goncalves, E. DuPre, M. Snyder, H. Oya,
646 S. Ghosh, J. Wright, J. Durnez, R. A. Poldrack, K. J. Gorgolewski, fM-
647 RIPrep: a robust preprocessing pipeline for functional MRI, Nature Meth-
648 ods (2018&). doi:10.1038/s41592-018-0235-4.

a0 O. Esteban, R. Blair, C. J. Markiewicz, S. L. Berleant, C. Moodie, F. Ma,
650 A. L Isik, A. Erramuzpe, K. J. D., M. Goncalves, E. DuPre, K. R. Sitek,

33


http://dx.doi.org/10.1038/nn.4021
http://dx.doi.org/10.1002/mrm.10171
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839
http://dx.doi.org/10.1002/mrm.23097
http://dx.doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

651 D. E. P. Gomez, D. J. Lurie, Z. Ye, R. A. Poldrack, K. J. Gorgolewski,
2 fMRIPrep, Software (2018b). doi:10.5281/zenodo . 852659.

3 K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko, M. L.
654 Waskom, S. Ghosh, Nipype: a flexible, lightweight and extensible neu-
655 roimaging data processing framework in Python, Frontiers in Neuroinfor-

ess  matics 5 (2011) 13. doii10.3389/fninf.2011.00013.

7 K. J. Gorgolewski, O. Esteban, C. J. Markiewicz, E. Ziegler, D. G. El-
658 lis, M. P. Notter, D. Jarecka, H. Johnson, C. Burns, A. Manhaes-
659 Savio, C. Hamalainen, B. Yvernault, T. Salo, K. Jordan, M. Goncalves,
660 M. Waskom, D. Clark, J. Wong, F. Loney, M. Modat, B. E. Dewey,
661 C. Madison, M. di Oleggio Castello, M. G. Clark, M. Dayan, D. Clark,
662 A. Keshavan, B. Pinsard, A. Gramfort, S. Berleant, D. M. Nielson,
663 S. Bougacha, G. Varoquaux, B. Cipollini, R. Markello, A. Rokem,
664 B. Moloney, Y. O. Halchenko, W. Demian, M. Hanke, C. Horea, J. Kacz-
665 marzyk, G. de Hollander, E. DuPre, A. Gillman, D. Mordom, C. Buchanan,
666 R. Tungaraza, W. M. Pauli, S. Igbal, S. Sikka, M. Mancini, Y. Schwartz,
667 I. B. Malone, M. Dubois, C. Frohlich, D. Welch, J. Forbes, J. Kent,
668 A. Watanabe, C. Cumba, J. M. Huntenburg, E. Kastman, B. N. Nichols,
660 A. Eshaghi, D. Ginsburg, A. Schaefer, B. Acland, S. Giavasis, J. Kleesiek,
670 D. Erickson, R. Kiittner, C. Haselgrove, C. Correa, A. Ghayoor, F. Liem,
671 J. Millman, D. Haehn, J. Lai, D. Zhou, R. Blair, T. Glatard, M. Renfro,
672 S. Liu, A. E. Kahn, F. Pérez-Garcia, W. Triplett, L. Lampe, J. Stadler,
673 X.-Z. Kong, M. Hallquist, A. Chetverikov, J. Salvatore, A. Park, R. A.
674 Poldrack, R. C. Craddock, S. Inati, O. Hinds, G. Cooper, L. N. Perkins,

34


http://dx.doi.org/10.5281/zenodo.852659
http://dx.doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

675 A. Marina, A. Mattfeld, M. Noel, L. Snoek, K. Matsubara, B. Che-
676 ung, S. Rothmei, S. Urchs, J. Durnez, F. Mertz, D. Geisler, A. Flo-
677 ren, S. Gerhard, P. Sharp, M. Molina-Romero, A. Weinstein, W. Brod-
678 erick, V. Saase, S. K. Andberg, R. Harms, K. Schlamp, J. Arias, D. Pa-
679 padopoulos Orfanos, C. Tarbert, A. Tambini, A. De La Vega, T. Nick-
680 son, M. Brett, M. Falkiewicz, K. Podranski, J. Linkersdorfer, G. Flandin,
681 E. Ort, D. Shachnev, D. McNamee, A. Davison, J. Varada, I. Schwabacher,
682 J. Pellman, M. Perez-Guevara, R. Khanuja, N. Pannetier, C. McDermot-
s troe, S. Ghosh, Nipype, Software (2018). doi:10.5281/zenodo .596855.

sa  IN. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushke-
685 vich, J. C. Gee, N4ITK: Improved N3 Bias Correction, TEEE Transac-
sss , tions on Medical Imaging 29 (2010) 1310-1320. doi:10.1109/TMI.2010.
687 2046908.

s B. B. Avants, C. L. Epstein, M. Grossman, J. C. Gee, Symmetric diffeo-
689 morphic image registration with cross-correlation: Evaluating automated
690 labeling of elderly and neurodegenerative brain, Medical Image Analysis

6

©

. 12 (2008) 26-41. doi{10.1016/3 .media.2007.06.004.

s2 Y. Zhang, M. Brady, S. Smith, Segmentation of brain MR images through
693 a hidden Markov random field model and the expectation-maximization

e algorithm, IEEE Trans Med Imag 20 (2001) 45-57.

ss M. Reuter, H. D. Rosas, B. Fischl, Highly accurate inverse consistent
696 registration: A robust approach, Neurolmage 53 (2010) 1181-1196.
607 doii10.1016/j .neuroimage.2010.07.020.

35


http://dx.doi.org/10.5281/zenodo.596855
http://dx.doi.org/10.1109/TMI.2010.2046908
http://dx.doi.org/10.1109/TMI.2010.2046908
http://dx.doi.org/10.1109/TMI.2010.2046908
http://dx.doi.org/10.1016/j.media.2007.06.004
http://dx.doi.org/10.1016/j.neuroimage.2010.07.020
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ss A. M. Dale, B. Fischl, M. I. Sereno, Cortical Surface-Based Analysis: I.
699 Segmentation and Surface Reconstruction, Neurolmage 9 (1999) 179-194.
700 doii10.1006/nimg. 1998.0395.

70 A. Klein, S. S. Ghosh, F. S. Bao, J. Giard, Y. Hame, E. Stavsky, N. Lee,
702 B. Rossa, M. Reuter, E. C. Neto, A. Keshavan, Mindboggling morphom-
703 etry of human brains, PLOS Computational Biology 13 (2017) e1005350.
704 doi:10.1371/journal .pcbi.1005350.

705 V. S. Fonov, A. C. Evans, R. C. McKinstry, C. R. Almli, D. L. Collins,
706 Unbiased nonlinear average age-appropriate brain templates from birth
707 to adulthood,  Neurolmage 47, Supple (2009) S102. doii10.1016/
708 S51053-8119(09)70884-5.

700 D. N. Greve, B. Fischl, Accurate and robust brain image alignment using
70 . boundary-based registration, Neurolmage 48 (2009) 63-72. doi:10.1016/

711 j .neuroimage.2009.06.060.

72 M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved Optimization for
713 the Robust and Accurate Linear Registration and Motion Correction of
7e  Brain Images, Neurolmage 17 (2002) 825-841. doi:10.1006/nimg.2002.
715 1132.

76 R. W. Cox, J. S. Hyde, Software tools for analysis and visualization of
7z fMRI data, NMR in Biomedicine 10 (1997) 171-178. doii10.1002/ (SICI)
718 1099-1492(199706/08)10:4/5<171: :AID-NBM453>3.0.C0;2-L.

79 J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, S. E.

720 Petersen, Methods to detect, characterize, and remove motion artifact

36


http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1371/journal.pcbi.1005350
http://dx.doi.org/10.1016/S1053-8119(09)70884-5
http://dx.doi.org/10.1016/S1053-8119(09)70884-5
http://dx.doi.org/10.1016/S1053-8119(09)70884-5
http://dx.doi.org/10.1016/j.neuroimage.2009.06.060
http://dx.doi.org/10.1016/j.neuroimage.2009.06.060
http://dx.doi.org/10.1016/j.neuroimage.2009.06.060
http://dx.doi.org/10.1006/nimg.2002.1132
http://dx.doi.org/10.1006/nimg.2002.1132
http://dx.doi.org/10.1006/nimg.2002.1132
http://dx.doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

=1 in resting state fMRI, Neurolmage 84 (2014) 320-341. doi:10.1016/j.
722 neuroimage.2013.08.048.

723 Y. Behzadi, K. Restom, J. Liau, T. T. Liu, A component based noise correc-
72¢  tion method (CompCor) for BOLD and perfusion based fMRI, Neurolmage

7

N

s 37 (2007) 90-101. doi:10.1016/j .neuroimage.2007.04.042.

26 T. D. Satterthwaite, M. A. Elliott, R. T. Gerraty, K. Ruparel, J. Loughead,
727 M. E. Calkins, S. B. Eickhoff, H. Hakonarson, R. C. Gur, R. E. Gur,
728 D. H. Wolf, An improved framework for confound regression and filtering
720 for control of motion artifact in the preprocessing of resting-state func-
720, tional connectivity data, Neurolmage 64 (2013) 240-256. doi:10.1016/j.

731 neuroimage.2012.08.052,

722 C. Lanczos, Evaluation of Noisy Data, Journal of the Society for Industrial
733 and Applied Mathematics Series B Numerical Analysis 1 (1964) 76-85.
734 doi:10.1137/0701007.

s K. R. Sitek, O. Faruk Gulban, E. Calabrese, G. A. Johnson, S. S. Ghosh,
736 F. De Martino, Mapping the human subcortical auditory system using
737 histology, post mortem MRI and in vivo MRI at 7T, eLife (2019). doi:10.
738 1101/568139.

720 A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kos-
740 saifi, A. Gramfort, B. Thirion, G. Varoquaux, Machine learning for
741 neuroimaging with scikit-learn, Frontiers in Neuroinformatics 8 (2014).

742 doii10.3389/fninf.2014.00014.

37


http://dx.doi.org/10.1016/j.neuroimage.2013.08.048
http://dx.doi.org/10.1016/j.neuroimage.2013.08.048
http://dx.doi.org/10.1016/j.neuroimage.2013.08.048
http://dx.doi.org/10.1016/j.neuroimage.2007.04.042
http://dx.doi.org/10.1016/j.neuroimage.2012.08.052
http://dx.doi.org/10.1016/j.neuroimage.2012.08.052
http://dx.doi.org/10.1016/j.neuroimage.2012.08.052
http://dx.doi.org/10.1137/0701007
http://dx.doi.org/10.1101/568139
http://dx.doi.org/10.1101/568139
http://dx.doi.org/10.1101/568139
http://dx.doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3 C. Cortes, M. Mohri, A. Rostamizadeh, Algorithms for learning kernels based
74 on centered alignment, Journal of Machine Learning Research 13 (2012)

745 795-828.

6 A. Gretton, O. Bousquet, A. Smola, B. Sclkopf, Measuring statistical depen-
747 dence with Hilbert-Schmidt norms, Conference on Algorithmic Learning

72s Theory (2005) 63-77. doi:10.1007/11564089{\_3}7.

19 P. Robert, Y. Escoufier, A Unifying Tool for Linear Multivariate Statistical
70 Methods: The RV- Coefficient, Applied Statistics 25 (1976).

751 L. Song, A. Smola, A. Gretton, K. M. Borgwardt, J. Bedo, Supervised fea-
752 ture selection via dependence estimation, ACM International Conference

53 Proceeding Series 227 (2007) 823-830. doi:10.1145/1273496.1273600.

s W. McKinney, Data structures for statistical computing in python, in:
755 Proceedings of the 9th Python in Science Conference, volume 445, Austin,

756 TX, 2010, Pp. 51-56.

77 W. McKinney, pandas: a foundational Python library for data analysis
758 and statistics, Python for High Performance and Scientific Computing 14
750 (2011).

w0 X. Hu, L. Guo, J. Han, T. Liu, Decoding power-spectral profiles from FMRI
761 brain activities during naturalistic auditory experience, Brain Imaging and

762 Behavior 11 (2017) 253-263. doi:10.1007/s11682-016-9515-8.

73 J. V. Haxby, J. S. Guntupalli, A. C. Connolly, Y. O. Halchenko, B. R. Conroy,
764 M. I. Gobbini, M. Hanke, P. J. Ramadge, A common, high-dimensional

38


http://dx.doi.org/10.1007/11564089{_}7
http://dx.doi.org/10.1145/1273496.1273600
http://dx.doi.org/10.1007/s11682-016-9515-8
https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428323; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

765 model of the representation space in human ventral temporal cortex, Neu-

766 ron 2 (2011).

7wz 'T. Bazeille, E. Dupre, J.-b. Poline, B. Thirion, An empirical evaluation
768 of functional alignment using inter-subject decoding, bioRxiv Preprints

s (2020) 1-16.

7

=)

70 S. Recanatesi, M. Farrell, M. Advani, T. Moore, G. Lajoie, E. Shea-
1 Brown, Dimensionality compression and expansion in Deep Neural Net-

7  works (2019).

773 A. Ansuini, A. Laio, J. H. Macke, D. Zoccolan, Intrinsic dimension of data
774 representations in deep neural networks, in: Advances in Neural Informa-

775 tion Processing Systems, 2019.

76 L. Wyse, Audio Spectrogram Representations for Processing with Convolu-
777 tional Neural Networks, in: Proceedings of the First International Work-

778 shop on Deep Learning and Music joint with IJCNN, 2017, pp. 37-41.

7oA. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
780 N. Kalchbrenner, A. Senior, K. Kavukcuoglu, WaveNet: A Generative
781 Model for Raw Audio, in: The 9th ISCA Speech Synthesis Workshop,
72 2016.

39


https://doi.org/10.1101/2021.01.26.428323
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Material and methods
	Participants
	Experimental Stimuli
	Experimental Protocol
	MRI Acquisition Parameters
	Anatomical
	Functional

	MRI Preprocessing
	Anatomical data preprocessing
	Functional data preprocessing

	Regions of Interest
	Convolutional Neural Network Activations
	CKA Similarity Analysis
	Neural similarity score


	Results
	Discussion

