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Abstract 20 
 21 
According to archaeological records, chickpea (Cicer arietinum) was first domesticated in the 22 
Fertile Crescent 10 thousand years ago. Its subsequent diversification in South Asia, Ethiopia, 23 
and the Western Mediterranean, however, remains obscure and cannot be resolved using only 24 
archeological and historical evidence. In particular, chickpea has two market types: ‘desi’, 25 
which has a similar flower and seed coat color to chickpea’s wild relatives; and ‘kabuli’, which 26 
has light-colored seed, and is linguistically tied to Central Asia but has an unknown geographic 27 
origin. 28 
 29 
Based on the genetic data from 421 chickpea landraces from six geographic regions, we tested 30 
complex historical hypotheses of chickpea migration and admixture on two levels: within and 31 
between major regions of cultivation. For the former, we developed popdisp, a Bayesian model 32 
of population dispersal from a regional center towards sample locations, and confirmed that 33 
chickpea spread within each region along trade routes rather than by simple diffusion.  34 
 35 
For the latter, migration between regions, we developed another model, migadmi, that 36 
evaluates multiple and nested admixture events. Applying this model to desi populations, we 37 
found both Indian and Middle Eastern traces in Ethiopian chickpea, suggesting presence of a 38 
seaway from South Asia to Ethiopia — and the cultural legacy of the Queen of Sheba. As for 39 
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the origin of kabuli chickpeas, we found significant evidence for an origin from Turkey rather 40 
than Central Asia. 41 
 42 
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Introduction 44 
 45 
The genetic variation of species reflects evolutionary history. The history of a domesticated 46 
species is inextricably linked with human history and we can learn much about one from 47 
studying the other. Reconstructing the spread of cultigens reveals the history of both plant and 48 
human and has the potential to improve modern genomics-assisted breeding schemes. 49 
 50 
Chickpea (Cicer arietinum L.) is an important source of high-quality protein (Abbo et al., 2003a), 51 
ranked third among legumes in terms of grain production (Jain et al., 2013). It is extensively 52 
cultivated in India, West Asia, Eastern Africa, and the Mediterranean Basin, but how it reached 53 
these regions, and its subsequent admixture history is not well-understood. Limiting factors in 54 
reconstructing chickpea domestication history include: (1) lack of whole-genome sequences 55 
from ancient chickpea, (2) reduced genetic diversity in cultivars due to domestication 56 
bottlenecks, (3) the replacement of locally evolving landraces with modern commercial 57 
varieties (Abbo et al., 2003a). The most suitable material for studying chickpea domestication 58 
is the historical germplasm collection made by Vavilov in the 1920s-1930s, stored at the N.I. 59 
Vavilov All Russian Institute of Plant Genetic Resources (VIR). This collection currently contains 60 
3380 chickpea accessions, almost half of which represent pre-Green Revolution landraces with 61 
known geographical origin (Figure 1a). Vavilov not only established this unique collection, but 62 
also identified several “centers of origin” (or diversity) of crop plants (Vavilov, 1926) (Figure 63 
2a). For chickpea, centers of diversity include six regions (van der Maesen, 1984; Vavilov, 64 
1951), which we will denote by the nearest contemporary country: Turkey, Uzbekistan, India, 65 
Lebanon, Morocco, and Ethiopia. We assembled a panel of 421 chickpea landraces which 66 
represent these regions (Figure 1a) and tested historical hypotheses of chickpea diversification 67 
based on genotyping at 2579 loci. 68 
 69 

Chickpea centers of diversity have rich archaeological records, and several domestication 70 
scenarios have been proposed based on these. The wild progenitor of C. arietinum is C. 71 
reticulatum, a rare species found in a small area of south-eastern Turkey (Abbo et al., 2003a). 72 
Because Turkey (and Syria) also harbor several archaeological sites with the earliest remains of 73 
cultivated chickpea (ca 9500 ybp) (Abbo et al., 2003b; Tanno and Willcox, 2006), this region is 74 
generally accepted as the origin of chickpea. Based on the archaeological records, chickpea 75 
then spread throughout ancient world, reaching western-central Asia (Uzbekistan) and the 76 
Indus Valley ca 6000 ybp, the Mediterranean basin (Lebanon, Morocco) ca 5500 ybp, and 77 
Ethiopia ca 3500 ybp. While the chickpea migration relationships between Turkey, Lebanon, 78 
India and central Asia are supported by archeological records, the exact dispersal and 79 
admixture history of chickpea within the Mediterranean Basin and to Ethiopia are anyone’s 80 
guess.  81 

 82 
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The C. arietinum L. history gets more complicated due to the presence of two distinct types: 83 
‘desi’ and ‘kabuli’, which differ in size/morphology, color and surface of seeds (Purushothaman 84 
et al., 2014) (Figure 1a). Desi and kabuli types have sometimes been designated as subspecies 85 
microsperma and macrosperma, respectively (Moreno and Cubero, 1978), although these 86 
older taxonomic terms do not reflect a crossing boundary or substantial molecular genetic 87 
differentiation (Varma Penmetsa et al., 2016). The desi type is considered to be ancestral and 88 
resembles wild progenitors (С. reticulatum and C. echinospermum) more than kabuli. It was 89 
proposed that kabuli was once selected from the local desis, and then spread; however, the 90 
region of origin is not known. 91 
 92 
We utilized the genotyped landraces from Vavilov’s collection to test the ambiguities in 93 
chickpea history and reconstruct migration routes of both desi and kabuli types in the following 94 
way. We first obtained robust estimates of allele frequencies in 10 chickpea populations (6 95 
desis: Turkey, Uzbekistan, India, Lebanon, Morocco, and Ethiopia, and 4 kabulis: Turkey, 96 
Uzbekistan, Lebanon, and Morocco). For this purpose, we developed the popdisp model 97 
(population dispersals), which considers geographical locations of chickpea sampling sites, the 98 
nonequal number of samples in locations, and, most crucially, possible ways of chickpea 99 
dispersals within a region. We examined two hypothetical dispersals for each of 10 populations 100 
and get estimates of allele frequencies in populations’ centers. Then, we used these 101 
frequencies to test admixture events in the Ethiopia and Morocco desi chickpea, as well as two 102 
different hypotheses about the geographical origin of kabuli varieties and their admixtures 103 
with local desis. For these tests, we developed the migadmi method (migrations and 104 
admixtures), which, instead of existing approaches (TreeMix (Pickrell and Pritchard, 2012) and 105 
MixMapper (Lipson et al., 2013)) can cope with more than two source populations and 106 
estimate multiple and nested admixture events.  107 
 108 
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Results 110 
 111 

 112 
 113 
Figure 1. (a) Sampling locations of chickpea accessions (circles) and estimated trade routes 114 
from the centers of clusters (stars) to locations. Each net of routes represents a binary tree. 115 
Photo shows the morphological differences between seeds of desi and kabuli chickpea types. 116 
(b) PCA plots for accession based on SNP data separately colored by chickpea type (left) and 117 
by regions (right). (c) Mean pairwise Fst comparison of 10 chickpea subpopulations. 118 
 119 
 120 
 121 
Population structure 122 
 123 
The chickpea dataset consists of 421 samples (landraces), which can be separated into ten 124 
subpopulations based on origin (Turkey, Uzbekistan, India, Lebanon, Morocco, or Ethiopia) and 125 
chickpea types (desi and kabuli); there are no kabulis among Ethiopian and Indian landraces in 126 
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our historical collection (Figure 1a). PCA analysis of samples demonstrated 4 clusters 127 
imperfectly correlated with geography, except one cluster with a specific signal to the Ethiopia 128 
desis (Figure 1b). The first principal component mostly reflected the difference between desi 129 
and kabuli (Figure 1b; see distribution of variance explained in Supplementary File 1). Analysis 130 
of the mean pairwise Fst values demonstrated that 10 populations are split into 3 131 
subpopulations reflecting the geographic proximity and overshadowing two chickpea types 132 
(Figure 1c): [Turkey-Lebanon-Morocco], [India-Uzbekistan], and Ethiopia. The PCA and Fst 133 
results are in line with the previous attempt (Varshney et al., 2019) to decipher the migration 134 
and domestication history of chickpea accessions that also revealed region-specific clustering 135 
and no clear patterns of desi/kabuli differentiation. 136 
 137 
A hierarchical clustering of the landraces based on SNP distance confirmed (Supplementary 138 
File 1) that desi-kabuli separation is imperfect, and landraces from different geographical 139 
regions are also mixed. To detect unknown population structure we used ADMIXTURE 140 
(Alexander et al., 2009), but this did not reveal a clear number of ancestral populations in our 141 
dataset (K): the cross-validation error monotonically decreased with no minimum while 142 
increasing K from 1 to 20. Similar to the Fst analysis, ADMIXTURE plots for K=3 and K=7 143 
(Supplementary File 1) indicated visually distinct geographic patterns (Turkey-Lebanon-144 
Morocco, India, Uzbekistan, and Ethiopia) but not desi/kabuli separation. 145 
 146 
 147 
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 149 

 150 
 151 

Figure 2. (a) Popdisp, the hierarchical Bayesian model describes the spread of chickpea 152 
population within each region. We consider that a region consists of 𝐽 sampling locations 153 
connecting together by a binary path from the center towards locations. 𝑗-th location is 154 
characterized with 𝑦!  allele counts in 𝑛!  genotyped variants; 𝑦!  and 𝑛!  are known values. We 155 
assume that 𝑦!  is a result of Binomial sampling with 𝑛!  trials and 𝑓!  probability of success (the 156 
allele frequency in the location). Allele frequencies, as fractions or percentages, are 157 
constrained (i.e. sum up to 1 or 100%), which requires the transformation of all 𝑓!  into 𝑥!  being 158 
in line with BEDASSLE (Bradburd et al., 2013) and compositional data analysis (CoDA) 159 
(Aitchison, 1986; Pawlowsky-Glahn and Buccianti, 2011). The vector �⃗� follows the multivariate 160 
normal distribution, its mean is the transformed allele frequency in the center, 𝑥", and the 161 
covariance matrix is proportional to covariance matrix 𝑉 reflecting the binary path. We tested 162 
different paths: constructed under the ‘trade routes’ hypothesis and ‘linear’ hypotheses. Allele 163 
frequency in the center has the Beta prior distribution with 𝛼 and 𝛽 parameters. (b) PCA plot 164 
of allele frequencies estimated under the ‘trade routes’ hypothesis. Arrows represent the shift 165 
from desi to kabuli populations within one region.  166 
 167 
Chickpea dispersals within geographic regions 168 
 169 
Prior to testing migrations and admixtures for 10 chickpea populations: 6 desis (from Lebanon, 170 
Morocco, Turkey, Uzbekistan, India, and Ethiopia) and 4 kabulis (from Lebanon, Morocco, 171 
Turkey, and Uzbekistan), we estimated allele frequencies in them. Due to the non-uniform 172 
distribution of sampling locations in regions and nonequal number of samples in each location, 173 
mean allele frequencies in each population can be biased as mean statistics are sensitive to 174 
outliers. To get more robust estimates, we developed a model, popdisp (Figure 2a), which 175 
considers different scenarios for dispersals within a geographic region and takes into account 176 
landrace-specific effects. The structure of the model was inspired by BayPass (Gautier, 2015), 177 

a b
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and processing of allele frequencies was performed as in BEDASSLE (Bradburd et al., 2013) and 178 
compositional data analysis (CoDA) (Pawlowsky-Glahn and Buccianti, 2011). 179 
We hypothesized that each region had one trade center, where chickpea was first introduced, 180 
and considered two scenarios for subsequent dispersal within the region. In the first scenario, 181 
dispersal within each region proceeded by the transport of seeds to local villages via roads and 182 
paths. As a result, the genetic relatedness in local landraces would be predicted by the net of 183 
regional trade routes. This scenario was contrasted with simple diffusion, so that genetic 184 
differences between landraces would be explained by geodesic distance. We called these two 185 
scenarios “trade routes” and “linear”, respectively (Figure 2a). 186 
 187 
For each region, the center of diffusion was assumed to be the ancient city closest to the 188 
geographical mean center for landraces sampled in the region: Axum (Ethiopia), Volubilis 189 
(Morocco), Diyarbakir (Turkey), Heliopolis (Lebanon), Ayodhya (India), and Marakanda 190 
(Uzbekistan). Then, we constructed two possible contrast binary paths from centers towards 191 
sampling sites. The first was estimated using a ‘least-cost’ model, which have emerged as an 192 
explanatory framework reflecting transportation routes in archaeology (Figure 1а). The second 193 
was constructed using a neighbour-joining algorithm based on linear distance from sampling 194 
sites to the center. Differences between paths for regions are shown in Supplementary File 2. 195 
 196 
We estimated SNP frequencies in 10 populations under the trade routes and linear scenarios 197 
separately and discriminated between them by the Bayes factor (BF, a ratio of the likelihoods). 198 
In all cases (except the Lebanon desi population) the “trade route” scenario was strongly 199 
favored (Supplementary File 6). Therefore, we concluded that the dispersal from trade centers 200 
to farming villages within regions occurred along the ‘trade route’ travel paths and took allele 201 
frequency estimates based on this model for further analysis. PCA analysis of the obtained 202 
frequencies demonstrated both splitting of populations into geographic subgroups and 203 
desi/kabuli differentiation (Figure 2b). Moreover, all kabuli populations are close to their 204 
regional desis, but shifted in one direction along the first PC axis. This may reflect a common 205 
origin. 206 
 207 
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 209 
 210 
Figure 3. Possible spread of desis between centers of domestication. (A) Vavilov’s centers of 211 
domestication (outlined in red) and our hypothesized paths of the desi spread shown as yellow 212 
lines (some of which are known and some are tested). The map is from the Vavilov Institute of 213 
Plant Genetic Resources (Photo: A. Igolkina). (B) Model of desi’s spread: black lines are known 214 
paths of diffusion; we tested the two pathways colored light and dark blue. (C) Parametrization 215 
of an admixture event in our model. First, we split each chromosome in a sliding window 216 
technique; each 𝑤-th window is a set of SNPs. Instead of vectors of SNP frequencies for 217 
populations, we use vectors balances. We assume that the distance between vectors of 218 
balances shortened to the window follows the normal distributions with covariance equal to 219 
the corresponding admixture tree's distance. (D) Distribution of the contribution of Lebanon 220 
(green), Turkey (purple), and India (red) ancestral desi populations into Ethiopian desi along 221 
chromosomes. (E) Distribution of contribution of Lebanon (green) and Turkey (purple) desi 222 
ancestral populations into Moroccan desi along chromosomes. 223 
 224 
Origin of desi landraces in Morocco and Ethiopia 225 
 226 
The desi chickpea type resembles the wild progenitor and is considered ancestral. Its spread 227 
between regions is partly known from archaeology: chickpea was domesticated in Turkey and 228 
then introduced into India, Uzbekistan and Lebanon. We set these four populations as sources 229 
with known phylogeny (black-coloured subtree in Figure 3b). Ethiopian and Moroccan chickpea 230 
desi populations appeared later, and their sources are not known (Figure 3a). 231 
 232 
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Two alternative hypotheses exist about the chickpea colonization of Ethiopia. Based on 233 
Ethiopian national legend, the Queen of Sheba, a mysterious figure in the Hebrew Bible, is the 234 
“founder” of Ethiopia. The Bible tells the story about her visit to Jerusalem (the Gospels of 235 
Matthew 12:42, and Luke 11:31), that is in line with Ethiopians highlanders having a clear 236 
Semitic connection exemplified by their Semitic language group (Amharic) and genetic 237 
similarity with Jewish people (Behar et al., 2010). Based on this, chickpea in Ethiopia might 238 
have a Middle Eastern origin. On the other hand, Ethiopian landraces are smaller-seeded and 239 
dark-colored, like most Indian varieties. This suggests a South Asian origin of chickpea in 240 
Ethiopia. Thus, the genome of these Ethiopian varieties could be admixed with alleles traced 241 
back to ancestral populations from Turkey and Lebanon or India. A similar question stands for 242 
Moroccan chickpea landraces (Mediterranean Basin), with contributions from either Turkey or 243 
Lebanon or both. 244 
 245 
Existing methods, like TreeMix (Pickrell and Pritchard, 2012) and MixMapper (Lipson et al., 246 
2013), are not sufficient to test complex historical hypotheses of the chickpea dispersion 247 
directly. First, neither of these tools allow both admixed and source populations to diverge 248 
after the admixture event. Second, they limit the number of source populations to 2. Third, 249 
while TreeMix can estimate multiple admixture events, and MixMapper can cope with two 250 
nested admixtures, there is no tool that can do both. Finally, neither tool considers directly the 251 
irregularity of admixture traces along the genome, which can be pronounced if the admixture 252 
event happened far in the past. We developed a new method, migadmi (Figure 3c), which 253 
overcomes the above-mentioned limitations. We also applied TreeMix and MixMapper to our 254 
dataset and compared their results with ours (Appendix 6). 255 
 256 
For Ethiopian desis, the dominant source is India (19%), which has a contribution that is almost 257 
as large the cumulative contribution of Lebanon and Turkey desis, 21% (Figure 3d). Thus more 258 
than a half of Ethiopian desi’s variance is not represented in ancestral populations, which is in 259 
line with the previous analysis, where Ethiopia represents a distinct cluster (Figure 1b,c). These 260 
predictions are in agreement with TreeMix results indicating [Turkey-Lebanon] and India 261 
origins of Ethiopian desi, while MixMapper suggests that Ethiopian desi is a mixture of desi 262 
from Turkey (60%) and India (40%) (Appendix 6). In spite of general agreement of migadmi 263 
predictions with TreeMix and MixMapper, we believe that this newly introduced method 264 
provides more realistic picture of chickpea colonization in Ethiopia as it takes into account 265 
accumulation of individual variances in both mixed and source populations after the admixture 266 
event and is able to decompose the variance of mixed population along the chromosomes. 267 
Indeed, our analysis demonstrated that non-uniformity of admixture events along chickpea’s 268 
chromosomes is strongly pronounced - some regions are admixed by only one source 269 
population (e.g. the beginning of chromosome 3 and the middle of chromosome 4 have mainly 270 
contribution from Turkish desi population), while other regions have input from several (Figure 271 
3d). 272 
  273 
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We found that Moroccan desis are derived from both Turkish (35%) and Lebanese (20%) 274 
sources (Figure 3e). This result supports the hypothesis of multiple migration routes from West 275 
Asia towards Morocco around the Mediterranean Basin. The TreeMix analysis identified 276 
Moroccan desi with the Turkish-Lebanese clade (closer to Turkish populations, than Lebanese) 277 
with possible India admixture. MixMapper suggested that Moroccan desis are of Turkish origin 278 
with an admixture of Lebanese (98%) and Indian (2%) desis (Appendix 6). As the Indian desi 279 
influence on Moroccan desi is small, we concluded again that migadmi predictions of a 280 
Moroccan origin generally agree with predictions of TreeMix and MixMapper but provide 281 
additional information about admixture traces along the chromosomes. 282 
 283 
 284 
 285 
 286 
 287 
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 289 
Figure 4. Analysis of the origin of kabuli chickpeas. (a) Paths of kabuli movement assuming that 290 
they originated in Turkey. The pie plot reflects the decompositions of Uzbekistan kabuli 291 
variance. (b) Paths of kabuli movement assuming that they originated in Uzbekistan (Kabul). 292 
The pie plot reflects the decompositions of Turkish kabuli variance. (c) Decomposition of the 293 
Lebanon kabuli origin along the chromosomes. (d) Decomposition of the Moroccan kabuli 294 
origin along the chromosomes. Triangle marks chromosomal regions associated with kabuli. 295 
 296 
 297 
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Origin of kabuli chickpea 299 
 300 
The origin of kabuli domestication is unknown. Based on linguistic evidence, one may 301 
hypothesize that kabulis arose in Central Asia, and are named after Kabul city (in modern 302 
Afghanistan). On the other hand, it is logical to suggest that kabulis arose in West Asia (modern 303 
Turkey) but later than desis, as kabulis are distributed in regions neighboring to Turkey and 304 
have long been thought to be modern introductions to India and Ethiopia(van der Maesen, 305 
1984). Mulitiple geographic origins are possible.  Although desis and kabulis have much in 306 
common, modern breeding programs generally keep them separate, likely due to differences 307 
in adaptive requirements and market preferences (Purushothaman et al., 2014; Roorkiwal et 308 
al., 2014; Varshney et al., 2019). 309 
 310 
 311 
 312 
 313 
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 315 
Figure 5. Analysis of the origin of kabuli chickpeas. (a) Paths of kabuli movement assuming that 316 
they originated in Turkey. The pie plot reflects the decompositions of Uzbekistan kabuli 317 
variance. (b) Paths of kabuli movement assuming that they originated in Uzbekistan (Kabul). 318 
The pie plot reflects the decompositions of Turkish kabuli variance. (c) Decomposition of the 319 
Lebanon kabuli origin along the chromosomes. (d) Decomposition of the Moroccan kabuli 320 
origin along the chromosomes. Triangle marks chromosomal regions associated with kabuli. 321 
 322 
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Origin of kabuli chickpea 325 
 326 
The origin of kabuli domestication is unknown. Based on linguistic evidence, one may 327 
hypothesize that kabulis arose in Central Asia, and are named after Kabul city (in modern 328 
Afghanistan). On the other hand, it is logical to suggest that kabulis arose in West Asia (modern 329 
Turkey) but later than desis, as kabulis are distributed in regions neighboring to Turkey and 330 
have long been thought to be modern introductions to India and Ethiopia (van der Maesen, 331 
1984). Although desis and kabulis have much in common, modern breeding programs 332 
generally keep them separate, likely due to differences in adaptive requirements and market 333 
preferences (Purushothaman et al., 2014; Roorkiwal et al., 2014; Varshney et al., 2019). 334 
Because desi type is considered to be more primitive and ancestral it is not unreasonable to 335 
assume that kabuli’s spread between centers of secondary diversification had an influence 336 
from local desis. However, both kabuli’s origin and migration history with possible desi 337 
influences remain unclear. 338 
 339 
To identify the origin of kabulis, we draw alternative admixture graphs of population 340 
relatedness. The first assumes the dispersal of kabuli chickpea from Turkey’s Fertile Crescent 341 
(Figure 4а) and the second reflects a Central Asian origin (modern Uzbekistan) with subsequent 342 
movement back to Turkey (Figure 4b). Parameters for the black-coloured part of the graphs in 343 
Figure 4a,b were taken from the previous analysis of desi populations, the remaining 344 
parameters were estimated with the migadmi model. The optimal likelihood of the former 345 
graph is higher, but not significantly. Therefore, to determine the kabuli’s origin, we analysed 346 
fractions of variance in each mixed population explained by its sources. 347 
 348 
 349 
Under the Central Asian assumption of kabuli origin, the influence of Uzbeki kabuli on Turkish 350 
kabuli is very small (5%), while, under the Turkey origin hypothesis, the influence of Turkish 351 
kabuli on Uzbeki kabuli was about 5 times larger (24%) (pie plots in Figures 5a,b). The larger 352 
contribution of assumed source to a kabili population indicates Turkey as the likely origin of 353 
kabuli. The analysis of PCA plot (Figure 2c) demonstrated the shift of all kabuli populations 354 
along the first PC axis, and the direction of this shift is not “towards Uzbekistan.” TreeMix 355 
analysis did not reveal significant patterns of kabuli admixture, while the MixMapper indicated 356 
the same pattern as we found (Appendix 6). Overall, we do not observe support for a kabuli 357 
origin in Central Asia with introgression back to Fertile Crescent populations, and we thus 358 
cautiously conclude that kabuli originated in the Turkish region. 359 
 360 
Moroccan and Lebanese kabuli varieties appear to be highly related to both local desi and 361 
Turkish kabuli (pie plots in Figures 5c,d). The proportion of Turkish admixture in the Moroccan 362 
kabuli population (41%) is higher than in the corresponding desi populations (22%), evidence 363 
that the desi landraces spread earlier than kabuli landraces, and have had more time to diverge 364 
and accumulate their own variance. The mixed origin of Moroccan and Lebanese Kabulis was 365 
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also demonstrated by MixMapper, but the influence of local desi was higher than the influence 366 
of Turkish kabuli in both cases (60%) (Appendix 6). Analysis of regions admixed by Turkish 367 
kabuli in Moroccan and Lebanese kabuli chromosomes reveals common patterns (Figures 4c,d) 368 
and highlights the chromosomal regions associated with kabuli (Appendix 7). For example, the 369 
beginning of the fourth chromosome, which contains markers for chickpea flower color, the 370 
basic difference between desi and kabuli varieties (marked as triangle on the Figures 2d,e and 371 
3c,e) (Varma Penmetsa et al., 2016) contains clear introgression from the Turkish kabuli 372 
ancestral population. Of note, that chromosomal region in Ethiopia appears to be derived from 373 
India (Figure 2d).  374 
 375 
 376 

Conclusion 377 
 378 
We have tested chickpea migration and admixture hypotheses directly, by formulating 379 
dispersal scenarios (Figures 3 and 4) based on historical evidence. We observed that the 380 
Ethiopian desi population was derived not solely from the Fertile Crescent, but almost equally 381 
from India and the Fertile Crescent (Turkey-Lebanon). Likewise, a uniform variation pattern 382 
around Mediterranean (Varshney et al., 2019) has been clarified into two likely land routes of 383 
migration from the Fertile Crescent, via Sothern Europe and North Africa.  384 
 385 
Another question which we addressed was the origin of kabuli, the light-colored chickpea type, 386 
which presumably originated from a local desi population. According to the analysis we 387 
performed this region is Turkey. We observed no evidence for kabuli’s Central Asia origin and 388 
spreading back to the Fertile Crescent as was speculated previously (Varshney et al., 2019). 389 
 390 
To test the migration and admixture hypotheses, we developed two methods. The first model 391 
is popdisp, which estimates allele frequencies in the population, under the assumption of a 392 
particular dispersal model within the region. We considered two reasonable physical agents of 393 
migration: traders or diffusion that approximates continuous-time stochastic process. Our 394 
assertion was that genomic resemblance between accessions can reflect either ‘least-cost 395 
path’ trade route distance between sample sites or linear distance between them. Our 396 
analyses unambiguously favour the former hypothesis (Figure 1a). In the future it will be 397 
interesting to apply this approach to species with different dispersal strategies, for instance 398 
comparing crops like round-seeded chickpea to human-associated weeds like spiky-podded 399 
Medicago capable of long-distance transport with livestock 24 or wind dispersed species. For 400 
the latter, we would expect distributions to track wind currents only, with no resulting 401 
signature of dispersal along historic trade routes. 402 
 403 
The second model is migadmi, which estimates multiple and nested admixture hypotheses 404 
with more than two sources and demonstrates the admixture patterns along the 405 
chromosomes. Both models describe changes in allele frequencies in line with Wright-Fisher 406 
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drift model and utilize logit transformation as in BEDASSLE (Bradburd et al., 2013) and 407 
compositional data analysis (CoDA), the most appropriate framework for working with 408 
frequencies, fractions, percentages and ratios. This approach allows to easily extend migadmi 409 
to work with not only biallelic SNPs, but also with multiallelic sites or haploblocks. 410 
 411 
 412 

 413 

  414 
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Materials and methods 415 
 416 
Dataset 417 
 418 
The chickpea dataset (Cicer arietinum L.) consists of 421 accessions from the Vavilov Institute 419 
of Plant Genetic Resources (VIR) seed bank. These accessions were genotyped by sequencing 420 
(GBS), and 56,855 segregating single nucleotide polymorphisms (SNPs) were identified. These 421 
SNPs were further filtered to meet requirements for minor allele frequency (MAF) >3% and 422 
genotype call-rate >90%. 2,579 SNPs in 421 accessions passed all filtering criteria and were 423 
retained for further analysis (Sokolkova et al., 2020).  424 
 425 
Spatial Data and Distance Calculations 426 
 427 
To estimate physical distances between sample locations of chickpea accessions, we took into 428 
account the spherical model of Earth and geodesic measurements. We used the Projection 429 
Wizard web application (Šavrič et al., 2016) to select an accurate projection for regions with 430 
locations onto the two-dimensional surface (Appendix 1).  431 
 432 
To calculate distances between pairs of locations, we used the Least-cost path model (Douglas, 433 
1994) (instead of pure geodesic measurements), the explanatory framework for the 434 
movement of goods in archeology. This approach calculates the least “cost” distance of a path, 435 
that can be interpreted as an amount of time or energy that it would have taken to travel along 436 
the path. This approach is useful in the absence of historical data on exact movement routes, 437 
and it takes into account the change in elevation, the hiking function (which is used in 438 
archeological and ethnographic applications (Gorenflo and Gale, 1990), geo-climatic Holocene 439 
data, and a mask of water bodies (see detailed description in Appendix 1). 440 
 441 
For each of six regions (Ethiopia, Morocco, Turkey, Lebanon, India, and Uzbekistan), we 442 
estimated possible locations of chickpea diffusion centers combining current knowledge of 443 
World Centers of Diversity and historical data for locations of ancient cities that were 444 
prominent trading centers during ancient times. Using the spatial statistics tools, we calculated 445 
the mean center for each region and then compared the centers' locations with known ancient 446 
trade/cultural centers (Ancient World Mapping Center. University of North Carolina, Chapel 447 
Hill, http://awmc.unc.edu/awmc/map_data/shapefiles/strabo_data/). As a result, we selected 448 
the following historic settlements closest to the mean centers: Axum (Ethiopia), Volubilis 449 
(Morocco), Diyarbakir (Turkey), Heliopolis (Lebanon), Ayodhya (India), and Marakanda 450 
(Uzbekistan). 451 
 452 
  453 
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Model for diversification within clusters 454 
The model describing populations dispersals is implemented in Python package popdisp 455 
(https://github.com/iganna/popdisp). 456 
 457 

Model 458 
 459 
We developed popdisp, a Bayesian hierarchical model (Figure 2a) that describes historical 460 
diversification of chickpea populations within a geographical region. We hypothesize that each 461 
geographic region contains 𝑀 populations originated from one center (ancestral population) 462 
and spread towards 𝑀 locations. Each population is composed of individuals genotyped for 𝑁 463 
unlinked (independent) biallelic SNPs; the missing data is possible and does not require the 464 
imputation. We pooled the data from all individuals in a population; for 𝑗-th population and 𝑖-465 
th SNP, we defined the total counts of non-reference (alternative) allele – 𝑦!#  – and the total 466 

count of all variants at this SNP – 𝑛!#. Values 𝑛!#  are not the same across all SNPs in 𝑗-th 467 
population due to the missing data. We assume that frequency of the alternative allele for 𝑖-468 
th SNP in 𝑗-th population is 𝑓!#, and the observed 𝑦!#  follows the Binomial distribution: 𝑦!# ∼469 

𝐵𝑖𝑛(𝑓!# , 𝑛!#). 470 
 471 
Within a region, we modelled population spread along a given binary-branching path from the 472 
ancestral population, which is characterized by respective frequency 𝑓"#. We assumed that 473 
population allele frequencies change under the genetic drift in line with the Wright-Fisher 474 
model and theory of Compositional Data analysis (CoDA). The CoDA theory states that 475 
frequencies (as well as percentages or fractions) are meaningless when considered alone, as 476 
they sum up to one, hence, the only balances between frequencies do make sense. According 477 
to the CoDA, we applied the isometric log-ratio (ilr) transformation to allele frequencies, and, 478 
in case of biallelic SNPs, it is the logit transformation as used in BEDASSLE (Bradburd et al., 479 
2013): 480 
 481 

𝑥!# = log
1 − 𝑓!#

𝑓!#
; 𝑓!# =

1
1 + exp@𝑥!#A

. 482 

 483 
New variable 𝑥!#  means the log-balance between frequencies of reference and alternative 484 
alleles, and is not bounded, i.e., can take values in (−∞,+∞). The latter allows us to model 485 
correlations between population frequencies using Multivariate normal distributions without 486 
artificial truncation, which is necessary when the model operates with non-transformed 487 
frequencies(Gautier, 2015). 488 
 489 
To describe the genetic drift of allele frequencies along the binary-branching paths, we 490 
modified the approach proposed in TreeMix(Pickrell and Pritchard, 2012) and BayPass(Gautier, 491 
2015). In the Wright Fisher model, the expected value and variance of allele frequency in 𝑗-th 492 
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population are 𝐸D𝑓!#E = 𝑓"#, 𝑣𝑎𝑟[𝑓!#] ≈ 𝑓"#(1 − 𝑓"#)𝑡, where 𝑡 is the amount of genetic drift, 493 
which has occurred along the path from the ancestral population to 𝑗-th population. To match 494 
these first two moments after ilr-transformation of allele frequencies (Appendix 2), the 495 

following should be satisfied: 𝐸D𝑥!#E = 𝑥"# , 𝑣𝑎𝑟D𝑥!#E =
$

%!
" ('(%!

" )
.  496 

 497 
Using the logic of model construction from TreeMix(Pickrell and Pritchard, 2012) and Gaussian 498 

model for changing log-balances, we get that 𝑥!#~𝒩 O𝑥"# ,
$

%!
"*'(%!

" +
P, where 𝑡 is proportional to 499 

the cumulative path from the ancestral population to 𝑗-th population. Using the Felsenstein’s 500 
approach (Felsenstein, 1973), we model the change of log-balances along the binary-branching 501 
path with Multivariate normal distribution: 502 
 503 

𝑥,QQQ⃗ ∼ 𝑀𝑣𝒩R𝑥",QQQQ⃗ ,
𝑉

𝑠# ⋅ 𝑓"#@1 − 𝑓"#A
U, (1) 

 504 

where 𝑥,QQQ⃗ = @𝑥'# , 𝑥-# , … 𝑥.# A, 𝑠#  is the constant of proportionality specific for 𝑖-th SNP, 𝑉 is 505 
𝑀 ×𝑀 matrix, which reflects the covariance structure between 𝑀 population based on the 506 
binary-branching path. This path can be represented as a binary tree structure with ancestral 507 
population at the root and 𝑀 leaves (Figure 2b). On the diagonal, matrix 𝑉 contains cumulative 508 
branch lengths from the tree root to respective leaves, and the off-diagonal elements are equal 509 
to sum of common branches for respective pair of populations(Felsenstein, 1973). We 510 
compute values in 𝑉 matrix based on known length of binary-branching path and scale it, so 511 
that the mean value of diagonal elements should equal to one.  512 
 513 

Prior probabilities and MCMC 514 
 515 
For each SNP, model has the following parameters: the allele frequency in the ancestral 516 
population, log-balances of allele frequencies for 𝑀 populations, and the constant of 517 
proportionality. To get estimates, we constructed Bayesian model with the following prior 518 
distributions for parameters. 519 
 520 
For 𝑓"#, we proposed uninformative beta prior, 𝐵𝑒𝑡𝑎@𝑎# , 𝑏#A, with uniform prior for the mean, 521 
/"

/"01"
∼ 𝑈𝑛𝑖𝑓(0,1), and exponential prior for the so-called “sample size”, 𝑎# + 𝑏# ∼ 𝐸𝑥𝑝(1). 522 

We also assume the exponential prior for constant of proportionality: 𝑠# ∼ 𝐸𝑥𝑝(1). 523 
 524 
The complexity of the model does not allow the use of Gibbs Sampling. Instead, we performed 525 
the algebraic inference of derivatives for log posterior distribution and run Hamiltonian Monte 526 
Carlo sampling algorithm (Neal, 2012) in pyhmc (https://pythonhosted.org/pyhmc/) to get 527 
parameter estimates. For each chickpea subpopulation we ran 3 MCMC chains of length 528 
50,000 and traced the Gelman-Rubin convergence diagnostic (<1.1) and effective sample size. 529 
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 530 
To conclude which model of chickpea dispersal within a region is more probable, we separately 531 
got estimates on 𝑉 matrix calculated for trade routes and linear distances. Then we compared 532 
log posterior values between two estimates (Supplementary File 6). 533 
  534 
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Model for migration between clusters 535 
 536 
The migadmi model describing migrations and admixtures of populations is implemented in 537 
Python package migadmi (https://github.com/iganna/migadmi).  538 
 539 
To test hypothetical migration routes of chickpea between regions, we created a model based 540 
on the same assumptions as used in the model for population spread within a region. We 541 
consider 𝑃 populations characterised with vectors of log-balances of allele frequencies, which 542 
are obtained from the previous analysis. We denote log-balances of allele frequencies of 𝑖-th 543 
SNP in 𝑗-th populations with 𝑥!#. 544 
 545 
A migration hypothesis is set by the binary tree, which branch lengths are parameters. Based 546 
on the migration hypothesis, we construct the parametrized covariance matrix 𝑉 and matrix 𝐷 547 
containing variances of differences between log-balances: 𝐷!2	 = 𝑉!! + 𝑉22 − 2𝑉!2. Then, we 548 
can construct the following likelihood function (Appendix 3):  549 
 550 

ℒ(𝑋|𝐷) =cc c 𝑝𝒩@𝑥!# − 𝑥2# d0, 𝑐#𝐷!2A,
5

26!0'

5('

!6'

7

#6'

 (2) 

 551 
where 𝑁 is a number of SNPs, 𝑋 is the matrix of log-balances for all SNPs and all populations, 552 
𝑐#  is a SNP-specific scale parameter.  553 
 554 
The likelihood (2) contains a unique scale parameter, 𝑐#, for each SNPs, making the model 555 
overparametrized. To reduce the number of parameters, we applied the sliding window 556 
technique. We divided each chromosome into overlapping windows of the same size almost 557 
equal to the LD, 3 ⋅ 108 bp; the step parameter in the sliding window was 1 ⋅ 108. As the 558 
density of SNPs along chromosomes is not uniform (Supplementary File 5), windows contained 559 
different numbers of SNPs; those with less than 10 SNPs were filtered out. 560 
 561 
We assumed that SNPs within each window are probably linked and had evolved with a similar 562 
rate. This assumption allows us to avoid 𝑐#  parameters (set it to 1), and infer objective function 563 
proportional to log-likelihood (see Appendix 4): 564 
 565 

𝑓(𝐷,𝑤) ∝ h h log𝑝𝒩@𝑑9(𝑥, 𝑗, 𝑘)d0, 𝐷!2A
5

26!0'

5('

!6'

, (3) 

 566 
where 𝑑9(𝑥, 𝑗, 𝑘) is a root mean square distance between 𝑗-th and 𝑘-th populations, 567 
computed on SNPs from 𝑤-th window (see Appendix 4), log 𝑝𝒩  denotes the log-density of 568 
normal distribution. We estimate parameters in 𝐷 matrix separately for each window. 569 
 570 
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Modeling admixture events 571 
 572 
We developed a new model of admixtures which considers that (i) admixture events happened 573 
long ago and all populations (both source and mixed) accumulated their own variance after 574 
the event, (ii) number of source populations in one event are not constrained, i.e., can be 575 
higher than 2, (iii) several admixture events can be analyzed simultaneously, and (iv) 576 
admixtures can form a hierarchy, i.e., a mixed population in one admixture event can be a 577 
source in another event. 578 
 579 
Let population 𝑦 be a mixture of 𝑄 sources (𝑧: , 𝑞 = 1, 𝑄nnnnn), which are precursors of 𝑄 current 580 
populations (𝑥: , 𝑞 = 1, 𝑄nnnnn). We parametrized this admixture event with the following variables: 581 

𝑡; – own variance of the mixed population; 𝑤: – weights of source populations, ∑ 𝑤: = 1<
:6' ; 582 

𝛼 ∈ [0,1] – part of own variance of 𝑥: which is common with 𝑧: (see Appendix 5). To avoid 583 
overparameterization, we set the regularization on 𝑤: with the Dirichlet prior (all 584 
concentration parameters, 𝜆, equal to 0.9). 585 
 586 
To test an admixture hypothesis, we (i) constructed the corresponding tree with admixture 587 
events, (ii) parametrized 𝑉 and 𝐷 matrices based on the tree, (iii) estimated parameters 588 
maximizing the objective function (4). 589 
 590 
 591 

𝑓(𝐷,𝑤) ∝ h h log𝑝𝒩@𝑑9(𝑥, 𝑗, 𝑘)d0, 𝐷!2A
5

26!0'

5('

!6'

+ (𝜆 − 1)h log𝑤:

<

:6'

, (4) 

 592 
  593 
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Appendix 1. Geographic distances between locations 594 
 595 
Projection 596 
The map projection used to represent a geographic region on a flat surface plays a critical role 597 
when measuring distances (such as distances between regions), areas or assessing shape or 598 
direction. Whenever a spherical model of Earth is projected onto two-dimensional surface, 599 
distortions of one or another kind are introduced, altering these variables to a different degree. 600 
Our project area stretches from the Iberian Peninsula through the Mediterranean Ocean, 601 
swinging south to Ethiopia and further covering parts of Central Asia, to the West India, laying 602 
below 60 degrees North to the Equator. That spatial extent and the ultimate focus on 603 
extracting physical distances, called for Equidistant Conic Secant projection, which is 604 
characterized by having two standard parallels (as opposed to Tangent projections that have 605 
only one standard parallel). This projection has proved practical since Classical times (Snyder, 606 
1993). We used the Projection Wizard web application (Šavrič et al., 2016) to select accurate 607 
angular and linear parameters for the transformation.  608 
 609 
Calculation of Distances 610 
It is typical to use geodesic measurements of distance between pairs of points in landscape 611 
genomics (Abebe et al., 2015) and although these can yield adequate results, they do not take 612 
full advantage of genomic data to provide insights into historical patterns of trade and 613 
diffusion. Least-cost path models (Douglas, 1994) have emerged as an explanatory framework 614 
for movement of goods in archeology (Kantner, 1997). This approach of calculating the 615 
distance of a path with the least “cost” (interpreted usually as change in elevation) provides a 616 
mechanism, in the absence of historical data on exact movement routes, to estimate the time 617 
and energy that it would have taken to travel from location to location. Pairwise distances 618 
between concentrations of accessions were calculated both using geodesics as is typical in 619 
landscape genomics (Abebe et al., 2015) and as least-cost paths with slope and water bodies 620 
defining landscape friction, following a trend to use three-dimensional spatial modeling to 621 
predict trade routes between ancient settlements (Herzog, 2014; van Lanen et al., 2015). We 622 
used the hiking function, which has been used in archaeological and ethnographic applications 623 
(Gorenflo and Gale, 1990) to assign resistance along with a cost surface accounting for climatic 624 
conditions.  625 
 626 
We created a cost surface using selected geo-climatic Holocene data sets, mask of water 627 
bodies, and weighted elevation gradient, rescaled to a common scale. We used the following 628 
climatic layers: maximum temperature of the warmest month, minimum temperature of the 629 
coldest month and precipitation of wettest month for past conditions (Mid-Holocene), 630 
obtained from WorldClim, Version 1.4 database, MIROC-ESM GCM (Hijmans et al., 2005). 631 
Temperature and Precipitation ranges were ranked in accordance with ASHRAE Thermal 632 
Comfort chart (Hoyt et al., 2013). 633 
 634 
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A slope layer was created from the world elevation (GTOPO30) and reclassified according to 635 
the Tobler function (Tobler, 1993). In addition, a water mask was created to mask out water 636 
bodies. We then used Weighted Overlay tool of ArcGIS to create a cost surface layer, where 637 
each pixel had a value of the least accumulative cost distance from or to a source of interest. 638 
Supplementary File 7 describes scheme of classification for each layer and its relative weight 639 
in building cost surface. 640 
 641 
One hypothesis is that movement between sites always goes through historical centers of 642 
trade before dispersing out to rural villages. In this exploratory analysis we converted least-643 
cost paths between mean centers that could have served as the foci of crop dispersion, using 644 
data acquired from the Ancient World Mapping Center, UNC GIS, into vector format and 645 
construct a road network for the whole area.  646 
 647 
The cost distance layer was further used to prototype paths between cities (regional centers 648 
of dispersion) as well as within each cluster. The resultant least-cost path rasters were 649 
converted to vector format, cleaned of duplicates and served as base data for building a road 650 
network. We then employed ArcGIS Network Analyst functionality to build a road network that 651 
encountered for terrain relief and point connectivity, and to retrieve distance values between 652 
and within spatial clusters. Straight-line geodesic distances were calculated with the ESRI 653 
ArcGIS Near tool. 654 
 655 
Selection of Centers of Diversification 656 
We estimated the number and locations for hypothetical centers of diffusion by combining 657 
current knowledge of regions that served as World Centers of Diversity (Corinto, 2014), cluster 658 
analysis of our accessions’ locations, and historical data for locations of ancient cities that were 659 
prominent trading centers during ancient times (Ancient World Mapping Center, n.d.).  660 
We applied ArcGIS clustering analysis and spatial statistics tools to group all accessions into six 661 
clusters based on geographic locations and spatial constraints, and to calculate mean center 662 
for each cluster. We then compared the locations of the mean centers with known ancient 663 
trade / cultural centers (Ancient World Mapping Center, n.d.) and selected a historic 664 
settlement closest to each calculated mean center: Axum (Ethiopia), Volubilis (Morocco), 665 
Diyarbakir (Turkey), Heliopolis (Lebanon), Ayodhya (India), and Marakanda (Uzbekistan)  666 
 667 
 668 
  669 
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Appendix 2. First two moments of ilr-transformed allele frequencies. 670 
 671 
Let a population be described by the frequency of alternative allele of a biallelic SNP, 𝑓. The 672 
population comes out from the ancestral one with the allele frequency 𝑓" under the Wright 673 
Fisher model of genetic drift. In the Wright Fisher model, expected value and variance of allele 674 

frequency are 𝐸[𝑓] = 𝑓", 𝑣𝑎𝑟[𝑓] = 𝑓"(1 − 𝑓") r1 − r1 −
'
-7
s
=
s	, where 𝜏 is the number of 675 

generations separating current and ancestral populations, and 𝑁 is the size of diploid 676 
population. Using the Binomial approximation, 𝑣𝑎𝑟[𝑓] ≈ 𝑓"(1 − 𝑓")

=
-7
= 𝑓"(1 − 𝑓")𝑡, where 677 

𝑡 can be considered as the amount of genetic drift. 678 
 679 

We applied the ilr-transformation for allele frequencies and obtained 𝑥 = log '(%
%

, 𝑥" =680 

log '(%!
%!

. These new variables mean the log-balance between reference and alternative allele 681 

frequencies in the current and ancestral populations. Using Taylor expansions, the second 682 
order approximation of the expected value of 𝑥 is 𝑥", and the approximation of variance is the 683 
following: 684 

𝑣𝑎𝑟[𝑥] = R >
>%!

rlog '(%!
%!

sU
-

⋅ 𝑣𝑎𝑟[𝑓] = r '
'(%!

− '
%!
s
-
𝑓"(1 − 𝑓")𝑡 =

$
%!('(%!)

. 685 
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Appendix 3. Estimates for branch parameters of a tree 687 
 688 
Let’s consider 𝑃 populations originated from one ancestral state and a binary tree depicting 689 
their migration history; all tree branch lengths are parameters. Each population is 690 
characterized by log-balance of allele frequencies for a SNP, 𝑥#. In the model for population 691 

spread within a region, it has been assumed that �⃗� ∼ 𝑀𝑣𝒩 r𝑥"QQQQ⃗ ,
?

@⋅%!('(%!)
s, where �⃗� =692 

(𝑥', 𝑥-, … , 𝑥5), 𝑥" is the log-balance of allele frequency in the root of the tree (ancestral state). 693 
However, in testing historical hypotheses, there is no given information about the ancestral 694 
state: 𝑓" is not known, position of the root in the binary tree is parametrized. Therefore, it is 695 
impractical to include 𝑓" into the model and use the above-mentioned multivariate normal 696 
distribution. 697 
 698 
To avoid the use of 𝑓", we propose an approach which considers total variance between 699 
populations instead of covariance. Let covariance matrix between populations, 𝑉 be obtained 700 
based on the fully parametrized binary tree according to Felsenstein’s method(Felsenstein, 701 
1973) (see Example on Figure A1). Then, we can obtain a matrix 𝐷, which elements are 702 
proportional to variances of the difference between log-balances: 703 
 704 

𝑣𝑎𝑟@𝑥# − 𝑥!A ∝ 𝐷#! = 𝑉## + 𝑉!! − 2𝑉#! . 705 
 706 
Based on Gaussian changing log-balances, we get:@𝑥# − 𝑥!A ∼ 𝒩(0, 𝑐 ⋅ 𝐷#!), where 𝑐 is a 707 

constant of proportionality covering '
@⋅%!('(%!)

.  708 

 709 
To get maximum likelihood estimates of the tree branch length based one SNP, the following 710 
likelihood function can be written: 711 

ℒ =c c 𝑝𝒩(𝑥# − 𝑥!|0, 𝑐𝐷#!)
5

!6#0'

5('

#6'

. 712 

 713 

 714 
Figure A1. Example of constructing matrix V based on the tree with parametrized branches. 715 
 716 
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Appendix 4. Inference of likelihood function for a set of linked SNPs 718 
 719 
A “window” is a segment on a chromosome of length equal to a predefined value (≈LD) that 720 
contains a subset of SNPs. We assumed, that, within each window, SNPs are probably linked 721 
and they had evolved with a similar rate. Let 𝐺9 be a set (group) of SNPs corresponding to 𝑤-722 
th window, and 𝑠9 be a scale, specific for this window and reflecting the rate. For 𝑖-th SNP in 723 
𝑗-th population, we denote log-balances of allele frequency with 𝑥!#. Then, the Likelihood 724 
function for log-balances of allele frequencies in the 𝑤-th window is: 725 
 726 

ℒ(𝑋|𝐷,𝑤) = logwcc c 𝑝𝒩 R𝑥!# − 𝑥2# x0,
𝐷!2

𝑠9𝑓"#(1 − 𝑓"#)
U

5

26!0'

5('

!6'

	

#∈C#

y. 727 

 728 
where 𝑓"#  is the allele frequency of the ancestral state. This value is not a parameter, is not 729 
known, and plays the scale role. In line with CoDA, we estimate it as 𝑓",z = 1/(1 +730 
exp(mean

!
𝑥!#)). Let denote constant 𝑞#- = 𝑓",z (1 − 𝑓",z ), then the likelihood is proportional to: 731 

 732 

ℒ(𝑋|𝐷,𝑤) ∝ cc c
1

�2𝜋𝐷!2/𝑠9
exp �−

@(𝑥!# − 𝑥2# )/𝑞#A
-

𝐷!2/𝑠9
� =

5

26!0'

5('

!6'

	

#∈C#

	733 

c c
1

@2𝜋𝐷!2/𝑠9A
|C#|
-

exp�−
∑ @(𝑥!# − 𝑥2# )/𝑞#A

-
#∈C#

	

𝐷!2/𝑠9
� =

5

26!0'

5('

!6'

	734 

c c �
1

@2𝜋𝐷!2/𝑠9A
'
-
exp�−

1
|𝐺9|

∑ @(𝑥!# − 𝑥2# )/𝑞#A
-

#∈C#

	

𝐷!2/𝑠9
��

|C#|
5

26!0'

5('

!6'

=	735 

�c c 𝑝𝒩@𝑑9(𝑥, 𝑗, 𝑘)d0, 𝐷!2/𝑠9A
5

26!0'

5('

!6'

�

|C#|

, 736 

 737 

where 𝑑9(𝑥, 𝑗, 𝑘) = �∑ F(G$
"(G%

" )/:"	I
&

"∈(#
|C#|

 is the normalized root mean square distance between 738 

𝑗-th and 𝑘-th populations, computed on SNPs from 𝑤-th window. However, as matrix 𝐷 is fully 739 
parametrized, we can set 𝑠9 = 1 without loss of generality. To get parameters estimated, we 740 
can remove the power and maximize the following log-likelihood function: 741 

log ℒ(𝑋|𝐷,𝑤) ∝ h h log𝑝𝒩@𝑑9(𝑥, 𝑗, 𝑘)d0, 𝐷!2A
5

26!0'

5('

!6'

. 742 

 743 
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Appendix 5. Identification of parameters in the mixture model 745 

Consider six populations originated from one ancestral state, and a tree depicting the history 746 
of the populations (Figure A2a); 𝑥!  is a normal random variable reflecting the log-balance of 747 
frequencies for the SNP in population 𝑗 (Figure A2a). We denote lengths of tree branches with 748 
𝑡#. 749 

Let the seventh population (having 𝑦 log-balance of frequencies for the SNP) originate by a 750 
mixture event of three populations (precursors of 𝑥', 𝑥J, and 𝑥8), and then evolve 751 
independently along the branch with the length 𝑡; (Figure A2b). We assume that the mixture 752 
event happened long ago, so that current populations 𝑥#  have their own evolutionary history, 753 
independent from the sources 𝑧#. To carefully consider the mixture event, we introduced 754 
weight parameters 𝑤#, 𝛼#, 𝛽#, as demonstrated in Figure A2b,e. In our example, the number of 755 
additional parameters is 10, and the number of constraints is 4; hence, the number of free 756 
parameters is 6. The number of cells in the matrix 𝐷, which contain additional parameters, is 757 
6, so all free parameters are identifiable in this example. However, in the extreme situation, 758 
when all six initial populations can be considered as sources of the mixed one, the number of 759 
free parameters reaches 12, and some of them become non-identifiable. 760 

In general, when the initial tree connects 𝑛KLK populations and all of them can be sources of a 761 
mixed one, the number of free parameters is 2𝑛KLK and number of cells in the matrix 𝐷, which 762 
contain additional parameters, is 𝑛KLK. Therefore, to avoid this overparameterization we 763 
introduce several constraints. First, we assume that all 𝛼#  are equal to each other, and this 764 
assumption reduce the number of free parameters to (𝑛KLK + 1) (Figure A2c). Second, we set 765 
the regularization on 𝑤#  weights using the Dirichlet prior with all concentration parameters 766 

equal to 0.9: r𝑤', …𝑤M)*)s ∼ Dirichlet(0.9…0.9). Imitating absorbing states in the genetic 767 

drift, this prior tends to pull some weights to zeros, i.e. to put r𝑤', …𝑤M)*)s vector closer to 768 

the border of 𝑛KLK-dimensional simplex. These two introduced restrictions make all free 769 
parameters in the model identifiable. 770 

 771 

 772 

 773 

 774 
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 775 

Figure A2. An example tree describing the evolutionary history of 7 populations with 776 
admixture; 𝑥#  represent the frequency balance of a SNP for 𝑖-th population, 𝑦 is the population 777 
formed with an admixture, 𝑡#  are the length of a tree branch, 𝑤#, 𝛼#, and 𝛽#  are a weight 778 
parameters. The 𝑉-table demonstrates the variance-covariance matrix 𝑉 for all populations 779 
after re-parametrization. 780 
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Appendix 6. Comparison of migadmi results with TreeMix and MixMapper 782 
 783 
Table A1. Comparison of admixture methods 784 

 migadmi TreeMix MixMapper 
Admixture of >2 
sources + - - 

Several non-nested 
admixtures + + - 

Number of nested 
admixtures ³2 0 2 

Adding admixture 
event to core tree 

+ - + 

Admixture pattern 
along the 
chromosome 

+ - - 

Can take the tree as 
input + + - 

Accounting for own 
evolutionary history 
for both mixed 
population and 
source populations  

+ - - 

Modeling 
frequencies 

Compositional data 
analysis 

Normality 
assumption 

Normality 
assumption 

 785 
 786 
To estimate the migration and admixture events in our study, we developed a new method, 787 
migadmi, because of the limitations of the existing ones, TreeMix (Pickrell and Pritchard, 2012) 788 
and MixMapper (Lipson et al., 2013). We created a list of characteristics to compare the 789 
packages and found that our method covers and outperforms capabilities of TreeMix and 790 
MixMapper: our package copes with estimating multiple complex admixture events with more 791 
than 2 sources and demonstrates the admixture patterns along the chromosomes. Moreover, 792 
it has two additional features that were not accounted for in previous models. 793 

 794 
The first feature is that, migadmi allows populations to get their own variance after admixture 795 
events. In the existing approaches, it is assumed that the composite population is a weighted 796 
sum of some source populations, and weights sum to 1. However, in reality, almost no 797 
population is settled as a net sum of two or more. Ordinarily, when a part of one population 798 
appears in a new place, it evolves some period of time getting its own variability, and then if 799 
the admixture event happens, the mixed population continues to evolve. As a result, the 800 
variance in the admixed population can be factored into contributions from source populations 801 
and self-accumulated variance. The latter is especially important if the admixture events 802 
happened long ago (e.g., as in our study). Things get more complicated when considering that 803 
source populations have also evolved. To avoid modeling the mixed populations as a weighted 804 
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sum of source ones, we parametrized the own variance of each population after the admixture 805 
event. 806 

 807 
The second important feature of migadmi is the use of ilr-transformed allele frequency instead 808 
of allele frequency itself. Allele frequencies, as fractions or percentages, are constrained (i.e. 809 
sum up to 1 or 100%), which makes standard statistical methods inapplicable. For example, 810 
frequencies cannot be modelled as normally distributed random variables, as the domain of 811 
the normal distribution is (−∞,+∞), not [0, 1]. Another problem is presence of negative bias 812 
in covariance estimates between frequencies (Aitchison, 1986). Moreover, frequency of one 813 
allele is inextricably linked with frequencies of others as they sum to 1. Therefore, modeling 814 
frequency changes of one allele cannot be considered without modeling changes in other 815 
alleles. To correctly work with frequencies, the theory of compositional data analysis and 816 
Aitchison geometry were first established in the end of previous century (Aitchison, 817 
1986)(Pawlowsky-Glahn and Buccianti, 2011). Following this theory, one can independently 818 
analyze (𝐷 − 1) balances between frequencies, instead of 𝐷 frequencies. In case of biallelic 819 
SNPs, the balance is the logarithm of the ratio between reference and alternative alleles, and 820 
this balance takes values in (−∞,+∞). We adapted the use of balances to model changes of 821 
allele frequencies in line with the Wright-Fisher drift model. The balance-based approach was 822 
used in both popdisp and migadmi models. 823 

 824 
The direct comparison of migadmi results with TreeMix and MixMapper results is not possible 825 
because we used migadmi to estimate complex admixture graphs, which TreeMix and 826 
MixMapper cannot cope with (Table A1). However, we performed the standard TreeMix and 827 
MixMapper analyses and traced the common and different trends in results. 828 

 829 

First, we applied TreeMix and set to estimate 4 events within 10 populations. We used TreeMix 830 
in two modes: without tree root specification and with specificationof  Ethiopia desi population 831 
as a root, the most distinct one (Figure A3). We also used the bootstrap with the size of 35, 832 
that equals to the mean number of SNPs in our sliding window technique. Both obtained 833 
admixture graphs demonstrated two expectable distant clades in trees: Uzbekistan-India and 834 
Turkey-Lebanon-Morocco. However, the obtained trees also contained deviations from the 835 
expectations. In the root-specified tree, the Ethiopian desi population is the source for Turkish 836 
desi that contradicts the conventional story of chickpea spread (Figure A3a). The root-837 
unspecified tree contains India's influence on Moroccan desi, which is also unlikely, because 838 
these populations are the most distant to each other (Figure A3b).  839 

 840 

On the other hand, TreeMix graphs partly support the hypothetical origin of Ethiopian and 841 
Moroccan desis. The location of Ethiopian desi on the root-unspecified tree demonstrated its 842 
sources from both main clades, which is in line with the mixed origin of this population. In the 843 
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root-unspecified tree, the Moroccan desi population is located between Turkish and Lebanese 844 
populations, while in the root-specified tree, it locates close to Turkey with an admixture from 845 
Lebanese desi. Therefore, we may conclude that Moroccan desi is an indirect mixture of 846 
Turkish desi and Lebanese desi. 847 

The origin of kabulis is impossible to infer from this tree, however, the root-specified tree 848 
indicates that the Uzbeki kabuli has an admixture from the Turkey-Morocco clade, that is in 849 
line with our hypothesis, that Uzbeki kabuli is not the source of other kabulis. 850 

 851 

 852 
Figure A3. Admixture graphs obtained with the TreeMix package for (a) unrooted tree and (b) 853 
rooted with the Ethiopian desi population. Firstly, TreeMix estimates the tree based on all input 854 
populations (black branches), and then it introduces admixture events (colored arrows). Color 855 
of lines reflects the weight of the admixture from 0 to 0.5. 856 

 857 

MixMapper takes source populations as input, then creates a tree on them and tests a mixed 858 
population adding it to the tree. We applied MixMapper in the bootstrap mode to match 859 
windows from our analysis. We analyzed the origin of Ethiopian desi, taking Turkish, Lebanese, 860 
Indian, Uzbeki desis as source populations. MixMapper revealed two sources of Ethiopian desi: 861 
Turkish desi (60%) and Indian desi (40%). The direct analysis of Moroccan desi as a mixture 862 
from Turkish, Lebanese, Indian, Uzbeki desis revealed that it is as a mixture from Lebanese desi 863 
(98%) and Indian desi (2%). 864 

To test the origin of kabuli, we tested two models and compared the admixture coefficients. 865 
In the first model, we assumed that Turkish, Lebanese, Indian, Uzbeki desis, and Turkish kabuli 866 
are five source populations, and Uzbeki kabuli is a mixture. The direct analysis revealed that 867 
Uzbeki kabuli has 62% from Uzbeki desi and 38% from Turkish kabuli. In the second model, we 868 
assumed that Turkish, Lebanese, Indian, Uzbeki desis, and Uzbeki kabuli are five source 869 
populations, and Turkish kabuli is a mixture. In this case, we found that Turkish kabuli is a 870 
mixture of Turkish desi and Lebanese kabuli, so that not from Uzbeki kabuli. Therefore, we may 871 
conclude that origin of kabuli is likely Turkey. 872 

Then, we took Turkish, Lebanese, Indian, Uzbeki desis, and Uzbeki kabuli and tested them as 873 
sources for Lebanese kabuli and Moroccan kabuli separately. Lebanese kabuli is predicted to 874 
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be a mixture local desi (60,2%) and Turkish kabuli (30,8%). The Moroccan kabuli was tested in 875 
the nested model (as Moroccan desi is also the mixture), which revealed Moroccan kabuli as a 876 
mixture of Moroccan desi (60,3%) and Turkish kabul (39,7%). 877 
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Appendix 7. Chromosomal regions associated with kabuli/desi difference  879 
 880 

The most pronounced difference between desi and kabuli chickpea types is the flower color. 881 
In legumes, this trait is Mendelian and controlled by the so-called A gene (Hellens et al., 2010). 882 
For Pisum sativum and Medicago truncatula, the sequences of this gene can be found at 883 
GenBank accessions: GU132940 (MtbHLH) and GU132941 (PsbHLH). We took these 884 
sequences, performed the tBLASTn search against Cicer ariethinum genes, and found the 885 
match with basic helix-loop-helix protein A located at LOC101506726 locus (2149255-886 
2158629bp, the beginning of chromosome 4). 887 

To verify that this region is associated with desi/kabuli difference, we performed GWAS 888 
analysis on the binary trait (belonging to desi or kabuli) using rrBLUP. We found one significant 889 
SNP which is located very close to the found homologous LOC101506726 locus. Therefore, we 890 
suppose that this locus can be considered as a marker locus for kabuli. 891 

 892 

 893 

Figure A4. Manhattan plot for GWAS of desi/kabuli binary trait. 894 
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 897 

Data Availability 898 
 899 
All Illumina data are available from the National Center for Biotechnology database under 900 
BioProject PRJNA388691. Processed initial data for the analysis is uploaded to GitHub 901 
repositories with the code. 902 
 903 

Code Availability 904 
 905 
Code for the popdisp and migadmi analysis frameworks are available at: 906 
https://github.com/iganna/popdisp and https://github.com/iganna/migadmi. 907 
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Supplementary Figure 1. Population structure of chickpea landraces. (a) proportion of 
variance explained by PCs in PCA analysis on all SNP data (b) Neighbor-joining tree of 
chickpea accessions using SNP-distance. The ten chickpea subpopulations are marked with 
different colors. (c) Cross-validation plot for different numbers of ancestral populations used 
in the ADMIXTURE program. The curve does not show a minimum, that is a criterion for K 
choice. Two points reflect cross-validation errors for runs demonstrated below. (d) 
Population structure inferred by ADMIXTURE analysis for K=3 and K=7. Each chickpea 
sample is represented by a stacked column with K components corresponding to estimated 
ancestral populations colored differently (components sum to 100%). Samples are ordered 
according to the ten chickpea subpopulations. 
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Supplementary Figure 2. Tanglegram for correspondence between routes and linear 
distances within the Turkey cluster. Routes of the Turkey cluster on Map; star denotes the 
center of the cluster. 

 

 

Supplementary Figure 3. Tanglegram for correspondence between routes and linear 
distances within the Ethiopia cluster. Routes of the Ethiopia cluster on Map; star denotes the 
center of the cluster. 
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Supplementary Figure 4. Tanglegram for correspondence between routes and linear 
distances within the India cluster. Routes of the India cluster on Map; star denotes the center 
of the cluster. 

 

Supplementary Figure 5. Tanglegram for correspondence between routes and linear 
distances within the Lebanon cluster. Routes of the Lebanon cluster on Map; star denotes the 
center of the cluster. 
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Supplementary Figure 6. Tanglegram for correspondence between routes and linear 
distances within the Uzbekistan cluster. Routes of the Uzbekistan cluster on Map; star 
denotes the center of the cluster. 

 

Supplementary Figure 7. Tanglegram for correspondence between routes and linear 
distances within the Uzbekistan cluster. Routes of the Uzbekistan cluster on Map; star 
denotes the center of the cluster. 
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Supplementary Figure 8. (a) Correspondence between allele frequencies estimated with 
popdisp under trade routes hypothesis and linear hypothesis. (a) Correspondence between 
allele frequencies estimated with popdisp under trade routes hypothesis and mean allele 
frequencies in populations. 
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Supplementary Figure 9. Correspondence between mean SNP frequencies in 6 desi 
populations and SNP frequencies estimated by two more robust methods. For each method, 
we took into account the regional distribution of samples: samples in each population belong 
to 𝑛 geographical locations. For each SNP, we estimated the mean allele frequency in each 
location, "𝑓!$!"#,%, and then applied two methods. The first method (brown dots) reflects the 

median values across "𝑓!$!"#,%. The second method (green dots) corresponds to the 

calculation of the center composition as in the compositional data analysis (CoDA). Together 
with mean allele frequencies in locations, this method considers frequencies of the second 

allele of the SNP, %𝑓!&	:	𝑓!
& = 1 − 𝑓!+

!"#,%
. Then, it computes geometric mean on frequencies 

of each allele: 𝑔 = -∏ 𝑓!%
!"# 	! and	𝑔′ = -∏ 𝑓!′%

!"# 	! . At last, it applies so-called closure function 

to obtained geometric means: (𝑓, 𝑓&) = 𝐶(𝑔, 𝑔&) = 4 (
()("

, (&
()(&

5 (Pawlowsky-Glahn and 

Buccianti 2011). Obtained 𝑓 values for each SNP are “averaged” allele frequencies in a 
population in line with CoDA. Analysis of brown dots shows long vertical ranges at 0 and 1, 
indicating the prevalence of locations with homozygous SNPs, which is not caught by 
calculations of means. The CoDA-based method not only highlights  the prevalence of SNP 
homozygosity but also softly accounts for minor heterozygosity. As our popdisp method, both 
methods (more robust than mean values) demonstrate S-like shape dependency between the 
mean and estimated SNP frequencies. 
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Supplementary Figure 10. Density of SNPs along the chromosomes. Each vertical line 
corresponds to the position of one SNP. 
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