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Abstract 

Single-cell multi-omics technologies enable profiling of several data-modalities from the 
same cell. We designed LIBRA, a Neural Network based framework, for learning 
translations between paired multi-omics profiles into a shared latent space. We 
demonstrate LIBRA to be state-of-the-art for multi-omics clustering. In addition, LIBRA 
is more robust with decreasing cell-numbers compared with existing tools. Training 
LIBRA on paired data-sets, LIBRA predicts multi-omic profiles using only a single data-
modality from the same biological system. 
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Main Text 

Single Cell Genomics technologies set the stage for unraveling the intrinsic complex 
organization at different levels within cells. Such investigations require simultaneous 
profiling of several layers of transcriptional regulation at the resolution of single cells1. 
Recent multi-omic single-cell technologies enable profiling of joint “chromatin 
accessibility & mRNA profiles” (e.g., SNARE-seq2, sci-CAR3) and “mRNA profiles & 
protein antibody-derived tags” (CITE-seq4). New methodologies for data-analysis are 
emerging, such as Seurat35 and MOFA+6. However, those methodologies do not use 
the paired data (profiles derived from the same cell). Very recently, though, Seurat47 has 
been presented as the first tool exploiting such paired multi-omic profiles. Yet, since 
Seurat is not formulated as a machine learning tool, scalability and robustness are two 
potentially limiting factors. Consequently, Seurat4 does not learn paired-based derived 
predictive models for imputation across data-modalities. Inspired by the ideas from 
Neural Machine Translation8, we introduce LIBRA, an encoder-decoder architecture 
using AutoEncoders (AE). LIBRA integrates single-cell multi-omic data by leveraging and 
balancing information of paired single-cell omics data. LIBRA improves accuracy for 
detecting cell subtypes and their associated markers and is robust when considering 
fewer cells. Unlike other methods, predictive LIBRA models can be used for imputation 
for those samples where only one omic profile is available. Furthermore, LIBRA is 
generalizable to any pair of omics. 

LIBRA, inspired by the neural machine translation efforts8, “translates” between omics.  
Implemented using Autoencoders, LIBRA encodes one omic and decodes the other 
omics to and from a reduced space. Here the decoder minimizes the distance to a 
second and paired data type (joined translation and projection). Briefly, LIBRA consists 
of two neural networks (NN) (Fig1(a)); the first NN is designed similarly to an 
Autoencoder, but the difference is that input (dt1) and output (dt2) data correspond to 
two different paired multi-modal datasets (Supp. Fig1(a)). The idea is to identify a shared 
latent space (SLS) for two data-types. The second NN is used to generate a mapping 
from the dt2 to the shared projected space (Supp. Fig1(b)). 

To evaluate the performance of LIBRA, we designed several quality metrics. The first 
metric measures the quality of the first NN (referred to as Q1), while the second, Q2, 
measures the accuracy of the dt2 projection (Fig.1(a)) separately for the cells used in 
the training or validation in NN1 (Supp. Fig1(c)). To evaluate the additional value of the 
SLS, we designed the Preserved Pairwise Jacard Index (PPJI), a non-symmetric 
distance metric aimed to investigate the added value (finer granularity) of clustering B 
(multi-omic) in relation to cluster A (single-omic) as shown in Fig.1(b). Briefly, when 
comparing RNA derived clustering, and SLS derived clusterings, the PPJI computes the 
Jaccard Index between every pair of clusters from A and B and summarizes the value 
(e.g., sum) over the clusters of B (Fig.1(c)). Unless the two clusterings have the same 
number of clusters, the outcome will not be symmetric. Using these three quality 
measurements (Q1, Q2, PPJI) and the SNARE-seq2 adult brain mouse dataset, we 
selected the hyperparameters for LIBRA: (i) Autoencoder-type configuration=AE-based 
framework, (ii) number of dimensions of the projected space=10, (iii) peak derived 
information for ATAC-seq, (iv)  the ordering (dt1=ATAC-seq and dt2=RNA-seq), (v) to 
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consider most variable features only and (vi) the number of hidden layers=2; see. Supp. 
Fig 1(d). In all cases, we favored the added value of a finer granularity (maximal PPJI) 
and secondly, the quality of the neural networks (minimal Q2, Q1).  

Next, we compared LIBRA using a paired adult mouse brain single-cell RNAseq and 
ATACseq dataset2 against Seurat3 and Seurat4 using PPJI measure. We observe that 
both Seurat4 and LIBRA outperform Seurat3, and both methodologies are of similar 
quality (Fig.1(d)). We consider that improvement is the outcome of using paired 
information. Additionally, as a proof-of-concept, we compared LIBRA with a clustering 
based on concatenating both data-type matrices and running a classic Autoencoder 
(Fig.1(d)). We also evaluate the methodologies' robustness by reducing the number of 
cells by randomly select a % of cells and compute PPJI for each case. As expected, 
Fig.1(e), a decrease in the number of cells diminished both Seurat4 and LIBRA's 
performance. Interestingly, when reducing the number of cells, LIBRA significantly 
outperforms Seurat4. This result suggests better robustness using a machine learning 
architecture as compared to an anchoring methodology.  

To further assess performance and biological relevance, we compared the integrated 
clusters resulting from LIBRA, Seurat 3, and 4. Both Seurat4 and LIBRA were 
comparable (Fig1.f). Furthermore, as shown in Fig.1(g), both clusterings are comparable 
for the majority of the clusters identified, whereas such similarity is not maintained with 
Seurat3 (Supp. Fig.1(e)). To further interrogate biological relevance, we investigated the 
cluster-specific markers from Seurat4 and LIBRA. First, when taking Seurat4 as a 
reference, the top markers identified at Seurat4 are also recognized by LIBRA (Supp. 
Fig. 2(a)); additionally, LIBRA also identified additional markers (Fig.2(a)). We conclude 
that both methodologies can recover a similar level of resolution for cell subtypes and 
their associated markers.  

While Seurat4 and LIBRA's outcomes on the clustering are comparable, the LIBRA 
framework's added value is its predictive power. Once a LIBRA-model is generated for 
a paired dataset, it can predict profiles from single-omic single-cell data of the same 
biological system. Considering the dt1=ATAC and dt2=RNA, we quantified the predictive 
power for RNA profiles, predRNA, as the correlation between known and predicted 
profiles; for the SNARE-seq1 dataset is 0.72. We also observed that those values are 
consistent among the different integrated-based identified clusters, where predRNA 
ranges between 0.65 and 0.75 (Supp Fig.2(b)); we also did not observe a significant 
Spearman correlation between imputation quality and the number of cells per cluster (p-
value=0.36). We also investigated using the adult brain mouse LIBRA model to predict 
scRNA profiles in embryonic mouse brain2. Here we obtained a predRNA value of 0.63, 
which is – as expected – lower than when applied to adult brain cells but relevant for 
applying LIBRA derived models to close-related systems. 

To validate our results in additional datasets, we compared Seurat4 and LIBRA in a 
PBMC data7 (DataSet2); the results showed, similarly to DataSet1, that both 
methodologies have similar power to identify clusters based on PPJI values (Fig.2(b,c)). 
In contrast, better PPJI values are associated with Seurat4. The comparison between 
integrated-based clusters is 0.71 between Seurat4 and LIBRA. To investigate if the 
results depended on the normalization protocol, we conducted the same analysis with 
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the scTransform normalization protocol. We observed that the number of clusters 
obtained by Seurat4 was different depending on the protocol (Fig.2(b)). Hence, the 
granularity is also impacted by an integrative analysis. Most importantly, we observed 
that scTransform reduced the predictive power from predRNA=0.69 to predRNA=0.45; 
such a decrease in the quality is likely associated with the regress-out type of 
normalization procedure.  

Finally, we designed LIBRA as a general tool for any type of paired single-cell integration. 
To validate the generalizability of LIBRA, we analyzed a CITE-seq data-set4. We 
observed that both LIBRA and Seurat4 improved the integrated clustering with slightly 
better results for Seurat4 (Fig.2(d,e)). However, both were returning the same number 
of clusters when comparing both clusterings, and both were highly similar (0.70 PPJI). 
Interestingly, the predRNA value (predicting RNA-seq from ADT profiles) returned a 
correlation of 0.79, which was of similar quality for all clusters identified and not 
significantly associated with the cluster size (Supp. Fig.2(c)). 

In summary, LIBRA is a tool that leverages paired-single-cell information to generate an 
accurate cell-subtype identification to the same degree as the reference tool Seurat4. 
Besides, LIBRA allows for single-cell multi-omic imputation to a high degree of accuracy 
and robustness (Supp. Fig3(a,b,c)). LIBRA is a generalizable alternative to any pair of 
omics. The trade-off for its predictive power is the computational effort associated with 
computing the models. The LIBRA model's simplicity allows easy improvement in future 
versions that scale up current performance (e.g., reduce computational burden) and the 
extension to be applied in more than two omic integration analyses. Other tasks, such 
as identifying markers, have shown great power when identifying robust markers for 
biological interpretation.  
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Figure 1. LIBRA design and optimization. (a) Visual description of the LIBRA 
framework. (b) Example of clustering resolution in the integrated space. Two left upper 
panels to denote the UMAP projection and their clustering for RNA and ATAC, 
respectively. The right panel shows the UMAP projection and clustering of cells in the 
integrated space (in the LIBRA optimized model). Finally, the two left bottom panels 
project the clustering information derived from the integrated space in the UMAP 
projections for RNA and ATAC, respectively. (c) PPJI graphical description. Left (right) 
panels show the PPJI estimation for the RNA (ATAC) vs. integrated clustering. Jaccard 
Pairwase Index is computed between every pair of clusters. A sum is then calculated for 
each cluster identified in RNA (ATAC), and the average of the value is calculated for all 
clusters. The final value, PPJI, shows how well integrated-based clustering adds 
granularity to the single-data derived clustering. (d) PPJI compares single-cell omic 
projections versus four integrated approaches. Unpaired AE denotes the concatenation 
of RNA and ATAC profiles into a single-matrix and running a classical Autoencoder. (e) 
PPJI values between clusterings are derived from single-omic and integrative 
approaches when the number of cells is reduced by a predefined percentage. (f) PPJI is 
comparing the three integrated projections. (g) Jaccard Index between clustering derived 
from LIBRA and Seurat4, both using paired information. 

 

Figure 2. LIBRA validation. (a) For each cluster identified in Seurat4 (rows), each line 
denotes a gene and, if it is identified in the Seurat4 cluster, by LIBRA or by both. (b,d) 
PPJI comparing the single-omic and integrated derived clusterings for both normalization 
protocols. scT added the scTransform analysis. #clu denotes the number of clusters for 
the references and the clustering that is compared against. (c) Example of clustering 
resolution in the integrated space for the PBMC data-set7. Two left upper panels to 
denote the UMAP projection and their clustering for RNA and ATAC, respectively. The 
right panel shows the UMAP projection and clustering of cells in the integrated space (in 
the LIBRA optimized model). Finally, the two left bottom panels project the clustering 
information derived from the integrated space in the UMAP projections for RNA and 
ATAC, respectively. (d) Same as (c) but with CITE-seq dataset4. 
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