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Abstract 

Background: Single-cell multi-omics technologies allow the profiling of different data 
modalities from the same cell. However, while isolated modalities only capture one view 
of the total information of a biological cell, an integrative analysis capturing the different 
modalities is challenging. In response, bioinformatics and machine learning 
methodologies have been developed for multi-omics single-cell analysis. Nevertheless, 
it is unclear if current tools can address the dual aspect of modality integration and 
prediction across modalities without requiring extensive parameter finetuning. 

Results: We designed LIBRA, a Neural Network based framework, to learn a translation 
between paired multi-omics profiles such that a shared latent space is constructed. 
LIBRA is a state-of-the-art tool when evaluating the ability to increase cell-type 
(clustering) resolution in the latent space. When assessing the predictive power across 
data modalities, LIBRA outperforms existing tools. Finally, considering the importance of 
hyperparameters, we implemented an adaptative-tuning strategy, labelled aLIBRA, in 
the LIBRA package. As expected, adaptive parameter optimization significantly boosts 
the performance of learning predictive models from paired datasets. Additionally, 
aLIBRA provides parameter combinations balancing the integrative and predictive tasks. 

Conclusions: LIBRA is a versatile tool, uniquely targeting both integration and prediction 
tasks of Single-cell multi-omics data. LIBRA is a data-driven robust platform that includes 
an adaptive learning scheme. Furthermore, LIBRA is freely available as R and Python 
libraries (https://github.com/TranslationalBioinformaticsUnit/LIBRA). 
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Introduction 

Single Cell Genomics technologies set the stage for unraveling the intrinsic complex 
organization at single-cell resolution by simultaneously profiling several layers of 
transcriptional regulation1,2,3. Recent multi-omics single-cell technologies enable profiling 
of joint “chromatin accessibility & mRNA profiles” (e.g., SNARE-seq4, sci-CAR5, SHARE-
seq6, Paired-seq7, 10X Genomics8), “mRNA profiles & protein antibody-derived tags” 
(CITE-seq9), and even more than omics such as “chromatin accessibility, DNA 
methylation, and transcriptome profiling”  in the scNMT-seq10 protocol. As a result of 
such novel technologies, it became necessary to develop methods to integrate multi-
omic profiles at single-cell level11 (see Fig.1A). The rationale is that current state-of-the-
art bulk methodologies12,13,14,15 and frameworks16 could not analyze single-cell data 
optimally17,18,19. Initially, methodologies such as Seurat320 allowed integrative analysis; 
however, Seurat320 does not use the information derived from the paired nature of the 
data (profiles obtained from the same cell). More recently, methodologies making use of 
the paired information were developed21. For example, machine learning tools such as 
MOFA+22 and Seurat423 allow the identification of an integrated space that can be used 
for improved cell clustering. However, such tools have two potentially limiting factors: 
scalability and robustness. Furthermore, they do not allow predicting profiles between 
omics. Deep Learning-based methodologies were developed to overcome such 
limitations. The first one was BABEL24 which was aimed to generate predictive models 
“translating” between data types. Others followed this idea, such as KPNNs25, GAT26, or 
scNym27. Recently, a Multi-modal Single-Cell Data Integration Competition28 (denoted 
as the NeurIPS challenge) was launched, where several Deep Learning (DL) techniques 
were developed and evaluated. The NeurIPS challenge addressed several tasks such 
as (a) predicting one modality from another (prediction), (b) matching cells between 
modalities, and (c) jointly learning representations of cellular identity (representation). In 
general, neural networks were the most popular and provided – in most cases - the best 
results. However, while the best methodologies used architectures of limited complexity, 
it became apparent during the competition that the methodologies required extensive 
fine-tuning of hyperparameters regardless of the specific architecture. Furthermore, by 
observing that no method could win in more than one task, it was concluded that “no free 
lunch” 29 (no method works best for all) also applies to the multi-omic analysis. Hence, in 
order to avoid multiple analyses with different tools, methods competitive in several of 
the tasks are required. 

Therefore, we propose LIBRA (Fig.1B), an encoder-decoder architecture using 
AutoEncoders (AE) that can competitively perform the two of the three tasks addressed 
in the NeurIPS challenge (prediction and representation). LIBRA is inspired by the ideas 
from Neural Machine Translation30. Similar to BABEL24, LIBRA integrates single-cell 
multi-omics data by leveraging paired single-cell omics data. Initially, we fine-tune the 
first version of LIBRA using a step-wise optimization strategy considering AE-associated 
quality measures. To this end, we developed a novel metric, Preserved Pairwise Jaccard 
Index (PPJI), which investigates if the integrated space allows for finer granularity in cell 
sub-type detection. Interestingly, we observe that PPJI is a valuable metric to quantify 
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the added value of a multi-omic joint representation. Secondly, we compare LIBRA with 
the current state-of-the-art tools for several datasets, data modality combinations, and 
the different tasks. LIBRA compares competitively in all cases. It is relevant to notice that 
LIBRA was among the top 10 in two of the NeurIPS challenges (jointly learning and 
predicting modality) according to the NeurIPS challenge’s metrics. Finally, to address the 
no-free-lunch observation, we combine LIBRA with a self-tuning paradigm31 that allows 
LIBRA parameter optimization on-the-run. Such self-tuning not only improves the results 
significantly and outperforms available methodologies but also provides instantiations of 
LIBRA that are competitive at both integration and prediction. LIBRA is freely available 
in both R and Python (including tutorials) for multi-modal single-cell analysis. 

Materials and Methods.  
 

Preprocessing of sc-RNA-seq data. 

Following Seurat guidelines, a four-step cell and feature quality filtering were applied. 
First based on lower (0.1) - upper (0.9) bound quantile for “number of features” and 
“counts per cell”, followed by a minimum feature per cell filtering allowing cells present 
in at least 201 genes and a feature removing strategy based on “minimum features per 
cell”, retaining only genes present in at least 4 cells. Finalizing a cell cut-off base on 
maximum mitochondrial percentage was applied, allowing cells containing less than 5% 
mitochondrial gene content. Feature selection criteria have been used for downstream 
analysis based on most variable genes, making use of 2.000 top genes. Normalization 
of the gene expression measurements for each cell was done by the total expression 
and multiplying this by a scale factor (10,000) and log-transforming it. Feature subspaces 
were obtained from most variable genes using principal component analysis (PCA) using 
15 components. Clustering was computed using the Louvain algorithm over principal 
components subspace. Bootstrap subsampling snakemake workflow was used to 
identify the optimal number of nearest neighborhoods and the resulting resolution. The 
range of the values for these parameters were 8-16 and 0.6-1.4, respectively. We used 
a subsampling rate of 0.8 for 20 subsamples, which generated a total of 500 samples for 
analysis. Clustering was repeated 1.000 times with final settings for excluding additional 
spurious clusters due to starting seed initialization. Specific actions employed over any 
datasets are available in Supplementary Materials and Methods section. 

As a result, a robust latent space and clustering results are obtained for using as 
reference sc-RNA-seq to compute performance metrics later. A normalized scRNA-seq 
matrix will serve as input to the LIBRA model. 

Preprocessing of sc-ATAC-seq data. 

Following the scRNA-seq schema, sc-ATAC-seq data was also preprocessed similarly 
except in some cases described below. In this case, a combined Seurat and Signac 
guideline was used. 

Due to increased sparsity of sc-ATAC-seq the minimum features per cell filtering were 
changed, selecting peaks in at least three cells. Unlike in sc-RNA-seq, data was 
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normalized using the frequency-inverse document frequency (TF-IDF) method. 
Reducing the features to a list of most variable peaks is an option that may reduce the 
performance. Instead, we used the full feature space in this case. Reduced feature 
subspaces were computed over all peaks features space using singular value 
decomposition (SVD), providing latent semantic indexing (LSI) as latent space with 50 
components. Values and functions employed are available in the Supplementary 
Materials and Methods section.  

Aiming to perform integration reference by using Seurat protocols, sc-ATAC-seq 
preprocessed data was used for generating sc-RNA-simulated data; to this end, the 
Signac activity estimation approach was used. An upstream of 2.000 base pairs was 
used for “peak to gene relation” estimation, and GRCH38-mm10 reference genomes 
were used for corresponding datasets specie for human and mouse, respectively. See 
Supplementary Materials and Methods for Seurat integration information. 

As for scRNA-seq, the reduced latent space and clustering results obtained are used as 
scATAC-seq reference for later performance metrics computation. A normalized 
scATAC-seq matrix will serve as input to the LIBRA model.  

Preprocessing of CITE-seq data. 

The initial pipeline for the analysis of CITE-seq raw data was similar to previous data 
modalities. Differences are detailed below.  

The entire protein space was used instead of selecting for most variable proteins sub-
space. In addition, normalization of the protein expression measurements for each cell 
was done using centred log-ratio transformation (CLR). Values and functions employed 
are available in the Supplementary Materials and Methods section. The reduced latent 
space and clustering results obtained are used as antibody-derived tags (sc-ADT) 
reference for later performance metrics computation. A normalized scADT matrix will 
serve as input to LIBRA model. 

 

Algorithm & Implementation. 
 

LIBRA framework 

LIBRA “translates”15 between omics. Implemented using Autoencoders, LIBRA encodes 
one omics and decodes the other omic to and from a reduced space. Here the decoder 
minimizes the distance to a second and paired data type (joined translation and 
projection). Briefly, LIBRA consists of two neural networks (NN) (Fig.2A); the first NN 
(NN1) is designed similarly to an Autoencoder, but the difference is that input (dt1) and 
output (dt2) data correspond to two modalities of a paired multi-modal dataset (FigS1A).  

Considering only one hidden layer, the encoder part of NN1 will aim to encode the input 
omic expression matrix detonated as x ∈ ℝ$  to the latent variables ℎ following this 
formula: 

ℎ = σ(Wx + b) 
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Where σ is the element-wise activation function, 𝑊 is the weight matrix, and b is the bias 
vector. In LIBRA implementation activation function used is leaky-relu 32, this decision 
was taken due to a high rate of dead nodes generation using standard relu, producing 
lower performance and uncertainty on outcomes delivery. The activation function is then, 
instead of being 0 when 𝑧 < 0, a small non-zero, constant gradient 𝛼 where function is 

as follows 𝑅(𝑧) = 3		𝑧						𝑧 > 0	
	𝛼𝑧				𝑧 ≤ 0	7 and its derivative as 𝑅(𝑧) = 3	1						𝑧 > 0	

	𝛼						𝑧 < 0	7. This selection 

excludes LIBRA training to introduce death nodes due to the sparsity nature of the single-
cell data. Weights and biases are initialized using normal distributed criteria Xavier 
uniform initializer and zeros. The encoding part of the autoencoder follows this formula: 

𝑦 = σ′(W′h + b′) 

Where output omic expression matrix detonated as y ∈ ℝ$  it’s used to force the loss 
function to be minimized based on a second omic instead of the original input. This 
process will be repeated during training using backpropagation for weight updating. The 
loss function employed is the mean squared error (MSE). An early stopping rule was 
added to save time when the evaluation function cannot retrieve better scores for MSE 
with a fixed patience value. In addition, a learning rate plateau callback was added to 
benefit from reducing the learning rate when no improvements are obtained on loss 
function during a fixed patience value. See Supplementary Materials and Methods for 
values and hyperparameters employed. 

Thanks to this processing, a shared latent space (SLS) for two data types can be learned 
effectively (Fig.2A). While NN1 identifies the SLS, we considered it necessary to 
implement a second NN(NN2) that maps dt2 to the generated SLS to ensure and quantify 
that the projected space correctly embeds the dt2 cells information with a high quality 
(Fig.2D). This NN2 (Fig.S1B) will use the same encoding strategy but for dt2 as input but 
will contain generated SLS as output following this formula: 

ℎ′′ = σ′(W′h + b′) 

Where ℎ== is the encoded SLS generated by NN1. 

 

Evaluation functions. 

To evaluate the integration performance of LIBRA, we designed several quality metrics 
(Fig.2B,C). The first set of metrics, Q1 and Q2 (Fig.2B, upper part), are associated with 
the neural network training; the mean square error (MSE33) and the Euclidean distance 
are used to evaluate the training of NN1 and NN2, respectively. The second set of 
metrics (Fig.2B, lower part) was implemented to evaluate the applications of LIBRA: 
added value of integration and predictive power between omic profiles. The following 
sub-sections describe each of the evaluation functions; for additional technical details, 
see Supplementary Information. 

Q1 has been computed as the MSE formula for NN1: 

𝑀𝑆𝐸AA =B(𝑑𝑡E,G − 𝑑𝑡IE,G)E
J

GKL
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Where 𝑑𝑡I denotes the estimated value, and dt denotes the original value. n is the total 
number of cells for the given pair of single-cell data modalities.  

 

Q2 as the Euclidean distances between generated SLS:  

As NN2 is trained using MSE as a loss function, the Q2 Euclidean distance between SLS 
generated in NN1 and output from NN2 predicted values could easily be computed as 
the root square of MSE obtained in NN2 when computed for all cells as: 

𝑄2 = O𝑀𝑆𝐸AAE
P  

In the case of NN2 and based on the observed bimodal distribution (Fig.S1C), we 
evaluated separately the cells used in the training or the validation in NN1. 

Preserved Pairwise Jaccard Index: 

The Preserved Pairwise Jaccard Index (PPJI) is designed to quantify the added value of 
the paired integrative analysis to identify cell subtypes (better granularity) by providing a 
summary value over the Pairwise Jaccard Index (PJI) matrix (Fig.2C). Briefly, PPJI 
provides a number between 0 and 1 quantifying: “does the integrated space provide a 
finer cell-type definition than the cell-type definitions generated from a single-omics (e.g., 
dt1)?”. For a given cluster in dt1, the sum over the PJI matrix associated will be “1” if the 
cluster is maintained or perfectly separated into sub-clusters (Fig.1C). Thus, PPJI 
computes the average of the sums as a summary. PPJI computation will be as follows 
(See Supplementary Materials and Methods for detailed explanation): 

PPIJ = 	
1
𝐼
BB

(𝑎G 	∩ 𝑏X)
(𝑎G ∪ 𝑏X)X∈Z

 

Where for every pair of clusters i ∈ A and 𝑗	 ∈ B (ai and bj denote the set of cells in cluster 
i and j respectively) when aiming to investigate how A clustering projects on B clustering 
of reference (see Fig.2D). Consequently, values closer to one denote that clusters in dt1 
are either preserved or further split into sub-clusters. Importantly, PPJI should be 
combined to compare the number of clusters in the dt1 and the integrated space. 

Synergy model performance ranking. 

For a summary score for the integration performance, a weighted average was computed 
over the three metrics (See Supplementary Materials and Methods, See Table S2); 
where each metrics is scaled and weighted equally. To that end, every time a set of 
combinations are compared, the results of training the AE 10 times for each combination 
are grouped. Then for Q1 (Q2), the maximum (maxQ1) and minimum (minQ1) are 
computed. For each running value of I, a snormQ1 (snormQ2) is computed as follows: 

𝑠𝑛𝑜𝑟𝑚𝑄1(𝑖) =
𝑄1(𝑖) −𝑚𝑎𝑥𝑄1
𝑚𝑖𝑛𝑄1 − 𝑚𝑎𝑥𝑄1
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Higher values are associated with a lower error. For PPJI, considering the aim is to 
maximize the value, the values are computed as follows: 

𝑠𝑛𝑜𝑟𝑚𝑃𝑃𝐽𝐼(𝑖) =
𝑃𝑃𝐽𝐼(𝑖) −𝑚𝑖𝑛𝑃𝑃𝐽𝐼
𝑚𝑎𝑥𝑃𝑃𝐽𝐼 −𝑚𝑖𝑛𝑃𝑃𝐽𝐼

 

 

The weighted combination (score) for network training i is computed as follows: 

𝑆𝑐𝑜𝑟𝑒(𝑖) = 𝑠𝑛𝑜𝑟𝑚𝑄1(𝑖) ∗ 0,33 + 𝑠𝑛𝑜𝑟𝑚𝑄2(𝑖) ∗ 0,33 + 𝑠𝑚𝑖𝑛𝑃𝑃𝐽𝐼(𝑖) ∗ 0,33	

Larger score values denote a better performance, generally associated with lower Q1 
and Q2, and higher PPJI values. 

 

Prediction specific evaluation metrics: 

To evaluate the predictive power of LIBRA, the pred metric is used. The Pearson 
correlation and AUC-ROC curves were used for scRNA-seq and scATAC-seq, 
respectively. For ROC computation scATAC-seq predicted matrix was first binarized 
employing a 0.25 value as cut-off (based on the data distribution): values larger than 
0.25 are considered as 1, values below or equal to 0.25 are considered as 0. For details 
of the implementation of this metric, see Supplementary Materials and Methods. 

CITE-seq specific integration measurement: 

The last metric implemented is a CITE-seq9 specific for integration performance 
measurement. For this metric, a set of 25 reference expression proteins are used to 
measure how different are the Spearman and Pearson correlation scores for the k-
nearest neighbouring cells (k=20) on the reference protein dataset entire feature space 
for each of these proteins to the expression of the k-nearest neighbouring cells obtained 
in the SLS for the different methods employed (LIBRA, Seurat423, MOFA+22, totalVI34, 
and BABEL24) for each the 25 reference proteins. 

 

Adaptative fine-tuning, aLIBRA 

The first version of the LIBRA framework was instantiated using a step-wise optimization 
procedure over a single dataset; as a result, a set of parameters were selected, and such 
a framework was applied to all datasets. Such step-wise optimization is detailed in the 
Results section. However, such parameter combinations may work sub-optimally for 
different datasets or combinations of data modalities. Based on that assumption, we 
combine LIBRA with an automatic grid-based fine-tuning strategy to identify the optimal 
set of parameters for any dataset; we denote the implementation as adaptative LIBRA 
(aLIBRA). 

In aLIBRA, the optimal combination of the number of layers, number of nodes, alpha, 
dropout, and mid-layers size for NN1 and NN2 is identified. A non-linear decrease has 
been used for the hidden layer size rule generation following 
𝐿𝑎𝑦𝑒𝑟	𝑠𝑖𝑧𝑒	A	K	𝑖𝑛𝑝𝑢𝑡	𝑙𝑎𝑦𝑒𝑟	𝑠𝑖𝑧𝑒	/2 ∗ 𝑁 for both encoding and the reverse augmentation 
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on the decoding part of the autoencoder; N denotes the position a layer has in a neural 
network. Such consideration prevents LIBRA from generating smaller layers than the 
size of the “middle layer” for very large NN (that may be required in very large datasets). 

The fine-tuning is run twice for each of the tasks: integration and prediction. For 
integration, aLIBRA considered the following values: number of layers [1,2,3,4,5,6], 
number of nodes [256,512,1024,2048], alpha [0.1,0.3,0.5], dropout [0.1,0.2,0.3,0.4] and 
mid layers size [10,50,70]. For prediction, aLIBRA considered the following values: 
number of layers [1,2], number of nodes [128,256,512], alpha [0.05,0.1,0.3], dropout 
[0.1,0.2], batch size [32,64,128] and mid layers size [10,30,50,70]. Those options are 
customizable in the Python implementation.  

The aLIBRA fine-tuning has been implemented with a parallelization strategy to decrease 
the computation time requirements. For further details, see Supplementary Materials and 
Methods.  

Results 

LIBRA step-wise optimization. 

To identify default-tuned LIBRA's hyperparameters, we combined three quality 
measurements (Q1, Q2, PPJI) and the SNARE-seq4 adult brain mouse dataset (DS1). 
Iteratively, we considered the optimization of the following parameters: (i) Autoencoder-
type configuration=AE-based framework, (ii) number of dimensions of the projected 
space=10, (iii) peak derived information for ATAC-seq, (iv) the ordering (dt1=ATAC-seq 
and dt2=RNA-seq), (v) to consider most variable features only, and (vi) the number of 
hidden layers=2. Table S1 includes the values for each evaluation metric.  In all cases, 
a weighted score combining Q1, Q2, and PPJI was computed to determine the overall 
performance. Table S2 shows the final weighted score computed for each running in 
each combination. The best configuration was chosen due to overrepresentation within 
the 10 highest values on each parameter selection step. See additional details in 
Supplementary Materials and Methods). 

Comparing LIBRA with existing tools. 

Next, we compared step-wise fine-tuned LIBRA using DS1 against existing tools 
Seurat320, Seurat423, MOFA+22, totalVI34, and BABEL24. For that comparison we used 
the PPJI measure (Fig.2C,D) which quantifies the added value of multi-omic integration 
when identifying cell sub-types (Fig.3A). We observed that only Seurat423 minimally 
outperforms default-tuned LIBRA. Yet, inspecting the clusters reveals an overwhelming 
similarity, as shown in Fig.S1D,E, suggesting that the minor quantitative difference is not 
critical from a biological standpoint. Interestingly, LIBRA outperforms the other deep 
learning frameworks including a concatenation of both data-type matrices in an 
Autoencoder to identify the shared latent space (unpaired AE). We investigated the 
cluster-specific markers from Seurat423 and LIBRA to interrogate biological relevance. 
First, when taking Seurat423 as a reference, the top markers identified at Seurat423 are 
also recognized by LIBRA (Fig.S2A,B). LIBRA also identifies other markers (Fig.S2A,B). 
We conclude that both methodologies can recover a similar level of resolution for 
clusters, cell subtypes, and their associated biomarkers. 
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Sensitivity analysis. 

Next, we evaluated the robustness of both Seurat423 and LIBRA by reducing the number 
of cells. Here we randomly selected and removed a certain percentage of cells while 
computing PPJI for each case. As expected, a decrease in the number of cells 
diminished Seurat423 and LIBRA's performance (Fig.3B). Interestingly, when reducing 
the number of cells, LIBRA performs significantly better than Seurat423. Additional 
robustness analysis shows LIBRA can maintain high accuracy against randomization of 
the pairing information, dropout, and overtraining (see Table S3).  

Generalization of the results. 

To assess the generalizability of LIBRA, we compared LIBRA with the other 
methodologies using a broader range of datasets. We considered the following datasets: 
CITE-seq (Human Bone Marrow, DS29), PAIRED-seq (Mouse Adult Cerebral Cortex, 
DS37) and SHARE-seq (Mouse Skin, DS46), 10X (PBMC, DS58), 10XMultiome (Human 
Bone Marrow, DS628), CITE-seq (Human Bone Marrow, DS728) and scNMT-seq (Mouse 
Embryonic Stem Cells, DS810). Further details are provided in Fig.3C, Table S4. PPJI 
based-comparison was not feasible in DS8 because of the limited number of cells and 
(as a result) the very limited number of clusters identified. A general observation, see 
Fig.3C, is that fine-tuned Seurat423 surpasses all other methodologies in most cases. 
However, Seurat423, MOFA+22, and LIBRA are comparable, and depending on the 
dataset, a different method performs better. BABEL24 provides the worse results except 
for DS3 when compared against ATAC-seq as ds1. Interestingly, we found that DS3 
ATAC-seq provides limited information on clusters, which is observed on the integration-
based clustering from Seurat423 and LIBRA any additional information to the multi-omics 
integration. However, BABEL24 appears to prioritize the information from ATAC-seq in 
the integration as shown in Fig.S3. It is relevant to note that BABEL24 development aimed 
at prediction, not cell-type identification. We also observed that the normalization 
procedure (e.g., using or not SCT) has a limited effect on the PPJI analysis (see Table 
S5). In the case of DS5, being the set with the largest number of cells (at the moment 
this analysis was carried out), we observed that using “all features'' instead of “most-
variables features” provided slightly better results in the integration (<0.02 PPJI 
difference); as a result, we analyzed all methods with “all features” option. It was not 
possible to run BABEL24 within a reasonable amount of time (e.g., less than a week) with 
the entire set of features on DS5. 

As an extension to the current work, we have compared against the winner algorithm in 
the NeurIPS challenge (concatenated AE) on dataset DS6, obtaining a resolution of 23 
clusters with a PPJI score of 0.72 and 0.64 for scRNA and scATAC, respectively. 
Considering LIBRA performance with default hyperparameters we obtained a resolution 
of 28 clusters and PPJI scores of 0.79 and 0.67. We conclude that LIBRA outperforms 
the concatenated AE in resolution and biological information preservation in SLS. 

To evaluate LIBRA in other combinations of data modalities, we investigated the 
prediction in CITE-seq. To that end, we estimated the expression of 25 protein values in 
CITE-seq DS2 dataset8 using the profiles from the neighbouring cells as conducted in 
Seurat423 analysis13 using previously explained metric computed at each of the SLS 
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components obtained. Seurat423, LIBRA, totalVI34, and MOFA+22 returned the best 
results for 14, 11, 1, and 1 of the 25 antibodies, respectively as shown in Fig.3D. Overall, 
Seurat423 provides more stable results, followed by LIBRA. 

Predictive power of LIBRA 

While LIBRA is comparable with Seurat423 using PPJI, the LIBRA framework's added 
value is its use as a predictive model. Generating a LIBRA model for a paired dataset, 
enables the prediction of profiles from single-omic single-cell data of the same biological 
system. Considering the dt1=ATAC and dt2=RNA, we quantified the predictive power for 
RNA profiles, predRNA, as the Pearson correlation between known and predicted 
profiles as used in BABEL24. We acknowledge that predRNA can also be considered as 
an evaluation measure for NN1. We compared predRNA value between BABEL24 and 
LIBRA on all datasets that it was possible (Table S6); we observed that LIBRA 
outperforms BABEL24 in all cases. We also observed that the prediction values 
estimation is valid for all clusters, and the correlation per cluster is not associated with 
the number of cells in the cluster (Tables S7,8). Similarly, we also observed that LIBRA 
outperforms BABEL24 when using RNA to predict ATAC-seq profiles (0.87 vs. 0.85 
predATAC, see Supplementary Materials and Methods). 

Comparing running times. 

When comparing running times (Table 1), Seurat423 is the fastest. However, because 
the training of LIBRA is to be performed once or, as a maximum, a few times in any 
single-cell multi-omics analysis, we consider that the time cost on CPU observed to be 
functional (Table1). Notably, while BABEL24 and LIBRA are both AE-inspired 
methodologies, the more complex BABEL24 architecture makes it significantly more time-
consuming. 

Adaptative LIBRA: automatic dataset specific auto-finetuning for LIBRA. 

LIBRA has the best results in prediction across data modalities. Yet, the default version 
using the same scheme for any dataset has shown slightly weaker results than Seurat423 
for integrative tasks. Based on an observation derived from the NeuRIPS challenge, fine-
tuning appears to a necessary step for finding an optimal performance of these neural 
network architectures. To further investigate such a hypothesis, we computed the 
evaluation scores of LIBRA for different combinations of parameters while setting the 
other parameters to a given value using the largest dataset DS6. As shown in Fig.4A,B, 
the different metrics used may differ in the result for different combinations. Therefore, it 
is necessary to identify the fitness landscape shown in Fig.4C. In the example, aimed to 
optimize “integrative scores” we have compared 423 models using a grid of vectors for 
the different hyperparameters (Table S9; Materials and Methods). As a result, see 
Fig.4D, fine-tuned LIBRA (aLIBRA) outperforms Seurat423, while increasing the PPJI 
scores for RNA (from 0.79 to 0.82) and ATAC (from 0.67 to 0.81) compared to those 
obtained by Seurat423 (0.84 and 0.77). See also the extended clustering definition in Fig 
4E,F.  

Importantly, the parameter space can be defined differently for prediction and for 
integration. In our case, for instance, we observed that frameworks with lower nodes 
return better predictions; see in Methods for the details of the two different parameter 
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sets. We investigated if there were combinations – from the overlapping parameter space 
– that returned good evaluations in both criteria; see Fig4.G. We observed that there are 
Pareto optimals: competitive frameworks in both tasks. 

Based on all those observations, we conclude that a predefined or even a step-wise 
model concept can be further improved when augmented by a fine-tuning strategy that 
adapts to the data (aLIBRA).  

LIBRA as a resource 

LIBRA has been implemented as a Python package called sc-libra. It provides state-of-
art performance while retaining good execution timing. In contrast to other AI methods 
that require longer CPU time to accomplish similar training processes. Furthermore, 
LIBRA includes the possibility to train hundreds of models in parallel for the fine-tuning 
of the parameters in a data-driven manner (aLIBRA). 

LIBRA is a modular toolbox and is hopefully easy to use in our experience. All outputs 
from functions and directories tree are generated “behind the scenes,” and the required 
user interaction is very limited Fig.5(A). 

Discussion 

The deal with the avalanche of emerging multi-omics profiling technologies35, the 
community needs powerful computational tools for multi-omics data analysis11. Such a 
synergistic development holds promise for deep deconvolution36 and predictive 
modelling of cellular layers of genomic circuits for health and aberrations underpinning 
diseases37. Furthermore, those tools must adapt to different data modalities and each 
dataset's specific characteristics. To meet this demand, we introduced LIBRA. 

LIBRA is a tool that leverages paired-single-cell information using an AE framework to 
address two fundamental challenges when analyzing multi-modal single-cell data. 
Namely, identifying the joined space, therefore facilitating cell-type resolution and 
enabling prediction between different omics modalities. We observed that LIBRA 
compares competitively with state-of-the-art tools in both tasks and is robust when the 
number of cells is reduced. Furthermore, the LIBRA architecture and learning scheme is 
generalizable to any pair of omics.  

The limited CPU time of the model allows its adaptation to different datasets (with its 
considerable effect on performance enhancement), something that would be impossible 
with tools that require larger CPU times such as totalVI34, MOFA+22, or BABEL24. 
Additionally, LIBRA model's simplicity, limited CPU time requirements, and scalability 
allow it to be combined with a fine-tuning strategy. The aLIBRA finetunes and improves 
the outcome of the model significantly and consequently outperforms other 
methodologies. The improvement observed in aLIBRA when compared with LIBRA 
aligns with the observation from NeurIPS challenge that fine-tuning was required for top-
scoring methodologies. Furthermore, identifying frameworks during the fine-tuning that 
are competitive in both tasks (prediction and integration) is feasible as shown in Fig.4G. 
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In summary, LIBRA and aLIBRA are state-of-the-art tools for multi-modal single-cell 
analysis for prediction and projection, whose implementations are available as 
OpenSource in R and Python, with tutorials available. LIBRA is implemented as a Python 
package (under PyPI repository) named sc-libra, allowing users to efficiently perform all 
the proposed analyses and metrics on any pair of paired single cell omics. Online docs 
for sc-libra are provided for user guide through this package. 

 

 

Availability and requirements 

Project name: LIBRA 

Project home page: https://github.com/TranslationalBioinformaticsUnit/LIBRA. 

Operating system(s): Platform independent. Tested on LINUX. 

Programming language(s):  sc-libra (LIBRA package implementation at PyPI), Python, 
Jupyter notebook, R and RMarkDown. 

License: GPL-3.0 License 

Any restrictions to use by non-academics: None 

 

Availability of data and materials 

The datasets re-analysed during the current study are available in the NCBI GEO 
repository via accession numbers GSE126074, GSE128639, GSE130399, GSE140203, 
GSE194122, GSE109262 and 10X Genomics website repository. The developed 
package and it’s online documentation and the code used for the re-analysis, are 
available at: 

sc-libra package:  

https://pypi.org/project/sc-libra/ 

sc-libra online docs:  

https://sc-libra.readthedocs.io/en/latest/ 

GitHub repository:  

https://github.com/TranslationalBioinformaticsUnit/LIBRA 

Cone of GitHub repository plus data repository: 
https://figshare.com/articles/journal_contribution/LIBRA-main_zip/19466246 

 

Abbreviations 

NN: Neural networks  

GEO: Gene Expression Omnibus 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2021.01.27.428400doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428400
http://creativecommons.org/licenses/by/4.0/


SLS: Shared latent space 

PJI: Pairwise Jaccard Index  

DS: Data set 

predRNA: Predicted RNA 

predATAC: Predicted ATAC 

MSE: Mean squared error 

SNARE-seq: Droplet based technology to profile chromatin accessibility and gene 
expression from the same cells. 

CITE-seq: Qualitative information over gene expression and surface proteins with 
available antibodies on a single cell level. 

Paired-seq: Combinatorial indexing strategy to simultaneously tag both the open 
chromatin fragments generated by the Tn5 transposases and the cDNA molecules 
generated from reverse transcription. 

SHARE-seq: Strategy that uses three rounds of barcodes by ligating barcoded adaptors 
to both RNA (gene expression) and tagmented DNA (chromatin accessibility) to achieve 
the multi-omic profiling from the same single cells. 

10X: 10X Genomics Single-Cell Multiomics Solutions 

CITE-seq: Method for performing RNA sequencing along with gaining quantitative and 
qualitative information on surface proteins with available antibodies on a single cell level. 

scNMT-seq: Method to look at methylation (CpG) and chromatin accessibility (GpC). 
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Table 1. Computational costs of each of the methodologies. Times required to 
generate the integrated spaces for each of the tested models. Estimation for the running 
on GPUs (Tesla V100) or CPU based systems was carried based on Nvidia supplier 
specifications. 

 

 

 

 

  

DataSet ID LIBRA(CPU) BABEL(GPU) BABEL GPU 2 CPU LIBRA(CPU) BABEL(GPU) BABEL GPU 2 CPU MOFA+(CPU) totalVI(CPU) Seurat4(CPU)
DS1 GSE126074 12min 10mins 6 hours 3s 12s 360s 6:30 hours 15 hours < 3mins
DS2 GSE128639 10mins (*) 1s (*) 3:42hours 12 hours < 3mins
DS3 GSE130399 10mins 5mins 3 hours 5s 8s 240s 54min 4:30 hours < 3mins
DS4 GSE140203 33mins 23mins 11:30 hours 10s 17s 128s 2:24hours 11:30 hours < 3mins
DS5 10X Genom 25mins(*) (**) 3s (**) 3:30 hours 13 hours < 3mins
DS6 GSE194122 42mins (*) 10s 17s 128s Out of mem (2TB ram) > 24 hours < 3mins
DS7 GSE194122 10mins (*) 3s (*) 5:30 hours 19 hours < 3mins
DS8 GSE109262 1mins (***) 1s (***) -- -- < 3mins

Training time Per epoch
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Figure and Table Legends 

 

Figure 1. LIBRA overview. A. The upper panel provides a visual representation of the 
task to be solved. From left to right, the initial raw data sets (omics) are represented. 
Capturing the single cell information from exact same cells from each omic leads to 
refining the unique provided information from a unique omic. This information needs to 
be integrated correctly without loss of omics uniqueness information. This requires a 
preprocessing and integration method. LIBRA is proposed for this end. B. The main idea 
of LIBRA is represented in the lower panel. Through an encoding-decoding process, the 
information of the cells from respective omics will be extracted and their distance will be 
minimized while preserving the biological information to generate a latent space that 
contains the information from both. Additional steps will be taken such as visualization, 
clustering or prediction. Several measurements are carried out for quality and 
performance. 

Figure 2. LIBRA design and challenge resolution. A. Visual description of the LIBRA 
framework. LIBRA consists of two neural networks (NN); the first NN (NN1) is designed 
similarly to an Autoencoder, but the difference is that input (dt1) and output (dt2) data 
correspond to two modalities of a paired multi-modal dataset. The idea is to learn a 
shared latent space for two data-types, as shown in panel (a). The second NN maps dt2 
to the shared latent space to ensure that the projected space correctly embeds the dt2 
information. See Fig.S2(a,b) for implementation details after fine-tuning. B. Summary 
overview of the evaluation functions used in the analysis and optimization of LIBRA. See 
Material and Methods for complete details. C. Visual description of the PPJI. Left panel: 
visual description of the Jaccard Similarity Index. Middle panel: visual description of the 
Pairwise Jaccard Similarity Index. Right panel: visual description of the Preserved 
Pairwise Jaccard Index (PPJI); as shown in the figure PPJI investigates if the clusters 
derived from a single-omic data-analysis (dt1) are properly separated robustly into the 
same or larger number of clusters. To this end, for each cluster i derived from dt1, the 
sum of JSI(i,x) for all clusters x in the integrated space is computed. And then, the 
average for all clusters from dt1 is computed as the final summary. A value of 1 denotes 
that dt1 clusters are perfectly identified in the integrated space; however, an added value 
requires large values of PPJI but also a larger number of clusters identified in the 
integrated space. An extended description of PPJI computation is provided in the 
methods section. D. Example of the integrative challenge using dataset DS1. The 
integrated space was identified using LIBRA. Example of clustering resolution in the 
integrated space. Two left upper panels denote the UMAP projection and clustering for 
RNA and ATAC, respectively. The right panel shows the UMAP projection and clustering 
of cells in the integrated space (e.g., the LIBRA optimized model). Finally, the two left 
bottom panels project the clustering information derived from the integrated space in the 
UMAP projections for RNA and ATAC, respectively. 

Figure 3. LIBRA step-wise tuning and comparison with existing methodologies. A. 
PPJI evaluation in DS1 for each of the methodologies considered in the analysis. * 
Indicates that the number of clusters in the integrated space is larger. B. PPJI values 
derived from LIBRA and Seurat4, both using paired information when the total number 
of cells used to create the model is a percentage from the original total number (6735 
cells). C. PPJI-based comparison between the different methodologies in several 
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datasets. (*) Not conducted in BABEL. (**) DS5 was analyzed using all genes instead of 
MVG. BABEL framework exceeded the limiting time of 1 week for running on a GPU 
infrastructure. (***) DS6 was analyzed using up to 2TB ram but greater resources are 
required. D. Protein Membrane integration in CITE-seq dataset. Spearman protein 
expression correlations scores obtained on k-nearest neighbouring (k=20) integrated 
latent spaces for all integration methods and original reference CITE-seq dataset k-
nearest neighbouring (k=20).  

Figure 4. Additional evaluation. A. Prediction fine-tuned LIBRA outcomes from 
hyperparameters tested against MSE metric. Orange represents the performance of 
model over training set 0.80 of total DS6 and blue the performance obtained over 
remaining 0.20 test set. B. Integration fine-tuned LIBRA outcomes from hyperparameters 
tested against PPJI metric. Best models for different number of layers are represented 
showing where plateau is obtained. RNA preserved information score as red and ATAC 
preserved information score as blue. C. aLIBRA results over DS6 (10XMultiome) from 
NeurIPS challenge scRNA and scATAC PPJI values. The 6D representation provide the 
differences in performance because of hyperparameter differences. The impact of an 
adaptative version to surpass fixed configurations limitations provide substantial 
performance improvements compared to fixed configuration. Surrounded by a red circle 
the model that has shown a higher performance over the rest combinations of 
hyperparameters. Each dimension is detonated as; X-axis (rna-seq ppji), Y-axis (atac-
seq ppji), Z-axis (# of layers), size (%dropout, 0.1-smaller and 0.2-bigger), colors (#of 
nodes of first layer, 256-red, 512-yellow, 1024-green  and 2048-black) and shape (#of 
nodes in middle layer, 10-comma, 50-cross and  70-circle). D. Ranking of the parameter 
combinations from lower to higher values for the combinations investigated in the 
integrative analysis. Lines denote the values obtained by different methodologies. E. 
Original RNA and ATAC clustering information is shown within UMAP representation. F. 
As (D) but information provided corresponds to LIBRA fine-tuned model clustering 
outcomes. G. Upper left: shows that for each task (integration and prediction), two 
different sets of parameter combinations are investigated. However, there is an overlap. 
For the overlap, the ranking of both evaluation scores are shown in order to identify the 
Pareto optimals. 

 

Figure 5. Libra as users resource sc-libra Python package graphical pipeline. From 
top to bottom its represented the guide to properly get and run LIBRA pipeline with 
expected outputs and metrics. 

 

Table 1. Computational costs of each of the methodologies. Times required to 
generate the integrated spaces for each of the tested models. Estimation for the running 
on GPUs (Tesla V100) or CPU based systems was carried based on Nvidia supplier 
specifications. 
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