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Abstract

Summary: SpatialExperiment is a new data infrastructure for storing and accessing spatially resolved
transcriptomics data, implemented within the R/Bioconductor framework, which provides advantages of
modularity, interoperability, standardized operations, and comprehensive documentation. Here, we
demonstrate the structure and user interface with examples from the 10x Genomics Visium and
seqFISH platforms, and provide access to example datasets and visualization tools in the
STexampleData, TENxVisiumData, and ggspavis packages.
Availability and Implementation: The SpatialExperiment, STexampleData, and TENxVisiumData
packages are available from Bioconductor. The package versions described in this manuscript are
available in Bioconductor version 3.14 onwards. The ggspavis package is available from GitHub and
has been submitted to Bioconductor.
Contact: risso.davide@gmail.com, shicks19@jhu.edu
Supplementary Information: Supplementary Tables and Figures are available online.
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Introduction

Spatially resolved transcriptomics (ST) refers to a new set of high-throughput technologies, which
measure up to transcriptome-wide gene expression along with the spatial coordinates of the
measurements. Technological platforms differ in terms of the number of measured genes (from
hundreds to full transcriptome) and spatial resolution (from multiple cells per coordinate to
approximately single-cell to sub-cellular). Examples of ST platforms include Spatial Transcriptomics [1],
10x Genomics Visium [2], Slide-seq [3], Slide-seqV2 [4], sci-Space [5], seqFISH [6,7], seqFISH+ [8],
and MERFISH [9–11]. These can be classified into spot-based and molecule-based platforms.
Spot-based platforms measure transcriptome-wide gene expression at a series of spatial coordinates
(spots) on a tissue slide (Spatial Transcriptomics, 10x Genomics Visium, Slide-seq, Slide-seqV2, and
sci-Space), while molecule-based platforms detect up to thousands of distinct individual messenger
RNA (mRNA) molecules in situ at up to sub-cellular resolution (seqFISH, seqFISH+, and MERFISH).
ST platforms have been applied to investigate spatial patterns of gene expression in a variety of
biological systems, including the human brain [12], mouse brain [13], cancer [14,15], and mouse
embryogenesis [5,16]. By combining molecular and spatial information, these platforms promise to
continue to generate new insights about biological processes that manifest with spatial specificity within
tissues.

However, to effectively analyze these data, specialized and robust data infrastructures are required, to
facilitate storage, retrieval, subsetting, and interfacing with downstream tools. Here, we describe
SpatialExperiment, a new data infrastructure developed within the R/Bioconductor framework, which
extends the popular SingleCellExperiment [17] class for single-cell RNA sequencing data to the spatial
context, with observations taking place at the level of spots or molecules instead of cells. While several
recent studies have reused or extended existing single-cell infrastructure to store additional spatial
information [12,16], there does not yet exist a common, standardized infrastructure for storing and
accessing ST data in R. A well-designed data infrastructure will simplify the work of various users,
including developers of downstream analysis methods who can reuse the structure to store inputs and
outputs, and analysts who can rely on the structure to connect packages from different developers into
analysis pipelines. By working within the Bioconductor framework, we take advantage of long-standing
Bioconductor principles of modularity, interoperability, continuous testing, and comprehensive
documentation [17,18]. Furthermore, we can ensure compatibility with existing analysis packages
designed for the SingleCellExperiment structure for single-cell data, providing a robust, flexible, and
user-friendly resource for the research community. In addition to the SpatialExperiment package, we
provide the STexampleData and TENxVisiumData packages (example datasets) and ggspavis package
(visualization tools), for use in examples, tutorials, demonstrations, and teaching.
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Results

The SpatialExperiment package provides access to the core data infrastructure (referred to as a class),
as well as functions to create, modify, and access instances of the class (objects). Objects contain the
following components adapted from the existing SingleCellExperiment class: (i) assays, tables of
measurement values such as raw and transformed transcript counts (note that within the Bioconductor
framework, rows usually correspond to features, and columns to observations); (ii) rowData, additional
information (metadata) describing the features (e.g. gene IDs and names); (iii) colData, metadata
describing the observations (e.g. spatial barcode IDs or cell IDs); and (iv) reducedDims, reduced
dimension representations (e.g. principal component analysis) of the measurements. In addition,
SpatialExperiment objects contain the following components to store spatial information: (v)
spatialCoords, spatial coordinates associated with each observation (e.g. x and y coordinates on
the tissue slide); (vi) spatialData, metadata describing spatial characteristics of the spatial
coordinates (spots) or cells (e.g. indicators for whether spots are located within the region overlapping
with tissue); and (vii) imgData, image files (e.g. histology images) and information related to the
images (e.g. resolution in pixels) (Figure 1).

Accessor and replacement functions allow each of these components to be extracted or modified.
Since SpatialExperiment extends SingleCellExperiment, methods developed for single-cell analyses
[17] (e.g. preprocessing and normalization methods from scater [19], downstream methods from scran
[20], and visualization tools from iSEE [21]) can be applied to SpatialExperiment objects, treating spots
as single cells. Spatial coordinates are stored in spatialCoords as a numeric matrix, allowing these
to be provided to downstream spatial analysis packages in R outside Bioconductor (e.g. from
geostatistics, such as sp [22] and sf [23]). For spot-based data, assays contains a table named
counts containing the gene counts, while for molecule-based data, assays may contain two tables
named counts and molecules containing total gene counts per cell as well as molecule-level
information such as spatial coordinates per molecule (formatted as a BumpyMatrix [24]). For datasets
that are too large to store in-memory, SpatialExperiment can reuse existing Bioconductor infrastructure
for sparse matrices and on-disk data representations through the DelayedArray framework [25].
SpatialExperiment objects can be created with a general constructor function,
SpatialExperiment(), or alternatively with a dedicated constructor function for the 10x Genomics
Visium platform, read10xVisium(), which creates an object from the raw input files from the 10x
Genomics Visium Space Ranger software [26]. Measurements from multiple biological samples can be
stored within a single object, and linked across the components by providing unique sample IDs. Image
files can be stored in-memory, as local files, or hosted remotely. In addition, we provide the associated
packages STexampleData and TENxVisiumData containing example datasets formatted as
SpatialExperiment objects, and the ggspavis package providing visualization functions designed for
SpatialExperiment objects (Supplementary Figure 1 and Supplementary Table 1).
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Figure 1. Overview of the SpatialExperiment class structure, including assays (tables of measurement values),
rowData (metadata describing features), colData (metadata describing observations), reducedDims (reduced
dimension representations), spatialCoords (spatial coordinates associated with the observations),
spatialData (metadata describing spatial characteristics of the observations), and imgData (image files and
information).

Discussion

Standardized data infrastructure for single-cell RNA sequencing data (e.g. SingleCellExperiment [17]
and Seurat [27,28] in R, and AnnData [29] in Python) has greatly streamlined the work of downstream
method developers and data analysts. For example, relying on common formats for inputs and outputs
from individual packages allows users to connect packages into complete analysis pipelines, and
operations such as subsetting by row (gene) or column (barcode or cell) across the entire object helps
avoid errors. For single-cell data, this has enabled the development of comprehensive workflows and
tutorials [17,30], which are an invaluable resource for new users. Here, we provide a new data
infrastructure for ST data, extending the existing SingleCellExperiment class within the Bioconductor
framework. In addition, we provide associated packages containing example datasets (STexampleData
and TENxVisiumData) and visualization functions (ggspavis), for use in examples, tutorials,
demonstrations, and teaching. ST technologies are still in their infancy, and the coming years are likely
to see ongoing development of existing platforms as well as the emergence of novel experimental
approaches. SpatialExperiment is ideally positioned to be extended to accommodate data from new
platforms in the future, e.g. through extensions of the more general underlying SummarizedExperiment
[31] or by integrating with MultiAssayExperiment [32] to store measurements from further assay types
(e.g. transcriptomics, proteomics or spatial immunofluorescence, or epigenomics) or multiple assays
from the same spatial coordinates. Similarly, three-dimensional spatial data [33] or data from multiple
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timepoints could be accommodated within SpatialExperiment by storing additional spatial or temporal
coordinates, and datasets that are too large to store in-memory can be stored using existing
Bioconductor infrastructure for sparse matrices and on-disk data representations through the
DelayedArray framework [25]. The ability to store image files within the objects (in-memory, locally, or
remotely) will assist with correctly keeping track of images in datasets with large numbers of samples,
e.g. from consortium efforts. Interoperability between SpatialExperiment and other data formats (e.g.
AnnData [29] and Loompy [34] in Python) can also be ensured through the use of existing conversion
packages [34,35]. SpatialExperiment provides the research community with a robust, flexible, and
extendable core data infrastructure for ST data, assisting both method developers and analysts to
generate reliable and reproducible biological insights from these platforms.
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Supplementary Tables

Dataset name Platform Type Tissue

Number
of
samples

Number
of spots
or cells

Number of
features
(genes)

Contains
ground
truth
labels?

Contains
image
data? Source

Visium_humanDLPFC 10x
Genomics
Visium [2]

Spot-
based

Human
brain

1 3,639 33,538 Yes Yes [12,36]

Visium_mouseCoronal 10x
Genomics
Visium [2]

Spot-
based

Mouse
brain

1 2,702 32,285 Yes Yes [37]

seqFISH_mouseEmbryo seqFISH
[6,7]

Molecule-
based

Mouse
embryo

1 11,026 351 No No [16]

Supplementary Table 1. Summary of example datasets provided in SpatialExperiment format in the
STexampleData package. Table columns describe characteristics for each dataset, and provide the original
references. For the Visium_humanDLPFC and seqFISH_mouseEmbryo datasets, the objects in the
STexampleData package contain small subsets of the full original datasets, allowing users to easily download and
load these datasets for examples and tutorials. The full datasets can be obtained from the original references.
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Dataset name Tissue
Number
of samples Targeted panel(s)

Number
of spots

Number
of genes

HumanBreastCancerIDC Human invasive ductal
carcinoma breast

2 – 7,785 36,601

HumanBreastCancerILC Human invasive lobular
carcinoma breast

1 –
Immunology

4,325 36,601
1,056

HumanCerebellum Human cerebellum 1 –
Neuroscience

4,992 36,601
1,186

HumanColorectalCancer Human invasive
adenocarcinoma
of the large intestine

1 –
Gene signature

3,138 36,601
1,142

HumanGlioblastoma Human glioblastoma
multiforme

1 –
Pan-cancer

3,468 36,601
1,253

HumanHeart Human heart 1 – 4,247 36,601

HumanLymphNode Human lymph node 1 – 4,035 36,601

HumanOvarianCancer Human ovarian
endometrial
adenocarcinoma

1 –
Immunology
Pan-cancer

3,493 36,601
1,056
1,253

HumanSpinalCord Human spinal cord 1 –
Neuroscience

2,812 36,601
1,186

MouseBrainCoronal Mouse brain
(coronal plane)

1 – 2,702 32,285

MouseBrainSagittalAnterior Mouse brain (sagittal
slice of the posterior)

2 – 5,520 32,285

MouseBrainSagittalPosterior Mouse brain (sagittal
slice of the anterior)

2 – 6,644 32,285

MouseKidneyCoronal Mouse kidney 1 – 1,438 32,285

Supplementary Table 2. Summary of example datasets provided in SpatialExperiment format in the
TENxVisiumData package. All data are spot-based, and were obtained using the 10x Genomics Visium platform
[2]. Table columns describe characteristics for each dataset. For some datasets, targeted expression panels were
measured in addition to whole-transcriptome analysis; these are indicated with the name of the panel and
corresponding number of genes in italics. The original datasets can be obtained from [38].
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Supplementary Figures

(A) (B)

Supplementary Figure 1. (A) Example of visualization of spot-based ST data (Visium_humanDLPFC object from
the STexampleData package). Image shows a histology image as background, grid of spatial coordinates (spots),
highlighting for spots that overlap with tissue, and colors for ground truth cluster labels. The dataset represents a
single biological sample (sample 151673) from the human brain dorsolateral prefrontal cortex (DLPFC) region
[12,36], measured with the 10x Genomics Visium platform. The full dataset contains 12 biological samples, and is
available in SpatialExperiment format in the spatialLIBD Bioconductor package [12,36]. (B) Example of
visualization of molecule-based ST data (seqFISH_mouseEmbryo object from the STexampleData package).
Color scale shows total mRNA counts per cell for the Sox2 gene. The dataset represents a subset of cells
(embryo 1, z-slice 2) from a published dataset investigating mouse embryogenesis [16], generated using the
seqFISH platform. Additional details on the datasets are provided in Supplementary Table 1. Figures were
generated using plotting functions from the ggspavis package.
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