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Abstract 
We present a highly contiguous genome and transcriptome of the pathogenic yeast, Candida 
nivariensis. We sequenced both the DNA and RNA of this species using both the Oxford 
Nanopore Technologies (ONT) and Illumina platforms. We assembled the genome into an 11.8 
Mb draft composed of 16 contigs with an N50 of 886 Kb, including a circular mitochondrial 
sequence of 28 Kb. Using direct RNA nanopore sequencing and Illumina cDNA sequencing, we 
constructed an annotation of our new assembly, supplemented by lifting over genes from 
Saccharomyces cerevisiae and Candida glabrata.  
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Introduction 

For immunocompromised hosts, opportunistic infections caused by drug resistant fungi of the 
Candida genus are a major source of morbidity and mortality(Borman et al. 2008). In particular, 
Candida nivariensis, a close relative to Candida glabrata, has emerged in recent years as 
especially resistant to antifungal therapies(Borman et al. 2008). However, due to its phenotypic 
similarities to C. glabrata, C. nivariensis is generally underidentified and easily misdiagnosed, 
and currently, only molecular approaches can distinguish the two (Aznar-Marin et al. 2016), 
spurring whole genome sequencing studies on the clade (Gabaldón et al. 2013) 

Accurate assembly of repetitive genomic regions is crucial for understanding genetic diversity 
and virulence in pathogenic species. Fungal pathogens have long been known to exhibit a high 
degree of genome plasticity to enhance fitness in various environments(Croll et al. 2013; Ford et 
al. 2015; López-Fuentes et al. 2018; Carreté et al. 2019; Todd et al. 2019). Repetitive 
subtelomeric regions in particular play a crucial role in virulence for many pathogenic 
organisms(Barry et al. 2003; De Las Peñas et al. 2003). Many yeasts’ subtelomeric regions 
contain and regulate the expression of genes crucial for biofilm formation, carbohydrate 
utilization, and cellular adhesion (Naumov et al. 1995; De Las Peñas et al. 2003; Iraqui et al. 
2005). These gene families often undergo rapid evolution through changes in copy number and 
sequence through either SNPs or indels(Carreto et al. 2008; Brown et al. 2010; Anderson et al. 
2015). However, these subtelomeric regions remain one of the most difficult sections of the 
genome to accurately assemble due to their repetitive nature and high sequence similarity 
between genes, making genetic analysis cumbersome (Brown et al. 2010).  

One of the gene families that are of great interest to the pathogenic yeast field is the 
GPI-anchored cell wall proteins. This protein family includes many genes that encode for 
adhesion proteins that are found in various members of the Candida genus and play a key role 
in pathogenicity; such as regulate biofilm formation, cell-to-cell contact, and host-pathogen 
interactions(Timmermans et al. 2018; McCall et al. 2019). With the many roles these genes play 
in infection the accurate identification and understanding of the genetic variation of these genes 
vital to combating fungal pathogens. 

Unfortunately, like many eukaryotic pathogens,  the current reference genome for C. nivariensis 
is highly fragmented, in 123 contigs with an N50 of 248Kb, meaning that at least half of the total 
genome length is contained in contigs 248Kb or longer. This is typical of genomes assembled 
from limited short-read sequencing data; though short reads are highly accurate, assembling 
them into contiguous genomes is challenging depending on the size and complexity of the 
genome. Such short read assemblies have limited utility since large scale variants, repetitive 
regions, and genome structure remain difficult to elucidate, though they are often involved in the 
genome plasticity of pathogenic yeasts(Carreté et al. 2018). In contrast, long read sequencing 
data has been shown to produce much more contiguous assemblies, and have been crucial in 
sequencing through large repetitive regions, as well as assessing structural variants. However, 
read accuracy on the ONT platform in particular ranges from 86% for early basecaller 
versions(Wick et al. 2019) to 97% as currently reported by ONT.  This is lower than the read 
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accuracy of short read Illumina sequencing, which achieves 99.9% accuracy(Fox et al. 2014). 
In consensus sequences, most random errors can be corrected by other reads covering the 
same genomic loci, resulting in >99% consensus accuracy(Wick et al. 2019). However, 
systematic errors occurring in most or all of the reads cannot be corrected this way. For ONT 
data, indels at homopolymers dominate systematic errors(Wick et al. 2019).  These persistent 
errors can be problematic for gene prediction and annotation in downstream analysis(Watson 
and Warr 2019), and are typically corrected with more accurate short read data in mappable 
regions (Garrison and Marth 2012; Walker et al. 2014; Vaser et al. 2017)  

Having a genome alone is not enough; we need to annotate it with genes and other functional 
elements for the genome to be of greatest use. Knowledge of gene loci is critical to constructing 
phylogenetic relationships between organisms, and to studying the functional implications of 
variants, both common uses of reference genomes. While model-based, purely computational 
gene predictors can be highly accurate in bacteria, gene sparsity and intronic regions make this 
task more difficult in eukaryotes(Salzberg 2019). For improved annotations, some RNA-seq 
information is required (Salzberg 2019).  

Here, as part of our newly developed Methods in Nucleic Acid Sequencing class, we used a 
hybrid approach, applying long read nanopore sequencing to assemble a highly contiguous 
genome of C. nivariensis, followed by short read sequencing to polish or correct errors in our 
assembly. We followed this by a combination of nanopore direct RNA sequencing as well as 
short read RNA-seq to annotate our assembly. By combining this data with liftover of 
annotations from evolutionary “cousins” of nivariensis, we have generated a new and annotated 
reference genome for the community. 

Materials and Methods 

Media and growth conditions 

For genomic extractions, a single colony of C. nivariensis CBS9983, originally isolated from a 
blood culture of a Spanish woman (Alcoba-Flórez et al. 2005), was inoculated into synthetic 
complete (SC) medium supplemented with 2% glucose  and shaken overnight at 30°C in a glass 
culture tube. For RNA extractions, C. nivariensis CBS9983 was grown to log phase in SC 
medium supplemented with 2% glucose  at 30°C in a glass culture tube. 

DNA isolation and sequencing 

DNA was extracted from liquid culture using the Zymo Fungal/Bacterial DNA MiniPrep Kit 
according to manufacturer specifications. Two ONT sequencing libraries were prepared from the 
extracted DNA using the ONT rapid barcoding sequencing kit (SQK-RBK004), and each was 
sequenced on a separate MinION flowcell (R9.4). Two Illumina libraries were prepared with the 
Nextera Flex Library Prep Kit, each using 400 ng of extracted DNA. Both Illumina libraries were 
then sequenced on a single iSeq 100 run. 
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RNA Sequencing 

RNA was extracted from liquid culture using the Zymo Fungal/Bacterial RNA MiniPrep Kit. Using 
the NEBNext Poly(A) mRNA Magnetic Isolation Module, polyA tailed mRNA was isolated from 
the total RNA. Two ONT direct RNA sequencing libraries were prepared and sequenced on 
separate MinION flowcells, each using ~200 ng of polyA selected RNA and the SQK-RNA002 
sequencing kit. With the NEBNext Ultra II RNA First Strand Synthesis Module and the NEBNext 
Ultra II Non-Directional RNA Second Strand Synthesis Module, cDNA was prepared from the 
isolated mRNA. Two individual Illumina libraries were then prepared with the Nextera Flex 
Library Prep Kit, each using 400 ng of cDNA. Both library replicates were then sequenced on a 
single iSeq 100 run. 

 

Results 

Genome assembly 

Nanopore data was basecalled using Guppy v3.2.4 on default settings. Reads greater than 3kb 
long with an average basecalling quality score greater than 7 were assembled into 21 contigs 
using Canu v2.1 (Koren et al. 2017) on default settings. Illumina DNA reads were trimmed for 
adapters and quality using Trimmomatic v0.39 (Bolger et al. 2014) using settings LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:30 MINLEN:36. The trimmed reads were then used to 
iteratively correct draft assembly using Freebayes(Garrison and Marth 2012) with alignments 
made by bwa mem(Li 2013) using default settings. Changes were made at positions with 
alternative allele frequency greater than .5 and the total number of alternate allele observations 
was greater than 5. We aligned and corrected the assembly iteratively for three rounds, after 
which further rounds of corrections made no changes. 

Table 1: Assembly statistics 
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Figure 1 : Characteristics of the JHU_Cniv_v1 (a) Cumulative lengths of the 50 longest 
sequences in our assembly and previous reference genome. (b) Ideogram of assembly. 
Sequence that is missing in the reference genome is shown along each non-mitochondrial 
contig, and the positions of telomere repeats are marked.  

Of our 21 corrected contigs, 5 were flagged as repeats by Canu and originally constructed from 
fewer than 180 nanopore reads. The remaining 16 contigs were constructed from over 1800 
nanopore reads each. Because the 5 repetitive contigs were constructed from so comparatively 
few reads, we excluded them from the final assembly. One 32 Kb contig was suggested to be 
circular by Canu, and therefore likely to be a mitochondrial sequence. To confirm, we aligned 
this contig to the complete mitochondrial genome of Candida nivariensis (NCBI sequence 
NC_036379.1 ) using Mummer(Marçais et al. 2018), and observed a 3662bp sequence in the 
reference mitochondrial genome which appears at both ends of our 32kb circular contig. Using 
the Mummer alignments (Supp. Figure 1), we removed the extraneous 3662bp from the end of 
our contig, resulting in a 28 kb mitochondrial genome, which we named ‘JHU_Cniv_v1_mito.’ 
Lastly, we remapped the ONT and Illumina reads back to the assembly, and found no bases 
with zero coverage, indicating that none of our contigs need to be further broken (Supp. Figure 
2). The resulting final assembly comprises 11.8 Mb of sequence in 16 contigs with an N50 of 
886 Kb (Figure 1a, Table 1). 
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Of the 275kb of additional sequence in our assembly compared to the current reference, 218kb 
are accounted for by gaps in the reference which are newly spanned by our JHU_Cniv_v1 Of 
the 69 newly spanned gap sequences, 54 were identified as repeat regions by Tandem Repeats 
Finder(Benson 1999) (TRF) with settings [match = 2, mismatch = 7, delta = 7, pm 
= 80, pi = 10, minscore = 50, maxperiod = 600](Xu et al. 2020). Another 
17 gap regions were identified to contain a high proportion (10%) of multi-mapping short reads 
as identified by bwa mem(Li 2013) on default settings.  

To determine whether JHU_Cniv_v1 contigs represent full chromosomes, we looked for 
telomere repeats in our assembly and attempted to use related yeast reference genomes to 
scaffold. In our assembly, 11 contigs terminate at both ends in repeats of 
CTGGGTGCTGTGGGGT, the telomere sequence of Candida glabrata(McEachern and 
Blackburn 1994). The other 4 non-mitochondrial sequences terminate only at one end in this 
telomeric repeat (Figure 1b, Supp. Table 1), suggesting they may scaffold to form two additional 
chromosomes. This suggests that, like C. glabrata, the C. nivariensis genome also contains 13 
chromosomes.  

We tried to further scaffold our assembly using the more contiguous and highly related glabrata 
genome as a reference, but we found that reference based scaffolders such as Medusa (Bosi et 
al. 2015) and RagTag (Alonge et al. 2019) either placed telomeric sequences in the middle of 
scaffolds or made no improvement (Supp. Figure 3). Upon aligning the C. glabrata genome to 
JHU_Cniv_v1 using Mummer, we found only sporadic shared segments of negligible length 
(Supp. Figure 4), as opposed to a nearly perfect 1:1 alignment between JHU_Cniv_v1 and the 
current C. nivariensis reference genome (Supp. Figure 5). This indicates that the C. glabrata 
genome is not sufficiently similar to C. nivariensis to use as a reference for contig scaffolding. 
Using the C. nivariensis reference genome itself for scaffolding results in similar mis-scaffolds or 
no change to our assembly, which is unsurprising, as the C. nivariensis reference genome is so 
highly fragmented.  
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Figure 2 : Genome and transcriptome completeness Bar charts comparing BUSCOs 
detected in JHU_Cniv_v1 and accompanying transcriptome to those of the current C. albicans, 
S. cerevisiae, C. glabrata, and C. nivariensis reference genomes. No reference annotation is 
currently available for C. nivariensis.  
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To assess assembly completeness, fungal single copy orthologues were checked using BUSCO 
(Simão et al. 2015) and its available saccharomycetes_odb10 database. Out of 2137 BUSCOs 
searched, JHU_Cniv_v1 has only 14 missing, 13 of which are also missing in the current 
reference (Figure 2). This missing gene, RNA polymerase archaeal subunit P/eukaryotic subunit 
RPABC4 (buscoID 41996at4891), though present in the reference, has the second lowest 
combined match length and match score among all genes searched. From the reference, we 
extracted the nucleotide sequence of this match using the coordinates reported by BUSCO, and 
searched for it in JHU_Cniv_v1 using blastn. We found a full length match with 99.9% identity, 
suggesting that this BUSCO is not actually absent in JHU_Cniv_v1. Upon further examination of 
this alignment, we found that all 7 non-matching nucleotides consist of small deletions 
associated with poly-A or poly-T homopolymers, known error-prone regions for nanopore 
sequencing data (Watson and Warr 2019).  

Annotation 

Illumina RNA-seq reads were trimmed using Trimmomatic v0.39 (Bolger et al. 2014) in order to 
check for any remaining adapter sequences, and to filter out reads with low base quality. 
HISAT2 was used on default settings to align the trimmed cDNA reads to the assembly. The 
BRAKER(Hoff et al. 2019) pipeline was then used to make gene predictions using these 
alignments. Currently, ONT dRNA compatibility with BRAKER is in development, and that data 
was thus not used for prediction. Instead, ONT dRNA reads were aligned to the genome 
assembly using Minimap2 v2.17 (Li 2018) on recommended settings for nanopore direct RNA 
reads (-ax splice -uf -k14). Transcripts were then assembled from the dRNA alignments 
using Stringtie2 (Kovaka et al. 2019) with the long read option (-L). Using Liftoff(Shumate and 
Salzberg 2020), we lifted over the annotations from C. glabrata, S. cerevisiae, C. albicans.  

Starting with the BRAKER predictions, Gffcompare (Pertea and Pertea 2020) was used to add 
non-overlapping annotations lifted from C. glabrata, S. cerevisiae, and C. albicans in that order. 
Specifically, we add any annotation with class code “u” in the Gffcompare .tmap outputs when 
comparing our list of genes with a list of potential genes to add. Finally, we compared and 
added non-redundant transcripts assembled by stringtie2 to the annotation using gffcompare. 
Our final annotation comprises 25,979 features, 5,859 of which are genes (Supp. Table 2). 
Current annotations of closely related yeasts report similar gene counts (Supp. Table 3).  

In order to assess transcriptome completeness, BUSCO was used in transcriptome mode, again 
with the saccharomycetes_odb10 database. Because no annotation of the C. nivariensis 
reference genome currently exists, we compared our transcriptome to those of C. glabrata, S. 
cerevisiae, and C. albicans. Compared to these highly characterized yeast transcriptomes, ours 
contains slightly fewer complete and single copy BUSCOs (1876 of 2137 searched) and roughly 
double the number of complete and duplicated BUSCOs (232 of 2137 searched). The numbers 
of missing and fragmented BUSCOs between the three are comparable (Figure 2).  

Repetitive genes 
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As C. glabrata subtelomeric regions have been proven to be difficult to correctly assemble using 
short read data (Xu et al. 2020), we compare the copy number of C. glabrata subtelomere gene 
homologs between the C. nivariensis reference genome and  JHU_Cniv_v1. Using the 
assembly and re-annotation of C. glabrata and the from Xu et al.(Xu et al. 2020), we extracted 
the sequences of the C. glabrata subtelomere genes and used BLAST (blastn v2.6.0+) to find 
any matches in the C. nivariensis reference and JHU_Cniv_v1. We observed an identical set of 
48 C. glabrata subtelomere genes in both C. nivariensis genomes, but found that the copy 
number for several were greater in JHU_Cniv_v1 (Figure 3A). To account for genes truncated 
by short contigs in the reference genome, we calculate copy number by summing the alignment 
lengths of all the hits of a particular gene and dividing by gene length. Of the 48 C. glabrata 
genes with homology in C. nivariensis, 35 are ribosomal. With the exception of just three 
ribosomal genes which occur a similar number of times in both C. nivariensis genomes, all 
homologous ribosomal genes appear once in the reference, and either four or six times in 
JHU_Cniv_v1 (Figure 3A, Supp. Data 1).  

Using JHU_Cniv_v1, we identified GPI-anchored membrane proteins among annotated genes 
>1000 nt long. Using GffRead (Pertea and Pertea 2020), we constructed the amino acid 
sequences for these genes and excluded any with internal stop codons. We then used 
PredGPI(Pierleoni et al. 2008) to predict which of these encoded GPI proteins, using an FDR 
cutoff of <.0005 (Xu et al. 2020) to find 86 total genes. As GPI anchored fungal adhesins 
typically contain tandem repeats(Lipke 2018; Xu et al. 2020), we further filtered for genes 
overlapping with tandem repeats as classified by TRF, and identified 53 of the GPI genes as 
putative adhesins. As with  C. glabrata, the putative adhesins typically spanned multiple 
kilobases (Figure 3b), though we do not find very long (>13kb) genes in contrast to several 
glabrata GPI-CWPs. To find the corresponding adhesin genes in the C. nivariensis reference 
genome, we again used blastn, and compared the longest hit of adhesin gene to the true length 
of the gene as predicted in JHU_Cniv_v1 (Figure 3c). Notably, no hit in the reference genome 
exceeded 3.5kb, and 27 of these adhesin genes are not found continuously, suggesting the 
previous reference either truncated or did not continuously assemble these important 
pathogenic genes.  
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Figure 3: GPI genes  (a) Copy number of glabrata subtelomere gene homologues in the C. 
nivariensis reference genome and JHU_Cniv_v1. The y=x line is shown in dashed grey. (b) 
Histogram of adhesion protein lengths in glabrata as annotated by Xu et al, and the lengths of 
predicted adhesion proteins found in JHU_Cniv_v1. (c) Maximum BLAST alignment lengths for 
each predicted nivariensis GPI gene in JHU_Cniv_v1 and the C. nivariensis reference genome. 
The y=x line is shown in dashed grey.  
 
Discussion  

JHU_Cniv_v1 is a high quality, extremely contiguous assembly of Candida nivariensis 
constructed by long reads and polished by short reads. It spans large, repetitive gaps in the 
nivariensis genome that have fragmented short read assemblies thus far, and includes a full 
mitochondrial chromosome, as well as telomere repeats. These telomere repeats are identical 
to those in C. glabrata, and have been found to be shared within the entire ‘glabrata 
group (Gabaldón et al. 2013).’ The orientation of the telomeres suggests that C. nivariensis has 
13 chromosomes, which is in agreement with previous PFGE data (Gabaldón et al. 2013). 
Furthermore, of the contigs missing telomere repeats on one end, we note that scaffolding tig05 
with tig12 and tig02 with tig24 would result in 13 chromosomes that would all match PFGE 
length estimates to 8% error or less, which is within the expected range of PFGE error for very 
large DNA fragments(Cutting et al. 1988).  
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As assessed by BUSCO, genome completeness of the current C. nivariensis reference and 
JHU_Cniv_v1 is comparable to other related yeasts and is slightly improved over the previous 
reference. However, while JHU_Cniv_v1 is a much more contiguous assembly than any C. 
nivariensis genome preceding it, the few remaining sequence errors still can pose a problem to 
downstream analyses, as evidenced by the seemingly absent BUSCO we manually identified.  

Our accompanying RNA-seq data enabled us to annotate this genome, achieving a similar level 
of BUSCO completeness to some of the most highly studied model organisms. Our annotation 
has comparable or lower levels of missing and fragmented BUSCOs compared to the reference 
annotations, though more duplicated ones. While our annotation is largely comparable to those 
of similar yeasts, it has not been manually curated, and should thus be treated as preliminary. 
Of course, as these organisms were grown under only one condition before RNA extraction, it 
remains unlikely that this annotation is fully complete.  

To demonstrate the utility of genome and annotation contiguity, we examine genes from a 
difficult to assemble region in C. glabrata. For each subtelomeric C. glabrata gene with 
homology in C. nivariensis, more copies were found in JHU_Cniv_v1, as its contiguity allows it 
to more easily capture repeated genome elements. We note that of subtelomeric glabrata genes 
found, the majority are ribosomal, and of these, only three do not show a four or six times 
increased copy number in JHU_Cniv_v1. Due to the repetitive nature of rDNA arrays, it can be 
difficult for short read genome assemblies to capture them in their full complexity. Conversely, 
our long read assembly more easily spans these regions, potentially providing a clearer look at 
the biology in which they are involved.  

In addition to genes arranged in complex and repetitive patterns, our more contiguous assembly 
enables analysis of large genes with internal repeats, such as GPI adhesins. Since these genes 
are so large, it can be difficult or impossible to predict them from fragmented assemblies which 
are unable to capture them in their full length. As adhesins are critical to understanding 
elements of pathogenicity in these yeasts, fragmented genome assemblies and missing gene 
annotations can be crippling to this dimension of research in these organisms. 
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