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0 Abstract 15 

Single cell transcriptomic technologies enable genome-wide gene expression measurements in individual 16 

cells but can only provide a static snapshot of cell states. RNA velocity analysis can infer cell state changes 17 

from single cell transcriptomics data. To interpret these cell state changes as part of underlying cellular 18 

trajectories, current approaches rely on visualization with principal components, t-distributed stochastic 19 

neighbor embedding, and other 2D embeddings derived from the observed single cell transcriptional 20 

states. However, these 2D embeddings can yield different representations of the underlying cellular 21 

trajectories, hindering the interpretation of cell state changes. We developed VeloViz to create RNA-22 

velocity-informed 2D and 3D embeddings from single cell transcriptomics data. Using both real and 23 

simulated data, we demonstrate that VeloViz embeddings are able to consistently capture underlying 24 

cellular trajectories across diverse trajectory topologies, even when intermediate cell states may be 25 

missing. By taking into consideration the predicted future transcriptional states from RNA velocity 26 

analysis, VeloViz can help visualize a more reliable representation of underlying cellular trajectories.  27 

VeloViz is available as an R package on GitHub (https://github.com/JEFworks-Lab/veloviz) with 28 

additional tutorials at https://JEF.works/veloviz/. 29 

 30 

 31 

1 Introduction 32 

 33 

Current technologies for high-throughput single cell transcriptomics profiling provide a static snapshot of 34 

the transcriptional states in individual cells. Still, the continuum of transcriptional states for cells along 35 

dynamic processes such as organ development or tumorigenesis can be used to infer how cell states may 36 

change over time (Tritschler et al., 2019; Saelens et al., 2019). Notably, RNA velocity analysis can be 37 

applied to infer dynamics of gene expression and predict the future transcriptional state of a cell from 38 

single cell RNA-sequencing and imaging data (La Manno et al., 2018; Xia et al., 2019).  39 
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 40 

To interpret such cell state changes from RNA velocity analysis, current approaches project the observed 41 

current and predicted future transcriptional states onto 2-dimensional (2D) embeddings in order to 42 

visualize the putative directed cellular trajectory (La Manno et al., 2018; Zywitza et al., 2018; Bastidas-43 

Ponce et al., 2019; Zhang et al., 2019). Previously used 2D embeddings include those derived from 44 

principal components (PC), t-distributed Stochastic Neighbor Embeddings (t-SNE), Uniform Manifold 45 

Approximation and Projection (UMAP), and diffusion maps (Coifman et al., 2005; Maaten and Hinton, 46 

2008; McInnes et al., 2018) established using the observed single cell transcriptional states. However, 47 

these approaches can yield different representations of the underlying cellular trajectory. Furthermore, in 48 

dynamic processes where intermediate cell states are not well represented due to their transient nature or 49 

due to technical limitations in sample collection and processing, current 2D embeddings may be unable 50 

to capture global relationships between cell subpopulations thereby hindering downstream interpretation 51 

of cell state changes (Kester and Oudenaarden, 2018; Weinreb et al., 2018). Although alternative non-52 

visual methods such as identifying dynamic driver-genes have been developed to help interpret 53 

information from RNA velocity analysis (Bergen et al., 2020), visual representation of cellular trajectories 54 

remains an important approach to understanding the overall relationships between cell states.   55 

 56 

Here, we developed VeloViz to visualize cellular trajectories by incorporating information about each 57 

cell’s predicted future transcriptional state inferred from RNA velocity analysis. Using both real and 58 

simulated data representing cellular trajectories, we demonstrate that VeloViz embeddings are better able 59 

to consistently capture underlying cellular trajectories across diverse trajectory topologies compared to 60 

other evaluated methods. Likewise, given simulated cellular trajectories with missing intermediate cell 61 

states, we find that VeloViz embeddings are able to more robustly retain the overall cell state relationships 62 

in the underlying trajectories compared to other evaluated methods.  63 

 64 
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 65 

2 Method 66 

 67 

In order to create an RNA-velocity-informed embedding, VeloViz uses each cell’s current observed and 68 

predicted future transcriptional states inferred from RNA velocity analysis to represent cells in the 69 

population as a graph (Figure 1, Supplementary Information 1). Briefly, starting with spliced and 70 

unspliced RNA counts from single-cell RNA-sequencing (scRNA-seq) data or cytoplasmic and nuclear 71 

RNA counts from single cell molecular imaging data, the predicted future transcriptional state of cells are 72 

inferred using RNA velocity pipelines such as velocyto (La Manno et al., 2018) or scVelo (Bergen et al., 73 

2020). We then optionally restrict to overdispersed genes (Fan et al., 2016) and unit scale each gene’s 74 

variance, as well as mean center each gene’s expression for the observed current and predicted future 75 

transcriptional states, followed by dimensionality reduction by projecting these observed current and 76 

predicted future transcriptional states into a common PC space. Using this reduced dimensional 77 

representation of the observed current and predicted future transcriptional states, VeloViz then computes 78 

a composite distance (𝐷!→# = −cos(𝜃!# 	) ∗
$

%∗'!"($
) between all cell pairs in the population. The 79 

composite distance between two cells, Cell A and Cell B, takes into account: (1) their transcriptional 80 

dissimilarity, defined as the Euclidean distance in the common PC space between Cell A’s predicted future 81 

state and Cell B’s observed current state (𝑑!#) and (2) their velocity similarity, defined as the cosine 82 

correlation between Cell A’s velocity vector and the change vector representing the transition from Cell 83 

A to Cell B (𝜃!#). An additional tuning parameter (w) weighs the relative importance of the transcriptional 84 

similarity and the velocity similarity components. In this manner, the composite distance will be 85 

minimized when Cell A’s predicted future transcriptional state is similar to Cell B’s observed current 86 

transcriptional state and when the direction of Cell A’s RNA velocity is similar to the direction of the 87 

transition from Cell A to Cell B. Based on these composite distances, VeloViz creates a k-nearest neighbor 88 
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graph by assigning k directed, weighted edges from each cell to the k neighboring cells with smallest 89 

composite distances. Edges are further pruned based on parameters that specify the minimum 90 

transcriptional and velocity similarity in order to remove spurious cell state relationships. Finally, the 91 

pruned graph can be visualized in 2D or 3D using graph layout or graph-embedding approaches such as 92 

force-directed layout algorithms (Fruchterman and Reingold, 1991) or UMAP (McInnes et al., 2018). 93 

 94 

 95 

3 Results 96 

 97 

3.1 Comparing VeloViz to other embeddings 98 

 99 

To evaluate the performance of VeloViz, we first assessed VeloViz’s ability to capture cellular 100 

trajectories in simulated data representing cycling or branching trajectories (Supplementary Information 101 

2). We compared the VeloViz embeddings to more conventional PC, t-SNE, UMAP, and diffusion map 102 

embeddings. To evaluate how accurately each embedding captured the ground truth trajectory, we 103 

calculated a trajectory consistency (TC) score (Supplementary Information 3, (Boggust et al., 2019)) 104 

where high TC scores indicate more accurate representations of the ground truth trajectory. For the 105 

simulated cycling trajectory, all evaluated embeddings were able to capture the cycling structure of the 106 

trajectory except for the PC embedding (Supplementary Figure 1A). The TC score for the VeloViz 107 

embedding was further higher than that of the PC, t-SNE, and UMAP embeddings. For the simulated 108 

branching trajectory, the TC score for the VeloViz embedding was higher than TC scores for the t-SNE, 109 

UMAP, and diffusion map embeddings (Supplementary Figure 1B-C). Likewise, we evaluated 110 

VeloViz’s ability to capture simultaneously cellular trajectories in conjunction with terminally 111 

differentiated cell-types using simulated data representing both cycling or branching trajectories with 112 

stable a cell population. For the simulated cycling trajectory with a stable cell population, all evaluated 113 
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embeddings were able to correctly distinguish the cycling and stable populations except for the PC 114 

embedding (Supplementary Figure 1 D). Likewise, the VeloViz, t-SNE, UMAP, and diffusion map 115 

embeddings preserved the cycling trajectory, while the PC embedding did not. The TC score for the 116 

VeloViz embedding was higher than that of the other embeddings. For the simulated branching 117 

trajectories with a stable cell population, all embeddings were able to separate the dynamic and stable 118 

populations, but only the VeloViz and PC embeddings were able to capture the underlying branching 119 

trajectory of the dynamic population (Supplementary Figure 1E-F). This is again reflected in the TC 120 

scores, which are consistently higher for the VeloViz and PC embeddings compared to the TC scores for 121 

the t-SNE, UMAP, and diffusion map embeddings. These simulation results demonstrate that VeloViz is 122 

able to capture trajectories of various topologies compared to other embeddings, which may be better 123 

suited for specific topologies. 124 

 125 

Next, we assessed VeloViz’s ability to capture cellular trajectories in scRNA-seq data. We applied 126 

VeloViz to scRNA-seq data of mouse spermatogenic cells (Supplementary Information 4), where we 127 

expect a developmental progression from spermatogonial stem cells to more differentiated spermatids 128 

(Hermann et al., 2018). For this simple, linear cellular trajectory, VeloViz was able to capture the overall 129 

expected trajectory from secondary spermatocytes to early, mid, then late round spermatids 130 

(Supplementary Figure 2). Generally, PCA, t-SNE, UMAP, and diffusion map were also able to capture 131 

this expected trajectory. To assess VeloViz’s ability to capture more complex trajectory structures, we 132 

applied VeloViz to scRNA-seq data of the developing mouse pancreas (Supplementary Information 5), 133 

where we expect to see both cycling and branching topologies at different stages of the trajectory. Briefly, 134 

we expect cycling ductal cells to give rise to endocrine progenitor-precursor (EP) cells, which become 135 

pre-endocrine cells that then differentiate into four hormone producing endocrine cell-types (Alpha, Beta, 136 

Delta, and Epsilon cells) (Bastidas-Ponce et al., 2019). We observed that while all evaluated embeddings 137 

captured the progression of EP cells towards pre-endocrine cells, VeloViz, UMAP, and t-SNE embeddings 138 
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also captured the terminal branching differentiation into the different endocrine cell-types, which is not 139 

clear in the PC or diffusion map embeddings (Figure 2). In addition, VeloViz was better able to capture 140 

the cycling structure of ductal cells. Overall, these results indicate that VeloViz embeddings are able to 141 

recapitulate expected trends from real scRNA-seq data  142 

 143 

To explore the potential of using VeloViz with velocity estimated from other data types, we further applied 144 

VeloViz to multiplexed error-robust fluorescent in situ hybridization (MERFISH) data (Xia et al., 2019) 145 

of cycling cultured U-2 OS cells (Supplementary Information 6). Again, we compared the VeloViz 146 

embedding to embeddings constructed using PCA, t-SNE, and UMAP and found that all evaluated 147 

embeddings, including VeloViz, were able to capture the expected cycling trajectory (Supplementary 148 

Figure 3).  In this manner, we find that VeloViz is able to capture cellular trajectories of diverse topologies 149 

using both simulated and real data from multiple single cell transcriptomics technologies 150 

 151 

3.2 Performance with missing intermediate cell states  152 

 153 

While uniform sampling of the continuum of transcriptional states for cells along dynamic processes can 154 

be used to infer how cell states may change over time, when sampling trajectories with rare or short-lived 155 

intermediate cell states or when different cell states are differentially impacted by cell isolation protocols, 156 

intermediate cell states may be lost leading to gaps in the observed cellular trajectory (Krishnaswami et 157 

al., 2016; Villani et al., 2017; MacLean et al., 2018; Moffitt et al., 2018; Slyper et al., 2020; Fan et al., 158 

2020). We hypothesized that incorporating information about each cell’s predicted future transcriptional 159 

state could enable VeloViz to more robustly construct representative cellular trajectories even when the 160 

sampled cell states contain missing intermediate cell states or gaps in the underlying trajectory.  161 

 162 
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To evaluate the robustness of VeloViz in visualizing trajectories with such missing intermediate cell states, 163 

we used simulated and real single cell transcriptomics data where some intermediate cells were removed, 164 

creating a trajectory gap. Because t-SNE and UMAP preferentially preserve local cell-cell relationships, 165 

we hypothesized that these embeddings would result in two distinct clusters of cells before and after the 166 

simulated gap (Kobak and Berens, 2019; Heiser and Lau, 2020). Therefore, in addition to TC scores, we 167 

calculated a gap distance (Supplementary Information 3), which measures the distance in the 2D 168 

embedding space between cells before and after the simulated gap in the trajectory. Embeddings that 169 

preserve the underlying trajectory despite this simulated gap will have a smaller gap distance. A small gap 170 

distance between cells that are part of the same trajectory will facilitate a clearer depiction of the 171 

underlying cell transitions compared to a large gap distance which may erroneously suggest that the cells 172 

are unrelated.  173 

 174 

Indeed, for the simulated cycling trajectory where cells corresponding to a segment of the cycle were 175 

removed (Supplementary Information 2), VeloViz was the only embedding able to clearly represent the 176 

cycling structure of the trajectory (Supplementary Figure 4A). The gap distance in the VeloViz embedding 177 

was also smaller than in t-SNE, UMAP, and diffusion map embeddings. Likewise, for the simulated 178 

branching trajectories where cells corresponding to a segment of an intermediate branch were removed 179 

(Supplementary Information 2), only VeloViz and PCA were able to preserve the underlying topology 180 

(Supplementary Figure 4B-C). The gap distance in the VeloViz embedding was smaller than that in the t-181 

SNE, UMAP, and diffusion map embeddings. In contrast, t-SNE and UMAP split cells before and after 182 

the simulated gap into distinct clusters as expected. TC scores were also consistently higher for VeloViz 183 

than with t-SNE, UMAP, and diffusion map embeddings. Similar trends were observed with simulated 184 

data that included both dynamic cycling and branching populations with missing intermediate cell states 185 

along with a stable cell population (Supplementary Figure 4D-F). 186 

 187 
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Likewise, for the U-2 OS MERFISH data, to simulate missing intermediate cell states, we removed cells 188 

in the G2/M cell cycle phase. Briefly, we identified cells in the G2/M cell cycle phase by computing for 189 

each cell a G2/M score based on the aggregated expression of canonical G2/M phase genes 190 

(Supplementary Information 6). As before, we compared the VeloViz embedding to those constructed 191 

with PCA, t-SNE, and UMAP. We found that VeloViz was better able to retain the cycling trajectory 192 

despite the missing G2/M cells compared to the other evaluated embeddings (Supplementary Figure 5).  193 

 194 

Similarly, for the developing mouse pancreas scRNA-seq data, to simulate missing intermediate cell 195 

states, we removed pre-endocrine cells and used cell latent time (Bergen et al., 2020) to identify cells 196 

before and after pre-endocrine cells in the developmental trajectory and to calculate gap distances in the 197 

recalculated embeddings (Supplementary Information 5). Notably, while all embeddings depicted the 198 

transition from ductal cells to endocrine progenitors, the subsequent transition from endocrine progenitors 199 

into terminal endocrine cell-types was best captured by VeloViz. As expected, t-SNE and UMAP split 200 

ductal and endocrine progenitor cells from terminal endocrine cell-types, which is reflected in the gap 201 

distances (Figure 3). In particular, the position of endocrine progenitors and terminal endocrine cells and 202 

the resulting velocity streams may lead to the interpretation that these two cell populations are 203 

differentiating in two separate trajectories.   204 

 205 

Still, because low dimensional representations can vary depending on parameter choices, we explored 206 

the effect of changing these parameters on t-SNE and UMAP visualizations to see if certain parameter 207 

choices would yield visualizations more representative of the underlying cellular trajectory. For t-SNE 208 

embeddings, the perplexity parameter affects the extent to which the embedding reflects global vs. local 209 

structure, with higher values resulting in embeddings that better preserve global structure (Kobak and 210 

Berens, 2019). However, with a gap in the trajectory, the t-SNE embeddings result in two distinct 211 

clusters of cells before and after the trajectory gap, even at large perplexity values (Supplementary 212 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.01.28.425293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.425293
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3). Likewise, for UMAP, we varied the values of two parameters: minimum distance, which 213 

controls how densely packed points are in the embedding with small values resulting in more dense 214 

clusters, and the number of neighbors, which functions similarly to perplexity in t-SNE (McInnes et al., 215 

2018). As with t-SNE, when embedding data with a simulated gap, UMAP is unable to capture the 216 

expected trajectory even at large values of number of neighbors (Supplementary Figure 7). This 217 

indicates that when intermediate cell states are missing, t-SNE and UMAP embeddings may be unable to 218 

recapitulate the expected underlying trajectory structure regardless of parameter choices. Overall, we 219 

find that VeloViz is able to visualize a more reliable representation of underlying trajectories even when 220 

intermediate cell states may be missing.  221 

 222 

3.3 Scalability 223 

Given the increasing availability of large single cell transcriptomics datasets (Lähnemann et al., 2020), 224 

we sought to evaluate the scalability of VeloViz with increasing cell numbers. Briefly, we down-sampled 225 

a dataset of approximately 10,000 cells (10X Genomics, 2020) to create datasets ranging from 100 cells 226 

to 9295 cells. For each dataset, we calculated velocity using velocyto.R and constructed an embedding 227 

using VeloViz while evaluating runtime and memory usage (Supplementary Information 7). We find that 228 

both runtime and memory usage of VeloViz scales linearly with the number of cells and is comparable to 229 

that of RNA velocity estimations (Supplementary Figure 8).  230 

 231 

 232 

4 Discussion 233 

In order to facilitate better visual representation of relationships between cell states in single cell 234 

transcriptomic data, we developed VeloViz to create low dimensional embeddings that incorporate 235 

dynamic information inferred from RNA velocity. We find that VeloViz is able to visualize cellular 236 

trajectories of diverse topologies and capture global cell state relationships, even when intermediate cell 237 
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states may be missing. Particularly when intermediate cell states are missing, we find that visualization 238 

with t-SNE and UMAP may result in distinct clusters containing cells before and after trajectory gaps, 239 

leading to erroneous interpretation that cells are part of biologically distinct subpopulations rather than 240 

the same biological trajectory.  241 

 242 

However, several limitations of VeloViz should be considered when using VeloViz embeddings to 243 

interpret putative cellular trajectories. Embeddings constructed using VeloViz incorporate multiple user 244 

inputted hyperparameters (Supplementary Information 1). We explored the effects of changing these 245 

parameters on the visualization of simulated cycling trajectories with missing intermediates and the 246 

resulting TC scores (Supplementary Figure 9). We found that the VeloViz embedding was most robust 247 

to changes in cosine similarity threshold (tt) and most sensitive to changes in k. However, without a 248 

priori knowledge of expected relationships between cell subpopulations, it may be challenging to find 249 

the optimal parameter set that yields the most representative embedding. Furthermore, different 250 

components of the trajectory being visualized, such as gaps versus branching structures, may have 251 

different optimal parameters. Thus, a range of hyperparameters may need to be explored to evaluate the 252 

stability of visualized cellular trajectories. Further limitations of VeloViz extend from the limitations of 253 

RNA velocity analysis in general. Notably, RNA velocity analysis can only infer cell state changes that 254 

are determined by changes in gene expression. Other molecular features such as alternative splicing, 255 

chromatin state, post-translational modifications, differential localization, and cell microenvironment 256 

that contribute to cell state changes are not considered in RNA velocity analysis, and therefore these cell 257 

state changes will not be represented in the VeloViz embedding (Weinreb et al., 2018; Tritschler et al., 258 

2019). In addition, it remains unknown the degree to which cell state changes are stochastic i.e. the 259 

probability that two cells with similar transcriptional states will develop differently. This stochasticity 260 

may limit the accuracy of predicting future cell state based on current gene expression dynamics. 261 

Ultimately, insights gained from RNA velocity analysis should be considered within the context of other 262 
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available data, such as differential gene expression, mutational analysis, and targeted experimental 263 

validation.  264 

 265 

Overall, by taking into account the predicted future transcriptional states of cells from RNA velocity 266 

analysis, VeloViz provides an additional approach for visualizing putative cellular trajectories to aid in 267 

the interpretation of cellular dynamics from single cell transcriptomics data.  268 

 269 
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Figures 333 

 334 

 335 

Figure 1. Overview of VeloViz. RNA-velocity informed embeddings are created by VeloViz in five 336 

steps: 1) The observed current (Xc) and predicted future (Xp) transcriptional cell states are inferred from 337 

RNA velocity and reduced into a common PC space; 2) composite distances (D) between all cell pairs are 338 

computed. The composite distance from Cell A to Cell X (𝐷!→)) takes into account the similarity in 339 

transcriptional profiles (dAX) between Cell X’s observed current (Xc) and Cell A’s predicted future 340 

transcriptional state (Ap), and the cosine correlation between Cell A’s RNA-velocity (vA) and the change 341 

vector (tAX) representing a transition from Cell A’s current state (Ac) to Cell X’s current state (Xc). A 342 

distance weight (w) is used to adjust the relative importance of transcriptional similarity and cosine 343 

correlation in the composite distance; 3) each cell is represented as a node in a graph, and for each cell, 344 

graph edges are assigned to the k cells with the minimum composite distances. Edge weights are computed 345 

based on composite distances as weightAB = max(D) – DAB; 4) edges assigned in 3. are pruned (in grey) 346 

using transcriptional and velocity similarity thresholds. Edge shade corresponds to edge weight computed 347 

based on composite distance, with darker arrows representing edges with larger weights; 5) the resulting 348 

graph can be visualized as a 2D or 3D embedding using graph-based embedding approaches. 349 
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 353 

 354 
 355 
Figure 2. VeloViz reconstructs trajectories from pancreatic endocrinogenesis scRNA-seq. 2D 356 

embeddings visualizing pancreatic endocrinogenesis generated using VeloViz (A), PCA (B), t-SNE (C), 357 

UMAP (D), and diffusion mapping (E). Cells are colored by cell state annotations provided in (Bergen 358 

et al., 2020). Arrows show the projection of velocities derived from dynamical velocity modelling 359 

(Bergen et al., 2020) onto the embeddings.  360 
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 366 

 367 

Figure 3. VeloViz reconstructs trajectories from pancreatic endocrinogenesis scRNA-seq data with 368 

missing intermediates. A) VeloViz 2D embedding visualizing pancreatic endocrinogenesis with pre-369 

endocrine intermediates removed creating a gap in the developmental trajectory. Inset shows the VeloViz 370 

embedding of the full dataset. Cells are colored by cell state annotations provided in (Bergen et al., 2020). 371 

Arrows show the projection of velocities derived from dynamical velocity modelling onto the VeloViz 372 

embeddings. Gap distances measure the median distance in the 2D embedding between the 300 cells 373 

before and after pre-endocrine cells in the developmental trajectory (Supplementary Information 3iii). 374 

Blue circle and green square indicate the median coordinates of cells before and after pre-endocrine cells 375 

in the developmental trajectory, respectively. B-E) 2D embeddings visualizing pancreatic 376 

endocrinogenesis with removed pre-endocrine intermediates using PCA, t-SNE, UMAP, and diffusion 377 

mapping, respectively with arrows showing the projection of velocities derived from dynamical velocity 378 

modelling. 379 
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