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Abstract 
Malaria, caused by Plasmodium parasites, is a devastating disease that kills over half a million 

people each year1. Plasmodium sporozoites inoculated by mosquitoes into mammalian hosts 

undergo a clinically silent phase of obligatory development and replication in hepatocytes before 

initiating the life-threatening blood-stage of malaria2. Thus, understanding the immune responses 

elicited by Plasmodium infection in the liver is key to controlling clinical malaria and 

transmission3,4. Here, we show that Plasmodium DNA can be detected by AIM2 (absent in 

melanoma 2) sensors in the infected hepatocytes, resulting in Caspase-1 activation and pyroptotic 

cell-death. However, Caspase-1 was observed to undergo only partial cleavage in hepatocytes, 

limiting pyroptosis, and the maturation of pro-inflammatory cytokines classically associated with 

Caspase-1 activation. We discovered that the extent of Caspase-1 cleavage in cells is determined 

by the expression of ASC (apoptosis-associated speck-like protein containing a CARD). ASC 

expression is inherently low in hepatocytes, and transgenically enhancing it in the hepatocytes 

induced complete processing of Caspase-1, efficient secretion of pro-inflammatory cytokines, 

enhanced pyroptotic cell-death, and markedly improved control of malaria infection in the liver. In 

addition to describing a novel pathway of natural immunity to malaria, our findings uncover a key 

aspect of liver biology that may have been exploited during evolution by successful hepatotropic 

pathogens.  

 

Main 
Plasmodium is a complex eukaryotic pathogen that has evolved to flourish in two vertebrate host 

tissues uniquely replete with immune cells, the liver and the blood2. Although the immune 

responses elicited by Plasmodium infection in its mammalian hosts have been intensely studied, 

our understanding of the innate immune responses that control malaria infection in the liver is still 

rudimentary5. Considering that the development of Plasmodium in the liver is a prerequisite for 

clinical malaria and transmission, and the key target of frontline anti-malarial vaccines, 

understanding of the immune responses generated against Plasmodium in the liver is critical to 

combating malaria3,4,6.  

 
AIM2 inflammasome controls malaria in the liver 
To identify immune pathways elicited by Plasmodium in hepatocytes in an unbiased manner, we 

compiled the transcriptional signature of human hepatocytes infected with P. falciparum (Pf) 

through single-cell RNA sequencing (Extended Data Fig 1a-b).  Expression of genes encoding 

molecules involved in major biochemical pathways including host responses to cell-injury, cell-
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adhesion, acute phase responses and inflammation were altered in Pf infected hepatocytes 

(Extended Data Fig 1c-f). Although various genes associated with cell-damage, programmed cell-

death and inflammatory pathways were transcriptionally altered (Extended Data Fig 1g) few were 

more uniformly and profoundly impacted as the genes of the inflammasome pathway (Fig 1a). 

Inflammasome activation in host cells is integral to the control of intracellular pathogens7. 

Supporting the transcriptional data, formation of inflammasome complexes with Caspase-1 was 

observed in primary human and mouse hepatocytes infected with Pf or P. yoelii (Py) respectively 

(Fig 1b-c). Caspase-1 was found to associate with Plasmodium early in their development in the 

hepatocytes (Extended Data Fig 2), and its activation was mediated through the ASC adaptor 

(Extended Data Fig 3b). ASC or Caspase-1 deficiency resulted in higher Py burden in the liver 

(Fig 1d) indicating that the inflammasome pathway makes a substantial contribution to parasite 

control in the liver. Of note, mice deficient in Caspase-1 (Casp1KO) used in this study are also 

deficient in Caspase-118. However, Caspase-11 was not activated by Py infection in hepatocytes, 

nor did it impact the control of Py infection in the liver (Extended Data Fig 4). Therefore, these 

data indicated that Caspase-1 activation was critical for protection from malaria in the liver. 

 The dependence of protection on ASC suggested that Plasmodium in hepatocytes may 

be sensed directly by NLRP3, NLRP1b, NLRC4, or AIM2 pattern recognition receptors (PRRs)7. 

To determine which of these sensors were pertinent to the control of Plasmodium in the liver, we 

compared Py infections in the livers of mice genetically deficient for NLRP3, NLRP1b, NLRC4, or 

AIM2, and control B6 mice. Only AIM2KO mice exhibited higher Py burden in the liver (Fig 1e). 

Py infection itself enhanced the expression of AIM2 in hepatocytes in a type I interferon (IFN) 

dependent manner (Extended Data Fig 5a). Type 1 IFNs induced in hepatocytes consequent to 

Plasmodium infection are known to promote control of liver-stage malaria9. Our observation that 

type 1 IFNs induce the expression of AIM2 in hepatocytes offers a potential pathway for type 1 

IFN driven immunity to liver-stage malaria. Of note, type 1 IFN treatment also was sufficient to 

induce AIM2 expression in bone marrow derived macrophages (BMDMs) (Extended Data Fig 5b). 

Though hepatocytes are the only cells known to support Plasmodium replication and development 

in the liver, CD11c+ dendritic cells (DCs) recruited to the liver following Plasmodium infection can 

acquire Plasmodium parasites from previously infected hepatocytes10. However, Caspase-1 or 

AIM2 in hematopoietic cells did not contribute to the control of Plasmodium infection in the liver, 

as indicated by Py infection in reciprocal bone-marrow chimeric mice generated from Casp1KO, 

AIM2KO and B6 mice (Extended Data Fig 6).  

 The only known ligand for AIM2 is double-stranded (ds) DNA11. Hence, we surmised that 

Plasmodium derived dsDNA is directly sensed by AIM2 receptors in hepatocytes. To query this 
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possibility, we determined if AIM2 could be co-immunoprecipitated with BrdU+ cytosolic DNA to 

demonstrate direct association between AIM2 and parasite DNA in cells. Indeed, anti-BrdU 

mediated pulldown in primary hepatocytes transfected with BrdU+ genomic DNA co-

immunoprecipitated AIM2 (Extended Data Fig 7a).  We then examined the possible direct 

association of Plasmodium DNA with hepatocyte AIM2 by incorporating BrdU into the DNA of the 

sporozoite stage of P. berghei (Pb). BrdU is known to integrate into the DNA of Plasmodium 

parasites cultured in media replete with BrdU12,13. Pb infected Anopheles mosquitoes were reared 

on BrdU laced sugar-water. As a result, high frequencies (94+2%) of BrdU+ Pb sporozoites that 

could give rise to liver-stages of Pb with BrdU incorporated DNA were generated (Extended Data 

Fig 7b-d), and used to infect primary hepatocytes. Co-immunoprecipitation of BrdU and AIM2 

indicated that Plasmodium DNA directly associated with hepatocyte AIM2 sensors in infected 

cells (Fig. 1f). Taken together, these data indicate that the AIM2 sensors in hepatocytes facilitate 

detection and control Plasmodium infection in the liver through inflammasome mediated Caspase-

1 activation.  

 

Gasdermin D effects Plasmodium control in liver 
Broadly, Caspase-1 activation has two discrete immunological functions in host cells: (1) induction 

of programmed cell-death through proteolytic activation of Gasdermin D (GSDMD) to generate 

membrane pores and (2) concurrent proteolytic maturation and release of the proinflammatory 

cytokines, IL-1 and IL-18 through these pores14. Py infection induced detectable cell-death in 

hepatocytes, mediated by AIM2 and GSDMD (Fig 2a). The characteristic vacuolation and rupture 

of hepatocytes following Py infection in a GSDMD dependent manner suggested that Py infection 

induced pyroptotic cell-death in infected hepatocytes (Fig 2b, Supplementary videos S1, S2)15. 

Py infection induced GSDMD activation in hepatocytes in a Caspase-1 dependent manner (Fig 

2c), with GSDMD localization suggesting the formation of plasma membrane pores (Fig 2d). 

Consistent with these findings, genetic deficiency, or therapeutic inhibition of GSDMD with 

disulfiram16 resulted in suboptimal control of malaria infection in the liver (Fig. 2e-f). Taken 

together, these data showed that the AIM2-Caspase-1 axis induced GSDMD-mediated pyroptotic 

cell-death in Plasmodium infected hepatocytes, aiding in the control of liver-stage malaria. Rather 

surprisingly however, Caspase-1 activation in hepatocytes induced reduced levels of mature IL-

1β or IL-18 (Extended Data Fig 8a-b). Maintaining the capacity to use the inflammasome pathway 

to eliminate intracellular pathogens through cell-death in hepatocytes, while concurrently 

producing less pro-inflammatory cytokines may be perceived as an evolutionary adaptation to 

defend the liver from pathogenic insults without sacrificing the liver’s immunotolerant nature.  
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Incomplete activation of Caspase-1 in hepatocytes 
Activation of Caspase-1 occurs through the autoproteolytic cleavage of its tripartite progenitor 

procaspase-1 at the macromolecular inflammasome complex assembled in the cytosol following 

PRR stimulation7. In the current model for Caspase-1 activation developed based on studies in 

immune cells or in vitro cultured cell-lines, ASC forms the foundation of such inflammasome 

complexes (ASC specks), where constitutively expressed procaspase-1 molecules congregate to 

undergo self-cleavage7,17-19. Cleavage of the 46kDa procaspase-1 (p46) in immune cells or cell 

lines generate separate CARD, p20 (20kDa) and p10 (10kDa) domains (Extended Data Fig. 9a). 

Subsequent to this, catalytically functional hetero-tetramers composed of p20 and p10 subunits 

are generated, that carry out the downstream biological functions of Caspase-111,20. In the case 

of macrophages cultured in vitro, a short-lived (<30 mins) CARD-p20 intermediate product has 

also been reported17. In stark contrast to this existing paradigm, we observed that Caspase-1 

activation in mouse or human primary hepatocytes infected with Plasmodium, or stimulated with 

LPS and ATP (the standard pathogen associated molecular patterns used in studies in immune 

cells or cell lines) produced a novel 32 kDa (p32) Caspase-1 cleavage product, without detectable 

p10 or p20 (Fig. 3a-c). To test if p32 Caspase-1 is an artifact of in vitro culture or stimulation, we 

infected liver-humanized chimeric mice with Pf sporozoites, in which, the Pf infection would be 

limited to the hepatocytes of human origin21. p32 was the only cleaved form of Caspase-1 

immunoprecipitated from the whole liver lysates of these mice (Fig 3d). Unlike in BMDMs 

stimulated with LPS+ATP, where distinct p20 and p10 cleavage products were detected, Py 

infected hepatocytes presented only p32 when probed with either p20 or p10 Caspase-1 subunit-

specific antibodies (Fig. 3e). This suggested that the p32 observed in hepatocytes may be 

composed of unseparated p20 and p10 domains of Caspase-1 (Extended Data Fig 9a). To 

objectively test this possibility, we employed p20 subunit specific antibody to immunoprecipitate 

Caspase-1 from the lysates of Py infected hepatocytes, resolved it on a denaturing gel and probed 

with p10 subunit specific antibody (Extended Data Fig. 9b). The observation of p32 in this 

experiment confirmed that p32 was indeed composed of both p20 and p10 domains, possibly 

linked by an uncleaved interdomain linker (IDL, Extended Data Fig. 9a). Although various groups 

have examined Caspase-1 activation in the liver, the majority of these studies were conducted 

using whole-liver extracts containing myeloid as well as hepatic cells22,23, or cell-lines where cell-

death pathways are often dysregulated24-27. In those instances where primary hepatocytes were 

discretely examined in the context of infections or aseptic inflammatory diseases of the liver, 

conventional cleavage of Caspase-1 was found to be limited to the non-parenchymal cells alone28-
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30. The novel p32 Caspase-1 cleavage product generated in Py infected primary hepatocytes 

remained detectable for over 24h post infection, was ASC-dependent, and catalytically functional 

(Extended Data Fig. 9c-d). These observations clearly distinguished the p32 Caspase-1 in 

hepatocytes from the short-lived, 33kDa CARD-p20 intermediate generated during Caspase-1 

processing in macrophages17. Infection with Salmonella enterica Typhimurium (St) or stimulations 

with LPS and Nigericin also generated the p32 cleavage product in hepatocytes, unlike such 

treatments in BMDMs (Fig. 3f), reiterating that the incomplete processing of Caspase-1 is a 

characteristic of hepatocytes, rather than of Plasmodium infection itself. Delivery of Py DNA into 

primary hepatocytes by transfection induced p32 Caspase-1 in an AIM2 dependent manner, 

corroborating our previous finding that Plasmodium DNA induces Caspase-1 activation through 

AIM2 mediated signaling (Extended Data Fig. 10). Our findings challenged the universality of the 

existing model of Caspase-1 processing in cells and revealed that pyroptosis and secretion of 

inflammatory cytokines are not inseparable functional consequences of inflammasome formation 

and Caspase-1 activation. However, the underlying mechanism behind this functional dichotomy 

remained unknown.  

 

ASC limits Caspase-1 cleavage in hepatocytes 
A possible reason for the incomplete processing of Caspase-1 in hepatocytes is the presence of 

alternately spliced forms of procaspase-1, with their IDLs not amenable to proteolytic cleavage. 

However, RT-PCR followed by sequencing of uninfected, Py infected or LPS+ATP stimulated 

purified hepatocytes failed to indicate the presence of any alternate spliced procaspase-1 

transcripts (Extended Data Fig. 11). In addition, bioinformatic analysis of our10 and others’31-34 

published RNAseq data also showed no procaspase-1 variants in the infected or uninfected 

human or mouse hepatocytes. As discussed above, the recruitment of procaspase-1 to the ASC-

speck is crucial to enable its inherent auto-proteolytic function through proximity-induced 

dimerization7,17,35. Merely maintaining recombinant procaspase-1 protein at high concentrations 

in vitro results in procaspase-1 achieving catalytically active quaternary structure and the ability 

to spontaneously self-cleave; both of which are lost upon adequate dilution19. Hence, we surmised 

that cleavage and activation of the constitutively expressed procaspase-1 in cells is facilitated by 

procaspase-1 achieving a critical local concentration in the cytosol, presumably at the 

inflammasome complex. Lower overall expression of procaspase-1 in hepatocytes could prevent 

it from achieving a sufficient density at the ASC speck, or the inadequate availability of ASC could 

preclude ASC oligomerization, leading to the generation of smaller specks and the recruitment of 

fewer procaspase-1 molecules18,36. Examination of publicly available transcriptional data31-34 and 
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western-blot analyses indicated that both procaspase-1 and ASC are inherently less abundant in 

mouse and human hepatocytes, compared to in immune cells such as monocytes or 

macrophages (Fig. 4a, Extended Data Fig. 12a-b). This suggested that increasing expression of 

procaspase-1, ASC or both in hepatocytes could potentially induce complete autoproteolysis of 

procaspase-1. Indeed, transgenic over-expression of ASC resulted in the generation of Caspase-

1 p20 following LPS+ATP stimulation or Py infection in primary hepatocytes (Fig 4b, Extended 

Data Fig 12c-e). Conversely, downmodulating ASC expression in BMDMs with ASC siRNA 

resulted in the formation of p32 in BMDMs (Fig 4c, Extended Data Fig 12 f-g). Taken together, 

these findings indicated that the expression level of ASC is a critical determinant of the extent of 

Caspase-1 cleavage in cells, and by extension, the nature of innate immune responses elicited 

by the cells.  

It is possible to generate p32 in BMDMs by mutating the autoproteolytic cleavage sites in 

the IDL sequence of procaspase-120. Such BMDMs were unable to efficiently mature IL-1β in 

response to St infection or LPS+ATP stimulation20. Similarly, altering ASC through site directed 

mutagenesis to hamper the formation of ASC speck also impeded the maturation of IL-1β in 

BMDMs18. However, these alterations had a relatively low impact on GSDMD activation or the 

ability of BMDMs to undergo pyroptotic cell-death. Of note, procaspase-1 by itself can cleave 

GSDMD to induce pyroptotic cell-death, although fully cleaved Caspase-1 is more efficient in 

activating GSDMD37. This suggested that the extent of Caspase-1 cleavage may also govern 

GSDMD function. Hence, we hypothesized that complete processing of Caspase-1 facilitated by 

adequate ASC expression in hepatocytes would lead to efficient proteolytic maturation of IL-1 and 

IL-18, and improved GSDMD function. Hepatocytes over-expressing ASC were able to generate 

tangible levels of mature IL-1β and IL-18 (Extended Data Fig 13), supporting this hypothesis. The 

alternately cleaved Caspase-1 products observed in epithelial cells, neurons or some cancer 

cells38-44 might signal such nuances in Caspase-1 functions. 

 

Increasing ASC improves immunity to malaria. 
To ascertain the extent to which conventional activation of Caspase-1 in hepatocytes would 

impact immunity to malaria in the liver, we over-expressed ASC in the hepatocytes of mice. To 

enhance ASC expression specifically in the hepatocytes, we generated adeno associated viral 

vectors on AAV-DJ background encoding ASC (AAV-ASC) or control eGFP (AAV-eGFP), under 

the hepatocyte-specific albumin promoter45-48. Mice inoculated with AAV-ASC or AAV-eGFP were 

challenged with Pb expressing luciferase (Pb-Luc) to determine the kinetics of Plasmodium 

infection in the liver (Fig. 4d). Transgenically enhancing ASC expression in hepatocytes also 
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aided in a more rapid control of Plasmodium infection in mice (Fig 4d-e, extended Data Fig 14a). 

Over-expression of ASC in hepatocytes enhanced their ability to undergo cell-death in response 

to Py infection or LPS+ATP stimulation (Extended Data Fig. 14b). Disulfiram treatment negated 

the enhanced cell-death observed in hepatocyte in response to LPS+ATP treatment (Extended 

Data Fig 14c), indicating that the enhanced hepatocyte cell death promoted by ASC over-

expression was indeed mediated by GSDMD. Treatment with disulfiram also prevented the 

improved control of Plasmodium infection observed in mice over-expressing ASC in hepatocytes 

(Extended Data Fig. 14d). Transgenically enhancing ASC expression in hepatocytes also resulted 

in increased influx of CD11c+ and CSF1R+ CD11c+ antigen presenting cells (APCs) into the liver 

following Plasmodium infection (Extended Data Fig. 15), possibly driven by IL-1 or IL-1849,50. 

Although not pertinent to the direct control of an ongoing infection, these infiltrating APCs are vital 

for the generation of subsequent adaptive immune responses and vaccine-induced immunity to 

malaria10. Taken together, our data indicated that enhancing ASC expression induced 

conventional cleavage of Caspase-1 in hepatocytes in response to Plasmodium infection, 

possibly leading to more efficient GSDMD mediated elimination of the infected hepatocytes, 

precipitating better control of malaria infection in the liver.  

Our discoveries offer novel insights into the mechanism by which Plasmodium parasites 

interact with and elicit host innate defenses in hepatocytes. The incomplete processing of 

Caspase-1 in hepatocytes, which severely limits inflammatory cytokine production and appears 

to elicit suboptimal pyroptotic cell-death, may have contributed to the liver being uniquely 

exploitable for Plasmodium infection and survival. As a frontline defensive organ that drains the 

gastrointestinal tract replete with potential pathogens and toxins, the ability of the liver to mount 

adequate immune responses without overreacting is crucial for the survival of the host51. The 

incomplete processing of Caspase-1 in hepatocytes may be an evolutionary adaptation to restrict 

the pro-inflammatory consequences of the inflammasome pathway without renouncing the ability 

to combat pathogens like Plasmodium through programmed cell-death.  
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Figure 1: AIM2 mediated inflammasome activation in hepatocytes control liver-stage 
malaria. a, Heat map depicting transcriptional differences in the genes of the canonical 

inflammasome pathway in primary human hepatocytes, maintained ex vivo and infected with Pf, 

4d p.i. The bar graph on right shows log fold-change + standard deviation (logFC + SD) in the 

differential expression of the indicated genes. b, Representative pseudo-colored confocal image 

depicting Caspase-1 activation (arrows) in human hepatocytes in a section of the liver of a 

humanized mouse inoculated with Pf (30h p.i) and stained with the indicated antibodies. c, 

Representative pseudo-colored confocal image depicting Caspase-1 activation (FLICA+, arrows) 

in ex vivo cultured primary mouse hepatocytes infected with Py (expressing tdTomato), 30h p.i. 

d-e, Scatter plots showing relative liver-parasite burdens in the indicated mice inoculated with Py, 

at 36h p.i. Dots represent individual mice. Data presented as mean + s.e.m and analyzed using 

ANOVA with Dunnett’s corrections, yielding the indicated p values. e, Immunoblot analysis for 

AIM2 after immunoprecipitation of the whole-cell lysates of primary mouse hepatocytes infected 

with BrdU+ Pb (24h p.i.), using with anti-BrdU antibodies. Data in b-e represent >3 separate 

experiments. 
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Figure 2: Gasdermin D mediated cell-death in Plasmodium infected hepatocytes. a, 
Comparison of cytolysis determined by LDH release assay in ex vivo cultured primary 

hepatocytes derived from the indicated mice, co-incubated with Py for the indicated times. Data 

presented as mean + s.e.m, analyzed using ANOVA with Dunnett’s correction comparing each 

time point to the corresponding one in B6 mice, to yield the presented p-values. b, Representative 

confocal time-lapse images showing the same primary tdTomato+ B6 mouse hepatocytes infected 

with Py (CellTrace Violet+, arrows) observed at 24h and 32h of co-incubation. Hepatocyte #1 and 

#2 shown on left just prior to undergoing pyroptotic rupture; see Movie S1 for complete sequence 

of events. c, Immunoblot analysis for GSDMD cleavage in primary hepatocytes obtained from the 

indicated mice co-incubated with Py, at 24h. BMDMs treated with LPS+ATP (4h) served as the 

positive control. LC: loading control. d, Representative pseudo-colored high-resolution confocal 

image of a B6 mouse hepatocyte co-cultured with Py for 30h showing nuclear disintegration 

indicating cell-death and GSDMD localization (arrows) to the plasma membrane. e, Scatter plots 

showing relative liver-parasite burdens in the indicated mice inoculated with Py, 36h p.i.  f, Scatter 

plots showing relative liver-parasite burdens in control or Disulfiram treated (-1d, 0, 1d p.i) mice 

inoculated with Py, determined at 42h p.i. e-f, Data presented as mean + s.e.m, analyzed with 2-

tailed t-tests to yield the presented p value. All data shown represent >3 separate experiments. 
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Figure 3: Incomplete cleavage and activation of Caspase-1 in hepatocytes. a-b, Immunoblot 

screen for Caspase-1 cleavage forms in primary mouse hepatocytes infected with Py (a) or 

treated with LPS+ATP (b) for the indicated time-frames. Murine BMDMs co-incubated with 

LPS+ATP served as the control. Caspase-1 p20 subunit specific antibodies detect uncleaved 

procaspase-1 (p46) and the cleaved Caspase-1 products, p32 or p20. c, Immunoblot analysis for 

cleaved Caspase-1 in human hepatocytes infected with Pf (left) or treated with LPS+ATP (right) 

for the indicated time-frames. d, Immunoblot analysis for Caspase-1 pulled down from whole-liver 

lysates of liver-humanized mice infected with Pf (30h p.i.), using with anti-p20 specific antibody. 

e, Immunoblot analysis for Caspase-1 cleavage in primary mouse-hepatocytes infected with Py 

and probed with Caspase-1 p20 subunit (left) or Caspase-1 p10 subunit (right) specific antibodies. 

Murine BMDMs co-incubated with LPS+ATP served as the standard for conventional Caspase-1 

cleavage pattern, indicating p20 and p10. f, Immunoblot analysis for Caspase-1 cleavage in 

primary mouse hepatocytes (left) or BMDMs (right) co-incubated with Py (24h), S. typhimurium 

(St, 24h) or LPS + Nigericin (Nig, 4h). Uninfected cultures (Uninf) served as controls. In a-f, LC 

represents the protein loading controls from the SDS-PAGE, to provide an estimate of the 

representation of pro/Caspase-1 in the total protein content of the hepatocytes or BMDMs. Note 

that these are single exposure blots and due to the high signal intensity, the amount of total protein 

added from the BMDM lysates was insufficient for detection by Coomassie blue staining in the 

loading control. Data represent >3 independent experiments. 
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Figure 4: Inherently reduced expression of ASC in hepatocytes precipitate incomplete 
cleavage of Caspase-1, limited control of malaria infection. a, Combined data depicting the 

relative transcript levels of procaspase-1 and ASC in primary hepatocytes, macrophages or 

monocytes derived from mice or humans. b, Immunoblot analysis for Caspase-1 cleavage 

products in primary mouse hepatocytes transfected with mammalian expression vectors encoding 

eGFP, procaspase-1 (Casp-1) or ASC and stimulated in culture with LPS+ATP for 16h from 24h 

post transfection. c, Immunoblot analysis for Caspase-1 cleavage in BMDMs transfected with 

reducing dosages of ASC siRNA and stimulated with LPS+ATP for 4h at 24h post transfection. 

LC: Loading controls. d, Experimental scheme to determine the impact of ASC over-expression 

in hepatocytes, on the control of liver-stage malaria. 1x1011 genome copy of AAV-ASC or AAV-

eGFP were inoculated into each B6 mice and challenged with 2x104 sporozoites of Pb-Luc at d10 

post inoculation. Mice were then imaged for total luminescence at the indicated time-points to 

determine the kinetics of parasite control in the liver. Livers collected at 36h p.i. to determine the 

infiltration of APCs into the liver e, Representative rainbow images of total luminescence in the 

livers of these mice at the indicated time points. Scatter plot in the right panel summarizes the 

data. Data presented as mean + s.e.m, analyzed with 2-tailed t-tests at each time-point to yield 

the presented p values. All data represent >2 independent experiments. 
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