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Abstract

Motivation: Sampling circulating tumor DNA, ctDNA, using liquid biopsies offers
clinically important benefits for monitoring of cancer progression. A single ctDNA
sample represents a mixture of shed tumor DNA from all known and unknown lesions
within a patient. Although shedding levels have been suggested to hold the key to
identifying targetable lesions and uncovering treatment resistance mechanisms, the
amount of DNA shed by any one specific lesion is still not well characterized. We
designed the LSM (Lesion Shedding Model) to order lesions from the strongest to the
poorest shedding for a given patient. Our framework intrinsically models for
missing/hidden lesions and operates on blood ctDNA and lesion assays to estimate the
potential relative shedding levels of lesions into the blood. By characterizing the
lesion-specific ctDNA shedding levels, we can better understand the mechanisms of
shedding as well as more accurately contextualize and interpret ctDNA assays to
improve their clinical impact.

Results: We verified the accuracy of the LSM under controlled conditions using a
simulation approach as well as testing on two gastrointestinal cancer patients. In the
simulation we created a synthetic blood ctDNA sample per patient, where specific
lesions are assigned predefined shedding levels. The simulated data mirrors real data
lesion genomic similarities. The LSM correctly obtains a partial order of the lesions, i.e.
accurately stratifies the lesions by their assigned shedding levels for simulations on two
patients with strikingly different numbers of biopsied lesions, 4 and 17. The LSM’s
accuracy in identifying the top shedding lesion was not impacted by the higher number
of lesions considered. We then applied LSM to two gastrointestinal cancer patients with
available ctDNA blood samples and multiple biopsied lesions and found that indeed
there were lesions that were consistently shedding more than other lesions into the
patients’ blood. We also found that in both patients the top shedding lesion was one of
the only clinically progressing lesions at the time of biopsy suggesting a connection
between high ctDNA shedding and clinical progression. The LSM provides a much
needed framework with which to understand ctDNA shedding and how to apply ctDNA
assays.

Availability: Binary is available at
https://github.com/ComputationalGenomics/LSM
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Introduction 1

As new cancer sequencing studies continue to become available, it is increasingly evident 2

that tumor evolution and clonal heterogeneity is the rule and not the exception for most 3

cancers [Turajlic et al., 2019]. Although a primary tumor can exhibit a set of mutations 4

characterizing the disease, groups of cells, i.e. clones, will acquire new mutations over 5

time creating a disease that looks molecularly diverse at different sites. Once the disease 6

progresses to a metastatic state, it is possible for each lesion to represent a unique 7

subtype of the original disease, harboring their own private mutations [Lawson et al., 8

2018], that can or can not be sensitive to the administered therapy. 9

This reality has shifted the paradigm of oncology to greater serial monitoring of the 10

cancer over time with the goal of capturing newly evolved drug targets and possible 11

mechanisms of drug resistance. However, performing serial percutaneous biopsies on all 12

lesions present in the body at any interval would be overly invasive, and technically 13

infeasible due to the inability to identify all existing lesions at any given time. To 14

confront this challenge, a new era of oncology has begun utilizing liquid biopsies, a 15

noninvasive, low risk method of indirectly sampling tumor components that is amenable 16

to serial sampling of a patient’s entire tumor burden. There primarily exists two types 17

of assays of liquid biopsies that test for different entities: circulating tumor cells (CTCs) 18

and cell-free DNA (cfDNA) [Rossi et al., 2019]. Each have their strengths and 19

weaknesses. Where detecting CTCs can be difficult and costly due to the relatively low 20

number of tumor cells found in the blood, it is a powerful method for early detection, 21

identifying the cancer origin, and generating cell lines on which to test potential 22

therapeutics. However the relative scarcity of CTCs in the blood makes this a more 23

challenging assay. On the other hand, cfDNA assays looking for circulating tumor DNA 24

(ctDNA), which is tumor-derived extracellular DNA found in the plasma, is less costly 25

and provides a means for real time monitoring of patient response and relapse while 26

offering greater potential for discovering new drug resistance mechanisms. 27

With the growing importance of ctDNA assays, it is increasingly necessary to 28

understand the conditions and factors that cause lesions to shed DNA so as to improve 29

the interpretability and impact of these technologies. The shedding of DNA from the 30

tumor is thought to occur mostly from apoptotic tumor cells, but there is also evidence 31

that they can arise from necrotic cells or be secreted directly into the 32

blood [Schwarzenbach et al., 2011]. Interestingly, it has been shown that not all tumors 33

shed ctDNA at the same rate. What influences these different shedding rates remains 34

unknown. There have been several recent studies suggesting shedding rates are 35

influenced by lesion size, i.e. larger tumors will shed more [Avanzini et al., 2020]. While 36

other studies suggest that shedding is linked to the molecular profile of the lesion where 37

the more oncogenic a tumor, the higher the rate of shedding [Parkinson et al., 2016]. 38

Some studies even suggest that it is the type of cancer that influences the shedding rate, 39

such as higher mortality cancers shedding more than low mortality subtypes. Finally, 40

there are studies that have found that lesions with resistance mechanisms to treatment 41

have the highest shedding rate [Murtaza et al., 2015]. 42

Without a clear understanding of the contributory factors to ctDNA levels in the 43

blood, there will continue to be ambiguity as to the significance of detected alterations 44

in cfDNA assays. For instance, if it can be established that larger lesions do in fact shed 45

ctDNA at higher levels, then ctDNA assays need to be adjusted for a potential 46

undersampling of smaller lesions if the read depth is too low. Alternatively if it is found 47

that progressing lesions shed at higher levels, then perhaps alterations with high 48

frequencies in the ctDNA should be prioritized as novel resistance mechanisms as they 49

are more likely shed by those progressing, resistant lesions. 50

To effectively address the question of what influences tumor shedding rates, there 51

needs to be a means for determining at what levels the lesions are shedding ctDNA. It is 52
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for this reason that we developed the Lesion Shedding Model (LSM), a mathematical 53

model of tumor shedding that can determine the relative shedding levels of lesions found 54

in a patient. Here we will describe how the LSM determines the relative shedding levels 55

of lesions and show its relevance in simulated and real patient data. 56

1 Approach 57

Lesion Shedding Model The LSM operates on blood cfDNA and lesion assays to 58

estimate lesions’ ctDNA shedding levels into blood. Patient ctDNA mutation profile 59

represents a mixture of ctDNA shed from all lesions in the body. As there may exist 60

lesions that are not biopsied though are shedding ctDNA into the blood, our framework 61

intrinsically models for missing lesions by subsampling available lesions. This 62

subsampling offers the additional benefits of improving optimization and computational 63

tractability. The LSM takes whole exome or genome sequencing (WES or WGS) data 64

from multiple tissue samples and at least one blood plasma cfDNA sample to develop a 65

mathematical model that identifies the most likely relative contributions of different 66

tumor lesions within each cfDNA sample provided. The LSM operates in two modes: 1) 67

single time point mode using the most proximal cfDNA sample to the lesion biopsies, 68

and 2) longitudinal mode where each cfDNA sample is analyzed to reveal dynamics in 69

lesion shedding. To develop the LSM, we utilized a combination of simulated cfDNA 70

and and lesion data, as well as soon-to-be-released WES data developed as part of the 71

IBM-Broad Drug Resistance Study [Getz et al., 2018,Utro et al., 2020] that includes 72

patients with multiple synchronous tissue samples taken at autopsy and plasma samples 73

from throughout their treatment course. 74

2 Methods 75

Tumor Shedding Model We assume the following model: tumors arise from an 76

altered cell, accumulating additional alterations over time. Tumors may give rise to 77

other lesions of similar or divergent compositions, or tumors may continue to arise 78

independently. The model also assumes that tumors may or may not shed ctDNA into 79

the bloodstream over time for a variety of reasons, including apoptosis, necrosis, rapid 80

cell division, etc. Tumors may share similar mutations but their clonal compositions 81

and frequencies can differ between lesions, and thus lesions can be distinguished based 82

on mutational frequency profiles. The blood ctDNA is then composed for all shed 83

ctDNA from all lesions in the body, whether technically assayed or not. The frequency 84

of an alteration in the blood ctDNA can be conceptualized as being a function of the 85

lesion-specific alteration frequency and ctDNA shedding level. 86

Terminology The term alteration is applicable to any genetic event including, but not 87

limited to, mutation, single nucleotide variant (SNV), copy number variant, etc. In this 88

manuscript CCF (Cancer Cell Fraction) denotes the fraction of cancer cells bearing an 89

alteration in a cancer sample. For the purposes of our algorithm, CCF and VAF 90

(Variant Allele Frequency) are indistinguishable and the precise method of determining 91

alteration frequencies is outside the scope of this paper. For clarity of exposition we use 92

CCF to represent VAF or CCF and SNV to represent all alterations. 93

Method Assumptions We make the following assumptions: 94

Assumption 1 [Missing Lesion Assumption] The model assumes that there may, 95

and likely do, exist lesions that are neither observed nor assayed for biological or 96

technical reasons that shed ctDNA into the bloodstream. 97
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Figure 1. Overview of LSM. Alteration frequencies from blood cfDNA and lesions K
taken as input. For computational tractability (and robustness), we randomly subsample
and optimize over up to k lesions. This is performed repeatedly to evaluate robustness
and satisfies Assumptions 1 and 2. For a given hypothesis blood HB, a vector of k
α, with alpha ∈ [0 − 1], Hi is generated. To calculate the HB, these α are provided
as input to a Dirichlet process to generate weights that are multiplied against the
respective lesion’s alterations’ CCFs. These weighted CCFs are summed into the HB.
Multiple HB are generated with different Hi, by default using a grid search to create
all possible Hi. Cumulative precision curves of HB CHB,l and actual blood CT,l are
calculated. Here each plot represents a lesion. The x-axis is the CCF threshold from
0-1. The y-axis is the precision that the blood sample contains mutations present in the
respective lesions. Black line indicates actual blood sample. Colored lines indicate HB.
We optimized the cost function f over all Hi to identify top hypotheses by minimizing
the L∞ distance between CHB,l and CT,l. The output is a set of HB with lesion-specific
weights sorted according to how closely they approximate actual blood. Finally, analysis
of all subsamplings yields consensus networks where relative shedding levels are assigned.
Lesions are connected by directed edges if the frequency that a source is weighted higher
than its target in a significant fraction of subsamplings.
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Assumption 2 [Non-shedding Lesion Assumption] The model assumes that 98

there may be assayed lesions that do not shed, to any significant degree, ctDNA into the 99

blood for a given time period. 100

2.1 Method Overview 101

Input The LSM receives a MAF file with mutation information, including VAF or CCF. 102

Each patient should include sequencing data from blood cfDNA and lesions K. Lesions 103

with < 5% tumor fraction are considered to have poor purity [Carter et al., 2012] and 104

are excluded from analysis. Sample information is also to be provided in a simple 105

tabular format that minimally provides information on data source (cfDNA or lesion) 106

and sample collection time. 107

The LSM has four broad phases described below: 108

1. Hypothesis Blood Generation For each patient, generate hypothesis blood 109

HB that is a mixture of alterations with an aggregate CCF based on hypothesized 110

lesion shedding levels described by a weight vector H. 111

2. Target Function is a family of functions gl, the goodness-of-fit of HB cfDNA 112

profile to lesion l, based on cumulative precision curves. 113

3. Most Likely Hypothesis is obtained from multiple runs. For some k < K, at 114

each iteration: 115

(a) Randomly select k lesions, out of the K lesions, for robustness that also 116

naturally addresses Assumptions 1 and 2. 117

(b) For the selected k lesions, obtain the optimal hypothesis based on 118

appropriate minimization of the target function (see next section for details) 119

4. Consensus Shedding Network Aggregate top hypothesis from all 120

sub-samplings to calculate a consensus relative shedding level graph. 121

2.2 Hypothesis Blood Generation 122

The hypothesis blood represents a model of the potential shedding levels of assayed 123

lesions into the blood. By constructing many models with assigned shedding levels, or 124

weights, the LSM can perform a search for the HB that most closely resembles the 125

actual blood profile. To satisfy Assumptions 1 and 2 and for computational tractability 126

and robustness, the LSM randomly subsamples and optimizes over up to k lesions and 127

this subsampling is performed S times. For each subsampling, the LSM constructs a 128

series of hypotheses in the form of assigned shedding levels, α ∈ [0, 1], to k lesions 129

referred to as a hypothesis vector H. α may be chosen by multiple approaches: 130

1. lesions assigned α randomly by preferred distribution 131

2. lesions assigned to discrete high, medium, low categories and a random value is
drawn from the categories’ specified range. For example:

αhigh = (0.6, 1.0]

αmedium = (0.3, 0.6)

αlow = [0.0, 0.3)

(1)

3. lesions assigned α from a predefined set, e.g. α ∈ [0, 1, increment], according to a 132

grid search of all possible combinations over k lesions. 133
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Thus H is a vector of α of length k 134

H = [α1, α2, . . . , αk] (2)

Each H is used to create an HB sample by providing H as input to a Dirichlet 135

process to generate alteration weights that are then multiplied against the respective 136

lesion’s CCFs. For a given alteration g, these weighted CCFs are summed across lesions 137

to yield the aggregate A(g) CCF level in the HB. 138

A(g) =

∑
l∈kHl ∗Ml, g

k̄
, (3)

where M is a CCF matrix of lesions l by alterations g, and Ml, g is the set of 139

alterations in Ml whose CCF is ≥ ct where ct is the CCF threshold below which 140

alterations are filtered out to reduce noise as alterations that are present at low CCF 141

within lesions are likely absent or undetectable in cfDNA. ct can be determined by 142

looking at the blood cfDNA CCF level that maximizes CT,l (see Section 2.3) across 143

most samples in the cohort. Alternatively, ct can be adapted per lesion l by selecting 144

the CCF that maximizes CT,l for l. In practice, we found ct = 0.55 an approximately 145

suitable threshold across many tested samples. The final HB is the collection of all 146

alterations’ aggregate CCFs. 147

HB = [A(g1), A(g2), . . . , A(gN )] (4)

The number of HB is determined by the α selection strategy. 148

2.3 Target Function Optimization 149

The LSM identifies the HB that most closely approximates the actual blood cfDNA’s 150

representation of alterations found in all assayed lesions. We calculate cumulative 151

precision curves C for actual blood cfDNA and all generated HB for each l ∈ k lesion, 152

CT,l and CHB,l, respectively. 153

C(B, l) =
0.95∑

c=0.05

m(l, ct) ∩m(B, c)

m(B, c)
, (5)

where B represents either actual blood or HB cfDNA, c is the CCF threshold, and 154

m(i, j) are the number of genes in i with CCF ≥ j. These precision curves represent 155

how similar the alteration CCFs in the HB or actual blood are to the lesions’ CCFs. 156

The LSM then optimizes a cost function f to find the HB that minimizes gl, which 157

calculates the Chebyshev, or L∞, distance between CT,l and CHB,l, over k lesions. We 158

selected L∞ distance after experimenting with various other candidates, including the 159

L1, weighted-L1, L2 Kolmogorov-Smirnov, and correlation distance of the precision 160

curves. We found that the L∞ distance outperformed the others in simulation testing 161

(Figure 2A) likely as a result of it minimizing for the point of maximal divergence 162

between both curves and so avoids issues of over-smoothing that may inaccurately 163

identify the best performing HB. 164

gl(HB) = L∞(CT,l, CHB,l) (6)

f(HB) =

∑
l gl(HB)

k̄
(7)
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Figure 2. Simulation based controls using 10 simulations with 200 subsamplings
of patients TPS037 and TPS177. A) Comparison of 6 distance metrics. A Pearson
correlation between the assigned lesion alpha and outgoing edge fraction was computed.
The y-axis is the weighted mean of the correlation values where the patients’ correlation
values were weighted by the total number of lesions and a mean calculated. B-C)
Scatterplots showing the relationship between the fraction of outgoing edges (x-axis) and
the mean genomic distance (y-axis) . Each point is a sample in a given simulated run.
A linear regression line is drawn. D-E) Barplots indicate the mean fraction outgoing
edge for lesions grouped by their specifically assigned weights in the simulated sample
(x-axis). Black rectangular bars indicate confidence intervals. The Pearson correlation
between the α and outgoing edge fraction for TPS037 (D) is 0.97, p < 4× 10−25 and
TPS177 (E) is 0.54 (p < 3× 10−15).

2.4 Most Likely HB and Consensus Shedding Networks 165

For each subsampling s, LSM’s output is a set of all HB with lesion-specific weights 166

sorted according to f . The LSM seeks to minimize f and is found to be well-behaved as 167

the distance from the top HB solution increases when performing a grid search, i.e. is 168

Lipschitz-continuous. We performed an additional adaptive discrete search of the weight 169

space by using a grid search of the weights centered around the top HB ’s weights 170

(Figure 3). Weight ranges were tested ±0.1 along the H vector for 50 additional lesion 171

subsamplings. f remains well behaved and the lack large shifts in value indicates the 172

solution is stable. 173

LSM aggregates top HB from all subsamplings to calculate a consensus relative 174

shedding level graph. Lesions are connected by directed edges if the source lesion has a 175

higher weight than the target lesion in a high frequency of subsamplings. This frequency 176

can be empirically determined, e.g. conservatively it may consist of two standard 177

deviations above the mean frequency drawn from a null distribution of edge frequencies 178

using randomly selected HBs. This produces a directed network indicating each lesion’s 179

relative shedding level. LSM does allow for lesions not to be placed on the graph if an 180

edge cannot be confidently drawn with it. LSM further categorizes lesions into high, 181

intermediate, and low shedding levels using the ratio of outgoing vs incoming edges. 182

High shedding lesions are those where at least 90% of its total edges are outgoing; low 183
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Figure 3. Demonstration of consistency of the cost function f over 50 subsamplings
of GI patient TPS177. A) Each boxplot is a single subsampling with all tested HBs
exclusive of the top H, where the x-axis is the L1 distance of H from the top HB and
the y-axis is the absolute difference of the f(HB) from the top HB. The cost function f
used is well behaved as the distance from the top f(HB) increases. B) An additional
adaptive discrete search of the weight space was performed by using a grid search of
the α’s centered on the top H. Weight ranges were tested ±0.1 along the top H vector
for 50 lesion subsamples. f remains well behaved and there are no large shifts in values
indicating the solution is stable.
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shedding lesions are those with at most 10% outgoing edges; and intermediate captures 184

the remainder. 185

2.5 Model Checking 186

Simulation We developed a module to generate simulated blood cfDNA admixtures to 187

test and verify the accuracy of the LSM under controlled conditions. We simulated a 188

synthetic blood sample per patient where each lesion was given an assigned α. A 189

synthetic cfDNA is constructed in similar fashion to Equation (4) using these α’s. The 190

simulated blood also has an additional parameter to add random mutations into each 191

sample. This simulated blood sample was then analyzed by the LSM without 192

modification and predicted shedding levels were compared. 193

Genetic Bias To determine whether there is a bias to overweight lesions that are more 194

genetically distinct with respect to others from the same patient, we tested for a 195

correlation the fraction of outgoing edges with samples’ mean genome distance from all 196

other samples (calculated using the Jaccard distance of a binary vector of alterations). 197

The expectation is if there were a bias to assign larger α’s to genetically distinct lesions 198

then as the genetic distance increases so to would the fraction of outgoing edges from a 199

lesion indicating a higher assigned α. We observed no such relationship in our 200

simulations of patient samples (Figure 2B,C) or in real patient data [Utro et al., 2020]. 201

Robustness Lesions are placed in a relative shedding order from high to low by their
topological differences, t.

t(l) = eout(l)− ein(l), (8)

where e is the number of edges. To confirm that the relative lesion shedding ordering is 202

robust and stable, we considered the variance of t over 50, 100, 150, and 200 lesion 203

subsamplings. The mean of the distribution of the lesion t variances over the four 204

sampling amounts is 0.658± 1.182 vs a permuted control 13.962± 13.746 [Utro et al., 205

2020]. The low variance confirms the robustness of the lesion ordering. 206

3 Discussion 207

3.1 Simulation Results 208

We generated simulated cfDNA samples using patient data from a recent 209

gastrointestinal (GI) cancer study [Parikh et al., 2016] comparing cfDNA to tissue lesion 210

biopsies to ensure maximal fidelity to actual biological specimens. To first verify the 211

accuracy of the model under controlled conditions, we simulated blood sample per 212

patient where specific lesions were given assigned weights. Three random lesions were 213

given the weights [1.0, 0.6, 0.3] and the remaining lesions were weighted 0.005. Each 214

simulated cfDNA also had 250 random mutations spiked in to add some noise. This 215

simulated blood sample was then analyzed by the LSM. For each patient, five lesions 216

were randomly subsampled and optimal hypothesis blood was calculated 200 times. For 217

each subsample, the H vector was constructed from weights [0.005, 1.0] at step size 0.25. 218

We compared the the LSM’s consensus directed graph with the assigned lesion 219

weights within each simulation to assess the model’s accuracy. For this graph, the 220

frequency threshold for an edge to be placed between lesions was 1σ above the mean 221

frequency 0.45±0.11 taken from a null distribution. We looked at the correlation 222

between each lesion’s fraction outgoing edge and its assigned weight. The expectation 223

was that lesions of higher assigned weight will have a greater percentage of outgoing 224

edges indicating higher predicted shedding level (Figure 2D,E). The Pearson correlation 225

r for simulated patient TPS037 was r = 0.97, p < 4× 10−25 and for simulated patient 226

TPS177 was r = 0.54, p < 3× 10−15. The number of lesions for TPS037 and TPS177 227
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were drastically different, 4 and 17, respectively. We found that while the overall 228

correlation decreased when simulating a patient with higher numbers of lesions, the 229

accuracy in identifying the top shedding lesion remained high and unaffected by the 230

increased lesion count, as reflected in the consistently narrow confidence interval CI. 231

The decreased correlation can almost entirely be explained by the reduced accuracy 232

(increased CI) for lower weighted lesions. Yet, overall the LSM correctly ordered lesions 233

according to their assigned weight, and it is evident the LSM is most confident in its 234

assignment of the high shedding level category. 235

3.2 Single time point analysis 236

We applied the LSM to a 53 year old male patient, TPS037, with metastatic 237

BRAFV 600E colorectal cancer who was treated with EGFR, BRAF, and PI3KA 238

inhibitors [Parikh et al., 2016]. TPS037 had postpgression cfDNA and four tissue lesions 239

biopsies, including two liver, one brain, and one subcutaneous soft-tissue. The LSM 240

performed a grid search of the weight space using α ∈ [0.005, 1,+0.25] discrete 241

increment range over k = 4 lesions 200 times. The consensus network (Figure 4A,B) 242

reveals the progressing liver lesion 1 to be the highest shedding lesion in the blood, 243

suggesting a connection between progression and the cfDNA shedding. The LSM is able 244

to produce both a detailed consensus directed network as well as a simplified network 245

with lesions categorized into high, intermediate, and low shedding levels. 246

3.3 Longitudinal analysis 247

To perform a longitudinal analysis, the LSM analyzed a 58-year old woman with 248

metastatic gastric adenocarcinoma. This patient had both pretreatment and 249

postprogression cfDNA biopsies as well as 17 lesions (one post-treatment and 16 250

autopsy lesions). With so many assayed lesions, this presented a challenging 251

opportunity to distinguish tumor lesions by their shedding level and reveal dynamics 252

over the course of treatment. This patient only had lesion-specific progression status 253

information of a single progressing para-aortic lymph node lesion (Lesion A). It was 254

noted in the original study that multiple different FGFR2 mutations are believed to be 255

an underlying resistance mechanism and was identified to be in the liver lesions. 256

Similar to TPS037, the LSM found that the confirmed progressing lesion, Lesion A, 257

was a top shedding lesion by the time of the postprogression cfDNA sample after it 258

began as an intermediate shedding lesion in the pretreatment sample (Figure 4C). This 259

further suggests that progressing lesions may tend to be higher shedding into the blood 260

plasma. The LSM also showed that a pancreatic lesion was high shedding across both 261

time points. Lesions from the primary tumor site in the stomach (Autopsy M-O) were 262

all found to be low shedding or indeterminate by the second time point and were also 263

found in the originating study to lack the FGFR2 fusion and had reduced FGFR2 264

expression and local copy number. All four liver lesions’ shedding levels were found to 265

become indeterminate in the postprogression sample. In this patient while there does 266

not appear to be a positive correlation between the FGFR2 alteration status and higher 267

levels of shedding, we once more see the confirmed progressing lesion as a top shedder. 268

4 Conclusion 269

Liquid biopsies of cfDNA presents an important opportunity for real-time, continuous, 270

non-invasive monitoring of patients off and on treatment. These assays offer the means 271

of not only detecting the emergence of new resistance mechanisms but may also provide 272

the basis for understanding the efficacy of a given treatment on specific lesions. As 273
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Figure 4. LSM analysis of GI cancer patients. A) Detailed consensus shedding network
for patient TPS037. B) Simplified consensus shedding figure for patient TPS037. High,
intermediate, and low shedding lesions are indicated by the colors red, orange, and green,
respectively. C) Subway plot of the longitudinal lesion shedding levels of all lesions in
TPS177. Post-tx lesion A: para-aortic node. Autopsy lesions - B-D: liver, F-H: pancreas,
I-J: Mesenteric nodes, K-L: peripancreatic nodes, M-0: Stomach, P-R: Omentum nodes.
Blue indicates clinically progressing lesion. Light gray indicates lesions that could not
be confidently placed w.r.t. other lesions.
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more studies are performed that include both tissue and cfDNA, it will be possible to 274

understand if there are shedding biases related to primary disease, cell-of-origin, 275

tissue-of-origin, treatment, etc. that would need to be accounted for when interpreting 276

cfDNA results. 277

The LSM provides an important first step for understanding the shedding 278

contributions of different lesions into the blood cfDNA. The work presented here is a 279

controlled study on simulated data based on real patient data, as well as providing case 280

studies of two gastrointestinal cancer patients. In both GI patients, the progressing 281

lesions were found to be top shedding. This finding would suggest giving greater 282

scrutiny to high prevalence alterations in the cfDNA over even known resistance 283

alterations that are found at lower CCF since high prevalence alterations are likely 284

coming from these progressing lesions. 285

While currently there are relatively few patients with both blood and multi-tissue 286

biopsy data, there exist efforts to address this shortcoming, such as the IBM-Broad 287

Drug Resistance Study [Getz et al., 2018]. Additionally, extending the LSM to use 288

CTCs as a proxy for lesion biopsies may also address the limited data availability. 289

There are currently assays to extract both CTCs and ctDNA from the same blood 290

sample [Rothwell et al., 2019]. Single cell sequencing of CTCs will offer a profile of some 291

subset of lesions that are shedding cells that the LSM can use in lieu of the lesion 292

sample to assess the cfDNA for the relative shedding levels of these “lesions”. The LSM 293

would then be able to monitor ongoing cfDNA samples, which are less expensive and 294

more sensitive than CTC assays, given the relatively few CTCs that are captured in 295

liquid biopsies. Using CTCs as a proxy would provide another mode of data to improve 296

the LSM and the utility of cfDNA assays. 297

There are additional future endeavours to further establish and extend the LSM. 298

These include analyzing additional patients with multiple, synchronous tissue samples 299

and longitudinal cfDNA samples over the course of treatment as part of the IBM-Broad 300

Drug Resistance Study. The increased amount of data will enable us to address the 301

current challenges of ordering lesions that fall into an intermediate category. Currently, 302

the simulated control experiments suggest the top shedding category is the most reliably 303

and confidently assigned. Other shedding level designations should be taken with more 304

caution. Improving the LSM’s ability to resolve intermediately shedding lesions is an 305

area of further study. 306

The LSM can also be developed to include a likelihood model for the presence of 307

lesions undetected by traditional scans but whose presence explain the blood cfDNA 308

composition. In the same manner and by combining the LSM with models of tumor 309

clonal evolution, we could develop an inference model of the evolutionary trajectory of 310

lesions based on blood cfDNA. With such a model, the LSM could assign new 311

alterations found in the cfDNA as either a likely child of an existing lesion thus showing 312

some kind of evolution or to a new lesion. While there are clearly many important 313

questions still to be addressed, the LSM’s ability to accurately characterize a lesion’s 314

relative shedding level is a vital first step in assigning shedding phenotypes onto lesions 315

from which statistical and machine learning methods can identify the features that 316

explain the mechanisms of shedding thereby enabling cfDNA to be rightly 317

contextualized and its clinical utility dramatically increased. 318
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