
DRAFT

Strobemers: an alternative to k-mers for
sequence comparison

Kristoffer Sahlin1,�

1Department of Mathematics, Science for Life Laboratory, Stockholm University, 106 91, Stockholm, Sweden.

K-mer-based methods are widely used in bioinformatics for var-
ious types of sequence comparison. However, a single mutation
will mutate k consecutive k-mers and makes most k-mer based
applications for sequence comparison sensitive to variable mu-
tation rates. Many techniques have been studied to overcome
this sensitivity, e.g., spaced k-mers and k-mer permutation tech-
niques, but these techniques do not handle indels well. For in-
dels, pairs or groups of small k-mers are commonly used, but
these methods first produce k-mer matches, and only in a sec-
ond step, a pairing or grouping of k-mers is performed. Such
techniques produce many redundant k-mer matches due to the
size of k.
Here, we propose strobemers as an alternative to k-mers for se-
quence comparison. Intuitively, strobemers consist of linked
minimizers. We use simulated data to show that strobemers
provide more evenly distributed sequence matches and are less
sensitive to different mutation rates than k-mers and spaced k-
mers. Strobemers also produce a higher match coverage across
sequences. We further implement a proof-of-concept sequence
matching tool StrobeMap, and use synthetic and biological Ox-
ford Nanopore sequencing data to show the utility of using
strobemers for sequence comparison in different contexts such
as sequence clustering and alignment scenarios. A reference im-
plementation of our tool StrobeMap together with code for anal-
yses is available at https://github.com/ksahlin/strobemers.

k-mers | minimizers | sequence matching | data structures

Correspondence: ksahlin@math.su.se

Introduction
The dramatic increase in sequencing data generated over the
past two decades has prompted a significant focus on devel-
oping computational methods for sequence comparison. A
popular sequence comparison paradigm is k-mer based anal-
ysis, where k-mers are substrings of length k of, e.g., ge-
nomic, transcriptomic, or protein sequences. K-mer-based
methods have been applied for sequence comparison for er-
ror correction (1), genome assembly (2, 3), metagenomic (4)
and chromosome (5) sequence classification, sequence clus-
tering (6), database search (7, 8), structural variation detec-
tion (9–11), transcriptome analysis (12, 13), DNA barcoding
of species (14), estimation of genome size (15), identification
of biomarkers (16), and many other applications. Because of
the widespread use of k-mers, many data structures and tech-
niques for efficiently storing and querying k-mers have been
proposed (see (17) for a review).
While k-mers has proven to be practical in several sequence
comparison problems, they are sensitive to mutations. A mu-
tation will mutate k consecutive k-mers across a string. As

the mutation rate increases, the number of matching k-mers
between two sequences quickly reduces. In (18), the distri-
bution of mutated k-mers was studied in detail. The authors
provided closed-form expressions for the mean and variance
estimates on the number of mutated k-mers under a random
mutation model. While the number of k-mer matches be-
tween sequences is of interest, it is often more informative to
know how they are distributed across the matching region.
K-mer matches, because of their consecutive nature, clus-
ter tightly in shared sequence regions, while matches may
be absent in regions with higher mutation rates. Spaced k-
mers (or spaced seeds) have been studied in several sequence
comparison contexts to overcome the k-mers’ sensitivity to
mutations (19–21). The advantage of spaced k-mers is that
matches of spaced k-mers at different positions are less cor-
related with each other than k-mer matches. In fact, k-mers
are in some conditions the worst seed pattern for the problem
of similarity search (22). Another innovative idea has been
to permute the letters in a string before comparison (23, 24).
The main idea is to permute the letters in regions of fixed
size in a string using several different permutations. When
comparing two strings in the regions under these permuta-
tions, at least one permutations will, with statistical certainty,
have pushed any substitution(s) towards the end of the re-
gion. This allows for a constant-time query of the prefix of
the region in the permuted strings. With more permutations,
it is more likely to find an exact prefix match. However, both
spaced k-mers and permutation techniques are only practi-
cal for substitutions. An insertion or deletion (indel) will
shift the sequence and, similarly to k-mers, result in a long
stretch of dissimilar k-mers. For certain applications such as
genome assembly, selecting several sizes of k for inference
has also been shown to help sequence comparison (25), but
it significantly increases runtime and complexity of analysis.
There are also methods to collapse repetitive regions before
k-mer based comparison (26), which reduces the processing
time of repetitive hits. However, such techniques are usually
employed for reference-based analysis and do not apply to
general sequence comparison problems.

As third-generation sequencing techniques appeared with se-
quencing errors mostly consisting of insertions and dele-
tions, many of the previously developed sequence compar-
ison techniques for short-read data became unsuitable. For
the third generation sequencing, MinHash (27) and minimiz-
ers (28, 29) proved to be useful data structures for such se-
quence comparison as minimizers can be preserved in a win-
dow affected by an indel. In addition, they also reduce the

Kristoffer Sahlin | bioRχiv | April 9, 2021 | 1–23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

size of the index by subsampling the data. This has made
MinHash and minimizers a popular technique for subsam-
pling k-mers employed for sequence comparison in a range
of applications such as metagenome distance estimation (30)
and alignment (31, 32), clustering (33) error-correction (34),
and assembly (35) of long-read sequencing data. Because of
the widespread practical use of minimizers, several methods
have been proposed for sampling them with as low density as
possible (36) and more evenly (37, 38).

Due to the error rates of long-read sequencing, minimizers
are often chosen much shorter (about 13-15nt) than what is
considered to produce mostly unique k-mers in, e.g., the hu-
man genome (around k > 20nt). With this length of minimiz-
ers, they produce many candidate sequence matches. There-
fore, it would be useful to combine the robustness of mini-
mizers to indels and mutation errors with larger k-mer sizes
that would offer more unique matches. One approach is to
use a small k-mer size and identify pairs (39) or groups (40)
of them clustered tightly together, and it has been studied
how to design the sampling distribution of seeds to optimize
alignment sensitivity (41, 42). Multi-seed methods are ro-
bust to any mutation type and have shown to, e.g., improve
overlap detection between long reads (43). However, they
still match single k-mers individually and group them based
on statistics after individual k-mer hits have been found. To
remove the redundancy in matches, we suggest that it is ben-
eficial to couple the k-mers in the initial matching step and
perform a single constant-time lookup of coupled k-mers.
Coupled k-mers have been explored in, e.g., (34, 44) where
paired minimizers are generated and stored as a single hash.
A paired minimizer-match signals that the region is similar
between sequences. Due to the gap between the minimiz-
ers, such a structure is not as sensitive to indels or substitu-
tions as k-mers. Paired minimizers were shown to be useful
for both genome assembly (44) and error correction of long
cDNA reads (34) where the reads are similar only in some
regions due to alternative splicing. However, in both (44)
and (34), minimizers are produced independently and paired
up after the minimizer generation. Here, we show that we
can substantially improve on paired minimizers for sequence
matching by producing minimizers chosen jointly depending
on previous windows. We also generalize paired minimizers
to link more than two together.

We propose a novel method to extract subsequences from
a string, and we call those subsequences strobemers. The
name is inspired by strobe sequencing technology (an early
Pacific Biosciences sequencing protocol), which would pro-
duce multiple subreads from a single contiguous fragment of
DNA where the subreads are separated by ‘dark’ nucleotides
whose identity is unknown, illustrated in (45). Strobemers
introduced here are, however, produced computationally. In-
tuitively, strobemers are groups of linked short k-mers (called
strobes) from adjacent windows. The strobes can be chosen
as minimizers either independently within windows, which
we call minstrobes, or dependent on previous strobes un-
der two different functions, called randstrobes, and hybrid-
strobes.

We show that strobemers (particularly randstrobes and hy-
bridstrobes) have a significant benefit over k-mers and spaced
k-mers. Strobemers improve sequence matching by provid-
ing more evenly distributed matches than k-mers, are less
sensitive to different mutation rates and give a higher total
coverage of matches across strings. We also show on human
chromosomes that strobemers can offer higher uniqueness,
hence confidence in a match, than k-mers due to the spac-
ing of the strobes. We use synthetic and biological Oxford
Nanopore sequencing reads to show that strobemers produce
more contiguous matches and better coverage when mapping
reads to themselves or to a reference sequence. Strobemers
are easy to both construct and query, making them a com-
pelling alternative to k-mers and spaced k-mers for sequence
comparison. We show that while randstrobes have both a
higher theoretical and practical runtime over generating k-
mers, minstrobes and hybridstrobes have the same practical
runtime as computing minimizers. Furthermore, strobemers
can, similarly to k-mers and spaced k-mers, be subsampled
using a thinning protocol such as MinHash, minimizers, or
syncmers (38).

Methods
Definitions. We refer to a subsequence of a string as a set of
ordered letters that can be derived from a string by deleting
some or no letters without changing the order of the remain-
ing letters. A substring is a subsequence where all the letters
are consecutive. We use i to index the position in a string s
and let s[i : i+ k) denote a k-mer substring at position i in
s covering the k positions i, . . . , i+k− 1 in s. We will con-
sider 1-indexed strings. If s[i : i+k) is identical to a k-mer
t[i′ : i′+k) in string t, we say that the k-mers match, and that
the match occurs at position i in s (and i′ in t). Similarly, let
f(i,k,s) be any function to extract a subsequence of length k
with first letter at position i from s. If f(i,k,s) is identical to
f(i′,k, t), we say that the subsequences match, and that the
match occurs at position i in s (and i′ in t). For example, for
k-mers we have f(i,k,s) = s[i : i+k). We let | · | denote the
length of strings.
We use h to denote a hash function h :

∑∗ −→ Z mapping
strings to random numbers. Given two integers w > 0 and
k > 0, the minimizer at position i in s is the substring of s of
length k starting in the interval of [i, i+w) that minimizes h.

Aim. We will introduce strobemers by describing the prob-
lem they aim to solve. Consider two strings s and t that
are identical up to m mutations. We desire a function f to
produce a set of subsequences from s and t that have two
characteristics: (1) as few possible placements of the m mu-
tations result in no matches between s and t, and (2) the sub-
sequences of length k should be as unique as k-mers on s
and t. Characteristic 1 and 2 relate to match sensitivity and
precision, and we will discuss this in an example below. For
practical purposes, we also require that at most one subse-
quence is produced per position to mimic how k-mers are
derived in a string (and limit the amount of data we store for
each string). Certainly, we could produce all possible subse-

2 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

A T C G G T C C T
G A T G G T A C C

C G A T C T A C C
A C G T C T A C C
18 12 9 4 2 8 14 5 19 11 6 7 15 13
A C G A T C T G G T A C C T A G

A

B

Strobes positions
chosen independently

Strobe positions
chosen conditionally

A T C G T A C C T
G A T T G G C T A

C G A T C T T A C
A C G C T G A C C

Hash values produced from concatenated strobes
A C G A T C T G G T A C C T A G

3-mer hash values (made up)

A T C G T A C C T

randstrobes

G A T T G G C T A
C G A T C T T A C
A C G C T G A C C

A T C G G T C C T
G A T G G T A C C
C G A T C T A C C
A C G T C T A C C

minstrobes
m1 m2 m3

m1 m2 m3

minstrobes (n : 3, ` : 3, wmin : 3, wmax : 5)

randstrobes (n : 3, ` : 3, wmin : 3, wmax : 5)

Fig. 1. An illustration of four minstrobes (A) and randstrobes (B) with (n = 3, ` = 3,wmin = 3,wmax = 5) generated from a DNA string of 16 letters. With parameters
n = 3 and ` = 3, the strobemers will consist of three strobes (substrings) each of length 3. The position of the first strobe m1 in each of the four strobemers is highlighted
in blue. The rest of the strobemers are chosen from a window of wmax−wmin + 1 = 3 positions based on a minimizer protocol of minstrobes (A) or randstrobes (B). The
possible start positions of strobes m2 and m3 are highlighted in green and red, respectively. In the minstrobe protocol (A), the 3-mer minimizer hash values (under a made
up hash function in the figure) are showed above the DNA string and come from computing h(m) for each 3-mer strobe m. The position of the hash value corresponds to
the first position of the 3-mer strobe. The minimizer values in all relevant strobe windows of length 3 in the figure are indicated by grey squares. In the minstrobe protocol,
strobes m2 and m3 are selected independently based on the minimizer value in each strobemer window. This gives a high similarity between nearby strobemers (sharing
minimizers). The four minstrobes produced are shown to the right in A. In the randstrobe protocol (B), strobes m2 and m3 are selected dependent on the previous strobes,
i.e., h(m|m1, . . . ,mi−1). The function producing the conditional dependence is irrelevant for the purpose of illustration. Here we use string concatenation of previous
strobes to produce the dependence, but any other function producing conditional dependence will suffice. Because of the conditional dependence in the hash function,
randstrobes are more randomly (but deterministically) distributed across the sequence.

quences at each position to minimize criteria 1, but this is not
feasible. A similar objective to characteristic (1) was studied
for multi-seed design (41), where the authors want to find a
set of seeds so that at least one seed matches a gapless align-
ment between two sequences.

A motivational example. Consider two strings of 100 nu-
cleotides with m = 3 mutations between them. This could
occur, e.g., in splice alignment to an exon, or in sequence
clustering. If we use a k-mer of size 30 to find matches, and
the two strings differ at positions 25, 50, and 75, there will
be no matching k-mers. Similarly, this holds for mutations
at positions 20, 48, and 73 and several other combinations.
As described, we want as few possible placements of errors
leading to the region being unmatched.
Using spaced k-mers (19) or permutations of the string (24)
would help if the mutations were substitutions. We could
consider lowering k, but this would generate more matches
to other strings as well. To achieve the same uniqueness as

longer k, we could consider coupled k-mers (39) of say 15nt
per pair, with some gap in between them. Note that the k-
mers would need to be coupled before searching for matches
to avoid many matches to other sequences. Furthermore, if
the coupled k-mers have a fixed distance from each other, we
have just created a specific type of spaced k-mers, which are
only robust to substitutions. We, therefore, could consider
coupled minimizers (34, 44) to select a random gap size for
us, but in a deterministic manner.

This brings us to the strobemers. In the scenario above, we
could pick a k-mer of size 15 at a position we want to sam-
ple and couple it with a minimizer of length 15 derived from
a window downstream from the k-mer. Together, they have
sequence length 30 and are therefore robust to false matches.
They can also match across the mutations, where the mu-
tations could be both substitutions and indels. If we increase
the mutation density on our string, eventually, our two k-mers
of length 15nt will also fail to produce any matches. There-
fore, we could consider triplets of a k-mer and two minimiz-

Kristoffer Sahlin | Strobemers bioRχiv | 3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

ers of length, e.g., 10nt. Finally, we can further reduce the
sampled minimizers’ dependency, and therefore the matches,
using other hashing protocols (as we will investigate here).

Strobemers. Consider a string s. A strobemer of order n in
s is a subsequence of s composed of a set of ordered sub-
strings m1, ...mn on s of equal length `, that we call strobes.
If the first strobe m1 starts at position i, the second strobe
m2 will be chosen from a window [i+wmin : i+wmax]
with wmin < wmax on s, m3 from [i+ wmin + wmax :
i+ 2wmax], and mn from [i+wmin + (n− 2)wmax : i+
(n− 1)wmax]. We will from now on parametrize a strobe-
mer as (n,`,wmin,wmax) denoting the order, the length of
the strobe, and the minimum and maximum window offset to
the previous window, respectively.
We select m2, ...mn based on some hash function. We will
consider three different hash functions for producing them,
which give significantly different results. First we denote as
minstrobe, a strobemer where strobes m2, . . . ,mn are inde-
pendently selected as minimizers in their respective windows
under a hash function h (Figure 1A).
Second, we denote as randstrobe, a strobemer where strobe
mj is selected as minimizer dependent on the previous
m1, . . .mj−1 strobes (Figure 1B). Any asymmetric hash
function (i.e, h(s, t) 6= h(t,s)) with conditional dependence
on previous strobes suffice for our purposes in this study.
Here, we chose the hash function h(m′|m1, . . . ,mj−1) =
h(m1⊕ . . .⊕mj−1⊕ k′), where ⊕ denotes string concate-
nation, where h concatenates the previous selected strobes
m1, . . . ,mj−1. Thus, the k-mers in the randstrobe are pro-
duced iteratively from i= 1, ..,n and yields a more randomly
distributed set of strobes.
Third, we will consider a hybrid between minstrobes and
randstrobes that uses both independent minimizers and a con-
ditional hash function that we call hybridstrobes. Consider
partitioning the sampling window for each strobe into x dis-
joint segments of length wx = b(wmax−wmin)/xc. That is,
the sampling window for m2 is partitioned into [i+wmin :
i+wmin +wx), [i+wmin +wx : i+wmin + 2wx), . . . [i+
wmin + (x− 1)wx : i+wmax), and similarly for the sam-
pling windows of the other strobes. We select a strobe mj

as the minimizer in the rth window segment of length wx
dependent on the remainder r of the previous strobe modulo
x, i.e., r = h(mj−i) mod x. While this selection is not as
randomly distributed as randstrobes, the variability of x pos-
sible pairings provides more randomly distributed matches
than minstrobes. Here we will use x= 3.
There are two important aspects to consider for the three
protocols. Firstly, for two strobes with nearby starting po-
sitions, strobes m2, ..,mn will most frequently be the same
under the minstrobe generation due to independent minimiz-
ers (see Fig. 1), and most frequently differ in a randstrobe.
This means that under the same parameters in the proto-
cols, the randstrobes will (in all likelihood) contain more
uniquely sampled positions and, hence, more unique rand-
strobes, while minstrobes more frequently share minimizers.
Hybridstrobes places somewhere in between minstrobes and
randstrobes depending on the size of x.

Secondly, generating minstrobes and hybridstrobes are in
practice almost as fast as producing minimizers while gen-
erating randstrobes, under the function we consider here, is
not. We elaborate on this in the section on time complexity.
Finally, we note that minstrobes of order 2 are similar to
but formally different from paired minimizers (34, 44). Both
minstrobes of order 2 and paired minimizers consist of two
substrings. However, paired minimizers are two minimizers
that are coupled together under some distance constraint on
a sequence. In the minstrobe protocol, the first strobe is not
necessarily a minimizer. However, strobemers can be sub-
sampled with a thinning protocol. In this case, a strobemer
with n = 2 can be considered as a specific method to select
paired minimizers.

Construction of strobemers. We aim to produce a strobe-
mers of a string s in a similar manner to how k-mers are
produced, i.e., one strobemer per position i ∈ [1, |s|−k+ 1].
This would mean that we extract the same amount of k-mers
and strobemers from a string s, and consequently, for equal
length k, the same amount of raw data. Note however, that
the number of unique k-mers and strobemers may differ. We
construct strobemers as follows. The total possible span of
a strobemer of order n is W = (n− 1)wmax + `, and the
total subsequence length as k =

∑n
j=1mj (no strobe is over-

lapping). Let us consider extraction of a strobemer at posi-
tion i in s. If W ≤ |s| − i we use the predefined windows
[wmin,wmax) and compute the strobemers under the respec-
tive strobemer protocols as described above. If W > |s|− i,
we narrow the window sizes until m1 to mn are all adjacent
to each other producing a substring (k-mer) of length k. Un-
der this construction, the same amount of k-mers and strobe-
mers will be extracted from a string. Any way to narrow
the windows at the end of the sequence can be considered.
Here, we choose to shorten each window [wmin,wmax] to
b|s|−ic
n . Furthermore, while the protocol to extract strobe-

mers allows overlapping strobes, here we will only consider
wmin ≥ ` giving non-overlapping strobes. Pseudocode to
construct strobemers are given in appendix A.

Time complexity. If we ignore the time complexity of the
hash function, the time complexity of generating minimizers
is O(|s|w) for a window size w. However, as (31) noted,
computing minimizers is in practise close to O(|s|) if we use
a queue to cache previous minimizer values in the window.
The expensive step is when a previous minimizer is discarded
from the queue and a new minimizer needs to be computed
for the window.
Similar to computing minimizers, strobemers have the worst-
case time complexity of O(|s|n(wmax−wmin)). However,
the independence of hash values in the minstrobe and hybrid-
strobe protocols makes them close toO(|s|) in practice by us-
ing separate queues for each strobe sampling window in the
same manner as computing minimizers independently. The
randstrobe protocol does not have this independence under
the hashing scheme we consider in this study, which means
that all hash values have to be recomputed at each posi-

4 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

tion. This means its practical time complexity is therefore
O(|s|n(wmax−wmin)).

Implementation. The pseudocode to construct strobemers
(appendix A) are provided for the simplicity in expression,
they are not efficient implementations. We want to avoid
string concatenation. We also want to avoid repeated compu-
tation of minimizers for minstrobes and hybridstrobes where
minimizer values are computed independently.
For minstrobes and hybridstrobes, we first precompute all the
hash values in a string to work with addition of hash val-
ues and not string concatenations. For a minstrobe or hy-
bridstrobe of order 2 consisting of strobes m1 and m2, the
strobemer hash value that is stored will be h(m1)−h(m2).
We store the hash values to represent the strings and not the
strings explicitly. Similarly, for a minstrobe or hybridstrobe
of order 3 consisting of strobes m1, m2, and m3, we store
h(m1)−h(m2) + 2h(m3). An asymmetric function should
be used so that a permutation of the strobemers do not pro-
duce the same hash values. As described in (31) We also keep
a queue datastructure for each strobe mj , j ≥ 2 and the cur-
rent minimum hash value in these windows so that we only
need to recompute the minimum hash values in the window
whenever we discard the current minimum in the queue.
For randstrobes, we similarly to the other protocols, precom-
pute all the hash values in a string and store only the hash
values representing randstrobes. Therefore, instead of tak-
ing the minimum over string concatenations in a window as
described in the pseudocode for randstrobes (appendix A),
we select the strobe mj in a window that minimizes the
function h(m)− h(mj) mod q, where q is a prime (we
choose 997). Similarly to minstrobes, the final hash value
to represent the randstrobe is h(m1)−h(m2) for n = 2 and
h(m1)−h(m2)+2h(m3) for n= 3.

Results
Overview. We will first investigate sequence matching per-
formance of strobemers (order 2 and 3) compared to k-mers
and spaced k-mers using simulated data. We consider both
how effective the different protocols are at finding matches
under different error rates (related to sensitivity) and how
unique the matches are that they produce (related to speci-
ficity).
We then implement a tool StrobeMap, and use synthetic and
biological data to demonstrate the utility of strobemers in var-
ious applications. We map ONT cDNA reads with 7% me-
dian error rate from (34) both to themselves and to reference
sequences. We also map genomic ONT E. coli reads with
17% median error rate both to themselves and to an E. coli
genome, as well as two E. coli genomes to themselves. In the
experiments we compare the contiguity and coverage of the
matches produced by k-mers and strobemers.

Experiment design. The size of the extracted subsequence
length k of any protocol is central when comparing the ef-
ficacy of finding matches and their uniqueness. Therefore,
we are interested in comparing sizes of subsequences that are

similar between the protocols. Specifically, if the size of the
k-mer is 30, we want to compare the k-mers to strobemers
parameterized, e.g., by (2,15, ·, ·) and (3,10, ·, ·) as all the
extracted subsequences have a length of 30 on the strings.
The spaced k-mers consists of a window of size L with k
fixed positions and a set of L− k wildcard (or "don’t care")
positions. This is commonly represented as a binary string
where 1’s are sampled and 0’s are wildcard positions. For
example, in the string AGGTCA with L = 6, the spaced k-
mer 101011 is AGCA. In our evaluations, we choose two
densities of fixed positions for the spaced k-mers. First, we
denote as spaced-dense a strategy where 2/3 of the positions
are fixed, and spaced-sparse where 1/3 of the positions are
fixed. The spaced-dense and the spaced-sparse frequency
of fixed positions roughly correspond to the densities used
in (20) and (46), respectively. To keep k fixed, L = 1.5k in
the spaced-dense protocol and L = 3k in the spaced-sparse
protocol. The windows’ first and last positions are always
fixed (as in (20, 46)) to assure the length of the spaced k-
mer. The remaining fixed positions are randomly chosen. In,
e.g., (46), the sampled positions are handpicked. While hand-
picking positions may be more suitable for optimizing lower
correlation between matches, this study focuses on designing
a protocol robust to indels. We will observe that spaced k-
mers do not work well for mutations other than substitutions.

Evaluation metrics. If a k-mer or spaced k-mer extracted
from position i in s and i′ in t produce the same hash value,
we say that a match between two sequences s1 and s2 oc-
cur at position i and i′ in the two strings respectively. For
a k-mer, we say that the match produces a sequence cov-
erage over positions [i, i+ k]. For a spaced k-mer, we say
that the match produces a sequence coverage over the k fixed
(sampled) positions. Furthermore, for a k-mer we say that
the match has a match coverage of length k (i.e., positions
[i, i+ k]), and of length L in case of the spaced k-mer (i.e.,
the span of the fixed positions). If a strobemer extracted from
position i in s and i′ in t produce the same hash value, we
say that a match between two sequences s1 and s2 occur at
position i and i′ as well as at the start positions of the ad-
ditional strobes m2, . . . ,mn in the two strings respectively.
We say that the match produces a sequence coverage over all
the positions covered by the strobes in the match. Further-
more, we say that the match has a match coverage spanning
the first nucleotide in the first strobemer to the last nucleotide
in the last strobemer. The total sequence coverage and match
coverage of a string s is calculated as the union of all posi-
tions covered under the definitions of sequence coverage and
match coverage, respectively. We adopt similar terminology
as in (18) and denote a maximal interval of consecutive posi-
tions without matches as an island.
To evaluate the sequence matching ability, we compare un-
der different error rates (i) the fraction of matches, (ii) the
sequence coverage, (iii) the match coverage, and (iv) the dis-
tribution of islands. We need to make two clarifications on
these evaluation metrics. First, our experiments on simulated
data are designed with parameters so that the event of observ-
ing a false match (e.g., repetitive k-mer) under any protocol

Kristoffer Sahlin | Strobemers bioRχiv | 5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

minstrobes (2,9,10,20) randstrobes (3,6,10,20)

minstrobes (3,6,10,20) hybridstrobes (2,9,10,20)

0 20 40 60 80

randstrobes (2,9,10,20)

0 20 40 60 80
Position

hybridstrobes (3,6,10,20)

Match distribution

Fig. 2. An example of strobemer matches for minstrobes, randstrobes and hybridstrobes with two different parametrizations each (separate panels). Each panel shows
matches between a string s of 100nt and a string t derived from simulating mutations every 15th position in s. Indels and substitutions are chosen at random with equal
probability. The matches are plotted with respect to the positions in s on the 83 possible matching positions (x-axis). Each row in a panel corresponds to a separate simulation.

has a negligible probability. This means that our simulated
experiments only measure the raw ability to identify correct
matches.
Second, as for the distribution of islands, we are interested in
measuring the sizes of islands and their size distribution. We
calculate the island E-size (47), a commonly used metric in
genome assembly that we will adapt for our purposes. For a
string s and a set of islands lengths X on s we calculate the
island E-size E as follows.

E = 1
|s|

∑
x∈X

x2

E measures the expected island size, and intuitively, we can
think of E as follows. We pick a position at random across s
and observe the island size spanning that position. We may
pick positions that are covered by matches (i.e., island size 0),
but if we keep picking positions at random over s and store
our observations on the island lengths, we will end up with
E according to the law of large numbers. We will also show
the entire island distribution.

Strobemer vs k-mer matching. We compare how effective
the different protocols are at producing matches for different
error rates. We start with a controlled scenario, where mu-
tations are distributed with a fixed distance. In our second
experiment, we use a random mutation distribution. We per-
form the fixed-distance mutation experiment to illustrate the
advantage of strobemer protocols.

Controlled mutations. First, we provide a small simulation to
illustrate a scenario similar to the motivational example de-
scribed earlier. We simulate a string s of 100 random nu-
cleotides and a string t derived from simulating mutations

every 15th position in s. Insertions, deletions, and substitu-
tions are chosen at random with equal probability of 1/3 each.
We simulate s and t ten times to illustrate the variability in
matches for the strobemers between simulations. The start
positions of matching strobemers are shown in Fig. 2 un-
der two different parametrizations for minstrobes and rand-
strobes. We note that we would not obtain any matches
for k-mers of 15nt or larger in this scenario, and further-
more, no matches for spaced k-mers if the mutations were
indels. Minstrobes, while more effective than k-mers in
this scenario, fail to produce matches between many of the
mutations for the (2,9,10,20) parametrization and for some
with the (3,6,10,20) parametrization. We observe that rand-
strobes produce matches in all ten experiments under both
parametrizations and provide a more random match distribu-
tion across the string than minstrobes. Hybridstrobes has a
match performance in between minstrobes and randstrobes.

To better quantify the performance in this scenario, we in-
crease the size of our controlled experiment. We simulate
a string of length 10,000nt and construct a second string by
generating an insertion, deletion, or substitution with a prob-
ability of 1/3 each, every 20 nucleotides. We then simulate
k-mers with size 30, spaced-dense with k = 30, and L= 45,
spaced-sparse with k = 30, L= 90, and strobemers with pa-
rameters (2,15,25,50) and (3,10,25,50) so that all protocols
have the same sampled subsequence length, and compare the
number of matches, coverage, average island size, and is-
land E-size under the different protocols (table 1). We re-
peat the experiment 1000 times to alleviate sample variance.
For the spaced k-mer protocols, fixed positions are resim-
ulated in each experiment. We refer to this as the SIM-C
experiment (for simulation controlled). The spaced k-mer

6 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

SIM-C
m (%) sc (%) mc (%) E

k-mer 30 0 0 0 10,000

spaced k-mer
dense 1.1 17.6 21.2 663.3
sparse 0.2 3.0 4.8 3503.1

minstrobe
(2,15,25,50) 4.8 38.7 59.1 81.2
(3,10,25,50) 8.0 35.2 67.9 79.5

randstrobe
(2,15,25,50) 3.9 64.4 87.1 29.2
(3,10,25,50) 6.4 74.5 99.5 12.1

hybridstrobe
(2,15,25,50) 4.2 59.1 82.0 34.9
(3,10,25,50) 7.0 65.1 97.4 17.4

Table 1. Statistics of the number of matches (m) as a percentage of the total extracted subsequences for the protocol, the sequence coverage (sc) and match coverage (mc)
as a percentage of the total sequence length, and the expected island size (E) for the SIM-C dataset which has evenly spaced mutations with distance 20nt. The second
column shows the parameters to the protocols.

SIM-R
0.01 0.05

0.1
m sc mc E m sc mc E m sc mc E

k-mer 30 74.5 95.9 95.9 7.9 22.4 54.7 54.7 79.2 4.7 18.1 18.1 344.9

spaced k-mer
dense 67.6 95.6 96.2 9.7 13.8 50.9 53.9 120.7 1.8 14.1 16.1 570.1
sparse 50.5 87.8 89.7 44.4 3.5 21.4 26.7 640.7 0.1 2.1 3.6 4223.1

minstrobe
(2,15,25,50) 69.1 94.8 99.2 4.3 16.5 51.9 72.6 53.2 3.0 15.9 27.3 330.9
(3,10,25,50) 64.4 90.3 99.4 4.7 12.6 43.4 75.3 58.1 1.9 12.0 28.7 440.4

randstrobe
(2,15,25,50) 70.7 98.2 99.9 2.0 18.2 72.7 87.8 23.0 3.4 31.1 44.6 144.7
(3,10,25,50) 66.7 98.8 100.0 0.9 14.7 78.3 98.2 11.1 2.5 33.7 67.0 92.9

hybridstrobe
(2,15,25,50) 71.6 97.9 99.8 2.2 19.2 70.3 86.0 25.6 3.7 29.1 42.1 157.9
(3,10,25,50) 65.5 97.4 99.4 1.7 14.5 70.4 95.6 16.5 2.5 27.4 58.4 132.5

Table 2. Match statistics under different sampling protocols under mutations rates of 0.01, 0.05, 0.1. Here, m denotes the number of matches as a percentage of the total
number of extracted subsequences for the protocol, sc (sequence coverage) and mc (match coverage) is shown as the percentage of the total sequence length, and E is
the expected island size.

100 101 102 103 104

Island length

100

101

102

103

104

Co
un

t label
randstrobes-(3, 10, 25, 50)
hybridstrobes-(3, 10, 25, 50)
kmers
minstrobes-(2, 15, 25, 50)
spaced_kmers_dense

Fig. 3. Histogram of island lengths for the SIM-R experiment with mutation rate 0.1.

protocols offer an advantage over k-mers as they will match
over some of the mutations that are substitutions. Particu-
larly, the spaced-dense protocol that has a lower window size
than space-sparse protocol and is therefore less affected by

surrounding mutations. However, this particular experiment
highlights the advantage of strobemers, which frequently pro-
duce matches between most or all mutations. Furthermore,
the experiment shows the difference in performance between

Kristoffer Sahlin | Strobemers bioRχiv | 7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

minstrobes, hybridstrobes, and randstrobes and their different
parametrizations. The randstrobe protocols’ matches cover
the largest fraction of the sequences, and they also have the
smallest average and expected island size (table 1). In this
experiment, the randstrobe of order 3 produces the most fa-
vorable sequence matching result. The hybridstrobe proto-
cols have a match performance close to that of the randstrobe
protocols across the four metrics.

Random mutations. In our second experiment, we simulate
a string of length 10,000nt and construct a second string by
generating insertions, deletions, or substitutions with equal
probability of 1/3 each across the string with mutation rate
µ ∈ 0.01,0.05,0.1. This means that the positions for the
mutations are randomly distributed. Each such simulation
is replicated 1000 times to alleviate sample variation. We
refer to this as the SIM-R experiment (for simulation ran-
dom). In this scenario, spaced k-mer protocols perform worse
than k-mers, with fewer matches, lower match coverage, and
larger expected island size (table 2). We observe that k-
mers has the highest fraction of matches in all experiments.
This is because matches produced by k-mers cluster opti-
mally tight (1 nucleotide offset) between neighboring muta-
tions at a distance larger than k. The minstrobe protocols
under the two parametrizations have roughly the same per-
formance as k-mers with higher match coverage and smaller
expected island size but a lower fraction of matches and se-
quence coverage. The randstrobe protocols are also in this
scenario significantly better at distributing matches across the
sequences compared to all the other protocols. The rand-
strobe protocols have a substantially higher sequence cov-
erage and match coverage and smaller expected island size
under both parametrizations, which are all important aspects
of sequence matching. Hybridstrobes produce results that are
relatively close to the performance of randstrobes across the
four matching metrics, making them a compelling alternative
for sequence matching due to their fast construction time.
We also show the full distribution of island sizes for muta-
tion the different mutation rates (Fig. 3 and Fig. E.1) for a
subset of the protocols, which illustrates the general trend in
island sizes. For example, for a mutation rate of 0.1, we ob-
serve that the randstrobe protocols have roughly 1,000nt as
the largest island size in our simulations, while k-mers have
about 2,000nt (Fig. 3).

Thinning. K-mers, spaced k-mers and strobemers can all be
thinned out using winnowing protocols such as minimizer
schemes or syncmers (38). We compared the protocols when
applying a minimizer protocol with thinning window size
w = 10 and 20 to both sequences in the SIM-R experiments.
For k-mers and spaced k-mers, the thinning is performed by
selecting the k-mer with the lowest hash value in a window of
size w. For strobemers, the thinning is performed by select-
ing the the first strobe with the lowest hash value. This strobe
will be selected to form the complete strobemer. In case of
ties in hash values, the first k-mer (strobe) is selected.
In this scenario, the relative improvement of strobemers com-
pared to k-mers decreases as w increases. For w = 10, rand-

strobes has a better sequence coverage, match coverage, and
expected island size than all other protocols across mutation
rates (table 3). With w = 20, k-mers produce the best se-
quence coverage across protocols, while randstrobes produce
the best match coverage across protocols. Expected island
size is better for randstrobes for mutation rates 0.01 and 0.05,
but worse for mutation rate of 0.1. Hybridstrobes follows the
performance of randstrobes closely in all experiments. Our
experiments indicate that the relative increase in performance
that strobemers have over k-mers decrease the more they are
subsampled under the thinning protocol considered here.

Strobemer vs k-mer uniqueness. We also want to com-
pare the confidence or uniqueness of a match. Strobemers
offer more match flexibility, as they can preserve a match
with indels in the sampled region. We refer to the ability
for a protocol to match over indels as flexible-position pro-
tocols), contrary to k-mers and spaced k-mers (referred to
as fixed-position protocols). It is reasonable to assume that
for the same size k of extracted subsequence, the strobemer
protocols will have lower uniqueness (precision) than k-mers
and spaced k-mers due to the flexible-position feature. We
study the uniqueness in matches by computing the percent-
age of unique k-mers, spaced k-mers, and strobemers on the
three largest human chromosomes (Fig. 4). Similarly to the
SIM-C and SIM-R experiments, for a k-mer size of k, we
parametrize the strobemer protocols with (n,k/n,25,50) for
n= 2,3 in order to have the same subsequence lengths. Sim-
ilarly, the spaced k-mers are parametrized by L = 1.5k and
L= 3k and the positions are simulated as in previous exper-
iments.
We observe that for the three fixed-position protocols, a
larger span in which positions are sampled helps subsequence
uniqueness. The spaced-sparse has the highest uniqueness
across all the three chromosomes, followed by spaced-dense
and finally the k-mers.
Contrary to our intuition, the strobemer strobemers offer a
higher uniqueness than k-mers for k ≥ 24 (Fig. 4), which
may be due to the larger sampling window span as we ob-
served for the spaced k-mers. The Out of the strobemer pro-
tocols evaluated here, strobemers of order 3 produce the high-
est percentage of unique matches for reasonably large subse-
quence lengths (k ≥ 24). There is no substantial difference
between the strobemer protocols of the same order. How-
ever, for k= 18, the strobemer protocols will be parametrized
by (2,9,25,50) and (3,6,25,25), which with the flexible-
position sampling appear too small to guarantee reasonable
uniqueness on the largest human chromosomes.

Proof of concept sequence mapper. As demonstrated
in our simulated experiments, spaced k-mers perform sub-
optimally to k-mers and strobemers when indels are present.
Therefore, we further compared k-mers to strobemers using
synthetic and biological data with indels. We implemented
a proof-of-concept tool StrobeMap. StrobeMap implements
sequence similarity search with k-mers and strobemers of or-
der 2 and 3. The output of StrobeMap is a tab separated val-
ues file (TSV) file with mapping information on the same

8 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

18 24 30 36
k

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

%
 u

ni
qu

e

chr = chr1

18 24 30 36
k

chr = chr2

18 24 30 36
k

chr = chr3

datastructure
kmers
spaced_sparse
spaced_dense
minstrobes2
minstrobes3
randstrobes2
randstrobes3
hybridstrobes2
hybridstrobes3

Fig. 4. The percent of unique k-mers, spaced k-mers, minstrobes and randstrobes (y-axis) on the three largest chromosomes (chr1-chr3) of the human genome for various
sequence lengths of k (x-axis). Each panel shows a separate chromosome. For a given k in the plot, strobemers with n= 2 are computed with parameters (2,k/2,50) and
strobemers with n = 3 are computed with parameters (2,k/3,25) so that the number of extracted nucleotides between the five methods are the same. Y-axes have been
cut at 80% for illustration. The values for minstrobes and randstrobes with parameters (3,6,25) are below 50% on all the three chromosomes. The value for minstrobes and
randstrobes with parameters (2,9,50) are below 70% on all the three chromosomes.

SIRV

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

tio
n

co
ve

re
d

method
randstrobes-(3,10,20,70)
randstrobes-(2,15,20,70)
hybridstrobes-(3,10,20,70)
hybridstrobes-(2,15,20,70)
minstrobes-(3,10,20,70)
minstrobes-(2,15,20,70)
kmers

SIRV

0
5

10
15

20
25

N
um

be
r N

A
M

s

method
randstrobes-(3,10,20,70)
randstrobes-(2,15,20,70)
hybridstrobes-(3,10,20,70)
hybridstrobes-(2,15,20,70)
minstrobes-(3,10,20,70)
minstrobes-(2,15,20,70)
kmers

Fig. 5. Comparison between strobemers and k-mers when matching ONT cDNA reads (7.0% median error rate) to 61 unique Spike-in RNA Variants (SIRV) reference
sequences. Each SIRV corresponds to a tick on the x-axis. Panel A shows total fraction of the SIRV covered by NAMs from reads (y-axis). Panel B shows the number of
NAMs (y-axis) between a read and the SIRV. The line shows the mean and the shaded area displays the standard deviation of the reads. A high NAM coverage and low
number of NAMs means long contiguous matches and facilitates accurate and efficient sequence comparison.

format as MUMmer (48). However, instead of producing
maximal exact matches (MEMs) or maximal unique matches
(MUMs) between a query and a reference sequence, Strobe-
Map outputs what we refer to as Non-overlapping Approxi-
mately Matching (NAM) regions based on matches from the
strobemer or k-mer protocol. The NAMs are produced by
matches that overlap both on the query and reference, details
on how NAMs are produced are found in appendix B.

As sequence mapping is often used as a preprocessing step to
performing alignment or clustering, we use metrics valuable
to candidate filtering to evaluate the methods. We measured
the number of NAMs generated, the total match coverage
produced by the NAMs, and the average normalized NAM
length, which is the length of the NAM divided by either the
length of the reference or the query depending on the map-
ping context. In order to achieve high accuracy and efficient
sequence similarity searches, it is important that a mapping
step produce few but long matches that cover a large portion

of the query and/or the reference. Few matches will reduce
time to post-cluster matches, reduce disk space (if matches
are stored), while long contiguous matches will improve the
decision on whether a candidate matching region should be
aligned or not. We mapped ONT cDNA and DNA reads with
7% and 17% median error rate both to reference sequences
and to the reads themselves. We also studied whole genome
mapping of two E. coli genomes under some different set-
tings. The details of the data and experiments are found in ap-
pendix B.

We first mapped cDNA reads (queries) to SIRVs (references)
using k-mers and strobemers with subsequence size of 30
where strobemers were parametrized as (2,15,20,70) and
(3,10,20,70). Randstrobes produce the highest match cov-
erage to references (Fig. 5A), lowest number of matches
(Fig. 5B)) and highest normalized NAM lengths (Fig. E.2).
On this dataset, randstrobes are favourable to all other proto-
cols when it comes to sequence matching, closely followed

Kristoffer Sahlin | Strobemers bioRχiv | 9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

20000 25000 30000 35000 40000 45000 50000
Read length

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
co

ve
re

d

method
kmers
hybridstrobes3

20000 25000 30000 35000 40000 45000 50000
Read length

0

100

200

300

400

N
um

be
r o

f N
A

M
s

method
kmers
hybridstrobes3

20000 25000 30000 35000 40000 45000 50000
Read length

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

co
ve

re
d

method
kmers
hybridstrobes3

20000 25000 30000 35000 40000 45000 50000
Read length

0

20

40

60

80

100

120

140

160

N
um

be
r o

f N
A

M
s

method
kmers
hybridstrobes3

Fig. 6. Comparison between hybridstrobes and k-mers when mapping genomic ONT reads for reads of different lengths (x-axis). Panel A and B shows read mapping
results when mapping reads to the genome, and C and D when mapping reads to themselves. Panel A shows total fraction of the read covered by NAMs in the optimal
colinear chaining solution to the genome (y-axis). Panel B shows the total number of NAMs (y-axis) between a read and the genome. Panel C shows the total fraction of the
read covered by NAMs to the longest overlapping read, inferred from the optimal solution of a colinear chaining (y-axis). Panel B shows the total number of NAMs (y-axis)
generated for the read. The line shows the mean and the shaded area displays a 95% confidence interval of the mean estimate. A high NAM coverage and low number of
NAMs means long contiguous matches and facilitates accurate and efficient sequence comparison.

by hybridstrobes. Many of the NAMs that the randstrobes
produce cover the full or near full SIRV reference (Fig. E.2).
We observe the same trend when we compare the ability
match reads to each other from the same SIRV (Fig. E.3).
However, all the protocols produce a lower coverage and nor-
malized match length due to the lower sequence identity.
When mapping genomic ONT E. coli reads to an E. coli
genome, we measure how many NAMs the protocols gen-
erate and the fraction of the read that is covered by NAM
matches coverage for the best mapping location. To get
the best mapping location, we compute the longest collinear
chain of NAMs to the genome. We count only the cover-
age of the longest collinear chain of NAMs to avoid overesti-
mating coverage from additional matches (experiment details
in appendix E). We compared k-mers of length 30 to hybrid-
strobes with parameters (3,10,10,100). The NAMs produced
by hybridstrobes cover much more of the read (Fig. 6A) and
are much fewer (Fig. 6B). We also mapped the reads against

themselves and, similarly to mapping to the genome, we
computed the total number of NAMs as well as the coverage
of the longest collinear chain. This means that the coverage is
only calculated for the largest overlap to another read. While
we do not have the ground truth overlap values, large over-
laps between pairs of longest overlapping reads are expected
as the reads have a 3.65x coverage of the genome. Similarly
to when we mapped the reads to the genome, we observe that
hybridstrobes produce higher NAM coverage (Fig. 6C) and
fewer NAMs (Fig. 6D).
Finally, we measured the number of NAMs produced when
we aligned two E. coli genomes to each other using k-mers of
length 30 and hybridstrobes parameterized by (2,15,20,120),
and (3,10,20,120). The k-mers produce 19,465 NAMs while
hybridstrobes of order 2 and 3 produce 10,290 and 4,654
NAMs respectively. Fig. 7 shows MUMmer dotplots of the
NAMs on the two E. coli genomes for the three mappings.
Hybridstrobes produce long contiguous NAMs of similar re-

10 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

QRY

R
E
F

QRY

R
E
F

QRY

R
E
F

Fig. 7. Dotplots of mapping two different E. coli genomes to eachother using (A) kmers of size 30, (B) hybridstrobes parametrized by (2,15,20,120), and (C) hybridstrobes
parametrized by (3,10,20,120).

gions and, with the parametrization here, avoids many of the
smaller local matches. If one desires to also retain the smaller
local hits, one can reduce the window sizes and wmin. With
hybridstrobes parametrized by (2,15,1,70), we retain most of
the local hits with a total of 19,483 NAMs but still retaining
the large contiguous matches (Fig. E.4A). The reason that the
hybridstrobes produce slightly more NAMs compared to k-
mers in this scenario is that wmin is set so that the strobes
can overlap in this example, producing smaller local hits.
We also created hybridstrobes of order 3 with the parame-
ters (3,10,20,120) and with minimizer thinning (w = 20) and
observed similar long contiguous NAMs (Fig. E.4B), with a
total of 3,213 NAMs produced. Details of the experiments
are found in in appendix D.

Time and memory usage. For minstrobes and hybrid-
strobes, we only need to store queues with wmax−wmin+1
hash values and the current minimum hash value in the queue.
For randstrobes, the minimum of a hash value is computed
from a window of size wmax−wmin+ 1. The window size
is negligible to sequence size for the window sizes investi-
gated here. Therefore, the memory to construct strobemers
is not significantly more memory intense than constructing
k-mers.
Furthermore, strobemers take as much memory as k-mers to
store for the same sequence length k and the start positions of
k-mers or strobemers also require the same amount of mem-
ory. However, if one desires to store the positions of the other
strobes, this could be done by storing offsets to the previous
strobemer. For the window lengths investigated here, 8 bits
per strobemer would suffice, with the possibility use less bits
for smaller windows if only the offset to the start of the win-
dow is stored.
As for runtime, we compared the relative runtime of comput-

ing k-mers compared to strobemers using the construction
described in the implementation section for different k-mer
and window sizes (details of experiment in appendix C). K-
mers are the fastest to compute. Randstrobes have the slow-
est relative runtime compared to k-mers, where the relative
increase in computation time depends on the window size
(table 3). Both minstrobes and hybridstrobes have compa-
rable relative construction times to k-mers (table 3), making
hybridstrobes, with their beneficial sequence match metrics,
the most attractive protocol out of the strobemers.
However, we also show that the implementation and the pro-
gramming language have substantial influence on the perfor-
mance. We ran the same implementation under two different
implementations of Python (Python 3.8 table 3 and pypy3
table 4) and observed drastic difference in the relative effi-
ciency of computing strobemers (details in appendix C). Im-
plementing strobemer protocols in a compiled programming
language with arrays may decrease the relative construction
time compared to k-mers (particularly for randstrobes; de-
tails in appendix C). Also, using single instruction multiple
data (SIMD) implementations as is commonly used in bioin-
formatics (e.g., (49, 50)) may further improve relative con-
struction time (see discussion in appendix C).
When benchmarking memory consumption and runtime of
our proof-of-concept tool StrobeMap on the E. coli data, we
observed similar memory requirements for k-mers and hy-
bridstrobes, while using hybridstrobes of order 2 is about
twice as slow as k-mers, and hybridstrobes of order 3 is
about a three to four times as slow in relative runtime. The
benchmarks are given for reference but may not be repre-
sentative of neither runtime, nor memory requirement of op-
timized implementations in a compiled programming lan-
guage. The details of runtime and memory usage are found in
appendix D. In addition, downstream processing of matches

Kristoffer Sahlin | Strobemers bioRχiv | 11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

(such as collinear chaining) may take longer for k-mers as
they in general producing significantly more matches.

Discussion

We have studied strobemers, an alternative sampling proto-
col to k-mers and spaced k-mers for sequence comparison.
We have experimentally demonstrated that strobemers, par-
ticularly randstrobes and hybridstrobes, efficiently produce
higher sequence coverage, match coverage, and lower gap
size between matches under different mutation rates (table 1
and table 2). Strobemers also produce a higher number of
unique matches (specificity) compared to k-mers for several
commonly used sized of k (Fig. 4).
K-mers produce the highest number of matches in the SIM-
R experiments, as k-mer matches cluster optimally tight be-
tween mutations at distance larger than k. However, the num-
ber of matches is not always helpful as matches may cluster
due to local repeats. Randstrobes and hybridstrobes can offer
more evenly distributed matches, higher match coverage, and
higher uniqueness. These are features that are useful for sev-
eral algorithms that require chains of matches between two
sequences to be considered candidates for alignment or clus-
tering, e.g., as in (31, 33).
To show the utility of strobemers, we implemented a proof-
of-concept mapping tool, StrobeMap, that perform sequence
mappings using both k-mers and strobemers. We demon-
strated in several different scenarios such as mapping ONT
cDNA and genomic reads to themselves or to reference tran-
scripts or genomes that strobemers produce favourable se-
quence comparison metrics. Particularly, hybridstrobes of-
fer a beneficial trade-off between construction time and the
ability to produce long contiguous matches under various se-
quence matching contexts. Overall, the strobemers, show a
promising data structure for algorithms that rely on sequence
comparison.
Similarly to k-mers, minstrobes and randstrobes can be sub-
sampled as minimizers (29), syncmers (38), or any other thin-
ning protocol that can be applied to k-mers. We observed that
the more thinned out the strobemer protocols are, the less ad-
vantage do they have over k-mers (table 3). An interesting
future research direction would be to study whether specific
thinning schemes are better suited for strobemers. Specifi-
cally, whether they can preserve the relative performance in-
crease that are observed without thinning. By studying the
mathematical properties of hashes and minimizers (36, 51),
we may find a effective subsampling techniques of strobe-
mers.
As for runtime performance randstrobes are slower to gen-
erate than k-mers and minstrobes. Hybridstrobes mixes the
ideas from minstrobes and randstrobes and shows a runtime
comparable to minstrobes while producing sequence matches
almost as efficiently as randstrobes. Overall, we believe
hybridstrobes may offer the best trade-off in performance
and sequence comparison accuracy. However, by employ-
ing ideas like cyclic polynomial hash functions (52), we may
come up with faster methods to generate strobemers.

Future study of strobemers.

Parameterization. While our study provides an experimental
evaluation of strobemers under some commonly used values
of k and mutation rates, the statistics of strobemers remains
to be explored. In (18), the authors derived the mean and vari-
ance of islands for k-mers and the number of mutated k-mers
under given mutation rate. If we can derive analytic expres-
sions for strobemers, it may suggest us how to optimize pa-
rameters of the strobemer protocols under various mutation
rates, which will be useful for similarity comparison algo-
rithms. Even without analytic expressions, we can evaluate
the sizes on strobes and windows suitable for various muta-
tion rates. Also, we could relax the constraint of equal-size
strobes and window sizes. As a start in this direction, we may
derive more efficient parameter selection on window sizes by
modeling the number of mutations after a certain number of
nucleotides as a Poisson Process. Under such a model, the
author hypothesizes that choosing larger window sizes down-
stream could be beneficial. This remains to be explored.

Construction, storing and queries. There are several aspects
of construction, indexing, and storage of strobemers that
could be explored. One such direction is to store and query
the positions of the other strobes efficiently, as they give
extra information about the coverage and span of matches
across sequences for sequence similarity applications. An-
other application is to efficiently index the data sets for abun-
dance and presence of strobemers (53). For such applica-
tions, minstrobes may be advantageous due to the more fre-
quently shared minimizers between the strobes. Finally, the
possibility of decreasing practical runtime for constructing
randstrobes remains to be explored.

Span-coverage for matching. Since strobemers are gapped
sequences, it also motivates the study of match coverage and
distribution of matches across regions (or positions) similarly
to what has been done for gapped experimental protocols
such as mate-pair or paired-end reads (54). For example, one
could compute the span-coverage of matches at positions or
over regions to estimate the sequence similarity in matching
regions or the confidence for further downstream processing.

Generalization of strobemers. We can view the process of ex-
tracting a k-mer or a spaced k-mer at position i in a string s
as applying a function f(i,k,s) on s. Similarly, the process
of extracting a strobemer from s can be viewed as applying
the higher-order function f ′(i,k,s,h) on s where h is either
some hash function or hash strategy (e.g., iterative and condi-
tionally dependent as in randstrobes). We demonstrated that
applying f ′ on s is equally or more efficient than f for se-
quence matching for three different functions h (minstrobes,
randstrobes, and hybridstrobes), which poses the following
question. Can we further improve sampling protocols for se-
quence matching by designing h differently?

12 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

Conclusions
We have presented strobemers as an alternative to k-mers and
spaced k-mers for sequence comparison. Strobemers, par-
ticularly randstrobes and hybridstrobes, offer a more evenly
distributed set of matches across sequences compared to k-
mers and spaced k-mers, are less sensitive to the distribution
of mutations across sequences, and produce a higher match
coverage under several parameterizations. We also showed
that strobemers can offer higher match uniqueness compared
to k-mers for several same subsequence lengths. These fea-
tures are useful for algorithms that perform sequence match-
ing. Strobemers are also easy to both construct and query,
making it a compelling alternative to k-mers. We also demon-
strated the utility of strobemers in several sequence compar-
ison applications using synthetic and biological sequencing
data. While we have empirically demonstrated the useful
properties of strobemers, their statistical properties require
further investigation.

ACKNOWLEDGEMENTS
We thank Camille Marchet, Robert Harris, Rayan Chikhi, Paul Medvedev, Lior
Pachter, Karel Břinda, Michael Hall, Michael Schatz, and Páll Melsted for their
constructive comments and suggestions on an early draft of the manuscript. The
computations were performed on resources provided by the Swedish National In-
frastructure for Computing (SNIC) at Uppsala Multidisciplinary Center for Advanced
Computational Science (UPPMAX).

Bibliography
1. Leena Salmela, Riku Walve, Eric Rivals, and Esko Ukkonen. Accurate self-correction of

errors in long reads using de Bruijn graphs. Bioinformatics, 33(6):799–806, 06 2016. ISSN
1367-4803. doi: 10.1093/bioinformatics/btw321.

2. P A Pevzner. 1-tuple dna sequencing: computer analysis. J Biomol Struct Dyn, 7(1):63–
73, Aug 1989. ISSN 0739-1102 (Print); 0739-1102 (Linking). doi: 10.1080/07391102.1989.
10507752.

3. Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size selection for
genome assembly. Bioinformatics, 30(1):31–37, 06 2013. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btt310.

4. Derrick E. Wood and Steven L. Salzberg. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biology, 15(3):R46, 2014. doi: 10.1186/
gb-2014-15-3-r46.

5. Samarth Rangavittal, Natasha Stopa, Marta Tomaszkiewicz, Kristoffer Sahlin, Kateryna D.
Makova, and Paul Medvedev. Discovery: a classifier for identifying y chromosome
sequences in male assemblies. BMC Genomics, 20(1):641, 2019. doi: 10.1186/
s12864-019-5996-3.

6. Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets in linear
time. Nature Communications, 9(1):2542, 2018. doi: 10.1038/s41467-018-04964-5.

7. Brad Solomon and Carl Kingsford. Fast search of thousands of short-read sequencing
experiments. Nat Biotechnol, 34(3):300–302, Mar 2016. ISSN 1546-1696 (Electronic);
1087-0156 (Print); 1087-0156 (Linking). doi: 10.1038/nbt.3442.

8. Robert S Harris and Paul Medvedev. Improved representation of sequence bloom trees.
Bioinformatics, 36(3):721–727, 08 2019. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btz662.

9. Ryan P Abo, Matthew Ducar, Elizabeth P Garcia, Aaron R Thorner, Vanesa Rojas-Rudilla,
Ling Lin, Lynette M Sholl, William C Hahn, Matthew Meyerson, Neal I Lindeman, Paul
Van Hummelen, and Laura E MacConaill. Breakmer: detection of structural variation in
targeted massively parallel sequencing data using kmers. Nucleic Acids Res, 43(3):e19,
Feb 2015. ISSN 1362-4962 (Electronic); 0305-1048 (Print); 0305-1048 (Linking). doi:
10.1093/nar/gku1211.

10. Daniel S. Standage, C. Titus Brown, and Fereydoun Hormozdiari. Kevlar: A mapping-
free framework for accurate discovery of de novo variants. iScience, 18:28–36,
2021/01/25 2019. doi: 10.1016/j.isci.2019.07.032.

11. Parsoa Khorsand and Fereydoun Hormozdiari. Nebula: ultra-efficient mapping-free struc-
tural variant genotyper. Nucleic Acids Research, 01 2021. ISSN 0305-1048. doi:
10.1093/nar/gkab025. gkab025.

12. Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables alignment-free isoform
quantification from rna-seq reads using lightweight algorithms. Nature Biotechnology, 32
(5):462–464, 2014. doi: 10.1038/nbt.2862.

13. Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic
rna-seq quantification. Nature Biotechnology, 34(5):525–527, 2016. doi: 10.1038/nbt.3519.

14. Benny Chor, David Horn, Nick Goldman, Yaron Levy, and Tim Massingham. Genomic dna
k-mer spectra: models and modalities. Genome biology, 10(10):R108–R108, 2009. doi:
10.1186/gb-2009-10-10-r108.

15. Michal Hozza, Tomáš Vinař, and Broňa Brejová. How big is that genome? estimating
genome size and coverage from k-mer abundance spectra. In Costas Iliopoulos, Simon

Puglisi, and Emine Yilmaz, editors, String Processing and Information Retrieval, pages 199–
209, Cham, 2015. Springer International Publishing. ISBN 978-3-319-23826-5.

16. Ying Wang, Lei Fu, Jie Ren, Zhaoxia Yu, Ting Chen, and Fengzhu Sun. Identifying group-
specific sequences for microbial communities using long k-mer sequence signatures. Fron-
tiers in microbiology, 9:872–872, 05 2018. doi: 10.3389/fmicb.2018.00872.

17. Camille Marchet, Christina Boucher, Simon J. Puglisi, Paul Medvedev, Mikaël Salson, and
Rayan Chikhi. Data structures based on k-mers for querying large collections of sequencing
data sets. Genome Research, 2020. doi: 10.1101/gr.260604.119.

18. Antonio Blanca, Robert S. Harris, David Koslicki, and Paul Medvedev. The statistics of k-
mers from a sequence undergoing a simple mutation process without spurious matches.
bioRxiv, 2021. doi: 10.1101/2021.01.15.426881.

19. Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more sensitive homol-
ogy search . Bioinformatics, 18(3):440–445, 03 2002. ISSN 1367-4803. doi: 10.1093/
bioinformatics/18.3.440.

20. Karel Břinda, Maciej Sykulski, and Gregory Kucherov. Spaced seeds improve k-mer-based
metagenomic classification. Bioinformatics, 31(22):3584–3592, 07 2015. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btv419.

21. Derrick E. Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis with
kraken 2. Genome Biology, 20(1):257, 2019. doi: 10.1186/s13059-019-1891-0.

22. Uri Keich, Ming Li, Bin Ma, and John Tromp. On spaced seeds for similarity search. Discrete
Applied Mathematics, 138(3):253 – 263, 2004. ISSN 0166-218X. doi: https://doi.org/10.
1016/S0166-218X(03)00382-2.

23. Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02,
page 380â388, New York, NY, USA, 2002. Association for Computing Machinery. ISBN
1581134959. doi: 10.1145/509907.509965.

24. Roy Lederman. A random-permutations-based approach to fast read alignment. BMC
Bioinformatics, 14(5):S8, 2013. doi: 10.1186/1471-2105-14-S5-S8.

25. Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin, Alexan-
der S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Prjibelski, Alexey V
Pyshkin, Alexander V Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A Alekseyev, and Pavel A
Pevzner. Spades: a new genome assembly algorithm and its applications to single-cell se-
quencing. J Comput Biol, 19(5):455–477, May 2012. ISSN 1557-8666 (Electronic); 1066-
5277 (Print); 1066-5277 (Linking). doi: 10.1089/cmb.2012.0021.

26. Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. deBGA: read alignment with de
Bruijn graph-based seed and extension. Bioinformatics, 32(21):3224–3232, 07 2016. ISSN
1367-4803. doi: 10.1093/bioinformatics/btw371.

27. Andrei Broder. On the resemblance and containment of documents. 06 1997. doi: 10.1109/
SEQUEN.1997.666900.

28. Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms for doc-
ument fingerprinting. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’03, page 76â85, New York, NY, USA, 2003. Association
for Computing Machinery. ISBN 158113634X. doi: 10.1145/872757.872770.

29. Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, and James A. Yorke.
Reducing storage requirements for biological sequence comparison. Bioinformatics, 20
(18):3363–3369, 07 2004. ISSN 1367-4803. doi: 10.1093/bioinformatics/bth408.

30. Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H. Bergman,
Sergey Koren, and Adam M. Phillippy. Mash: fast genome and metagenome distance esti-
mation using minhash. Genome Biology, 17(1):132, 2016. doi: 10.1186/s13059-016-0997-x.

31. Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long se-
quences. Bioinformatics, 32(14):2103–2110, Jul 2016. ISSN 1367-4811 (Electronic); 1367-
4803 (Print); 1367-4803 (Linking). doi: 10.1093/bioinformatics/btw152.

32. Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M Phillippy. A
fast approximate algorithm for mapping long reads to large reference databases. J Comput
Biol, 25(7):766–779, Jul 2018. ISSN 1557-8666 (Electronic); 1066-5277 (Print); 1066-5277
(Linking). doi: 10.1089/cmb.2018.0036.

33. Kristoffer Sahlin and Paul Medvedev. De novo clustering of long-read transcriptome data
using a greedy, quality value-based algorithm. Journal of Computational Biology, 27(4):
472–484, 2020. doi: 10.1089/cmb.2019.0299. PMID: 32181688.

34. Kristoffer Sahlin and Paul Medvedev. Error correction enables use of oxford nanopore tech-
nology for reference-free transcriptome analysis. Nature Communications, 12(1):2, 2021.
doi: 10.1038/s41467-020-20340-8.

35. Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Landolin, and
Adam M Phillippy. Assembling large genomes with single-molecule sequencing and locality-
sensitive hashing. Nature Biotechnology, 33(6):623–630, 2015. doi: 10.1038/nbt.3238.

36. Guillaume Marçais, Dan DeBlasio, and Carl Kingsford. Asymptotically optimal minimiz-
ers schemes. Bioinformatics, 34(13):i13–i22, 06 2018. ISSN 1367-4803. doi: 10.1093/
bioinformatics/bty258.

37. Chirag Jain, Arang Rhie, Haowen Zhang, Claudia Chu, Brian P Walenz, Sergey Ko-
ren, and Adam M Phillippy. Weighted minimizer sampling improves long read map-
ping. Bioinformatics, 36(Supplement_1):i111–i118, 07 2020. ISSN 1367-4803. doi:
10.1093/bioinformatics/btaa435.

38. Robert C. Edgar. Syncmers are more sensitive than minimizers for selecting conserved
k-mers in biological sequences. bioRxiv, 2020. doi: 10.1101/2020.09.29.319095.

39. S F Altschul, T L Madden, A A Schäffer, J Zhang, Z Zhang, W Miller, and D J Lipman.
Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic
Acids Res, 25(17):3389–3402, Sep 1997. ISSN 0305-1048 (Print); 1362-4962 (Electronic);
0305-1048 (Linking). doi: 10.1093/nar/25.17.3389.

40. Laurent Noé and Gregory Kucherov. Improved hit criteria for dna local alignment. BMC
Bioinformatics, 5(1):149, 2004. doi: 10.1186/1471-2105-5-149.

41. Yanni Sun and Jeremy Buhler. Designing multiple simultaneous seeds for dna similarity
search. Journal of Computational Biology, 12(6):847–861, 2005. doi: 10.1089/cmb.2005.12.
847. PMID: 16108721.

42. Jeremy Buhler, Uri Keich, and Yanni Sun. Designing seeds for similarity search in genomic
dna. Journal of Computer and System Sciences, 70(3):342 – 363, 2005. ISSN 0022-0000.
doi: https://doi.org/10.1016/j.jcss.2004.12.003. Special Issue on Bioinformatics II.

Kristoffer Sahlin | Strobemers bioRχiv | 13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

43. Nan Du, Jiao Chen, and Yanni Sun. Improving the sensitivity of long read overlap de-
tection using grouped short k-mer matches. BMC Genomics, 20(2):190, 2019. doi:
10.1186/s12864-019-5475-x.

44. Chen-Shan Chin and Asif Khalak. Human genome assembly in 100 minutes. bioRxiv, 2019.
doi: 10.1101/705616.

45. Anna Ritz, Ali Bashir, and Benjamin J. Raphael. Structural variation analysis with strobe
reads. Bioinformatics, 26(10):1291–1298, 04 2010. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btq153.

46. Miika Leinonen and Leena Salmela. Extraction of long k-mers using spaced seeds, 2020.
47. Steven L. Salzberg, Adam M. Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc, Sergey

Koren, Todd J. Treangen, Michael C. Schatz, Arthur L. Delcher, Michael Roberts, Guil-
laume Marçais, Mihai Pop, and James A. Yorke. Gage: A critical evaluation of genome
assemblies and assembly algorithms. Genome Research, 22(3):557–567, 2012. doi:
10.1101/gr.131383.111.

48. Stefan Kurtz, Adam Phillippy, Arthur L. Delcher, Michael Smoot, Martin Shumway, Co-
rina Antonescu, and Steven L. Salzberg. Versatile and open software for comparing large
genomes. Genome Biology, 5(2):R12, 2004. doi: 10.1186/gb-2004-5-2-r12.

49. Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Fast and accurate de novo
genome assembly from long uncorrected reads. Genome Research, 27(5):737–746, 2017.
doi: 10.1101/gr.214270.116.

50. Jeff Daily. Parasail: Simd c library for global, semi-global, and local pairwise sequence
alignments. BMC Bioinformatics, 17(1):81, 2016. doi: 10.1186/s12859-016-0930-z.

51. Yaron Orenstein, David Pellow, Guillaume MarÃ§ais, Ron Shamir, and Carl Kingsford.
Designing small universal k-mer hitting sets for improved analysis of high-throughput se-
quencing. PLOS Computational Biology, 13(10):1–15, 10 2017. doi: 10.1371/journal.pcbi.
1005777.

52. Hamid Mohamadi, Justin Chu, Benjamin P. Vandervalk, and Inanc Birol. ntHash: recursive
nucleotide hashing. Bioinformatics, 32(22):3492–3494, 07 2016. ISSN 1367-4803. doi:
10.1093/bioinformatics/btw397.

53. Camille Marchet, Zamin Iqbal, Daniel Gautheret, Mikaël Salson, and Rayan Chikhi. REIN-
DEER: efficient indexing of k-mer presence and abundance in sequencing datasets.
Bioinformatics, 36(Supplement_1):i177–i185, 07 2020. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btaa487.

54. Kristoffer Sahlin, Mattias Frånberg, and Lars Arvestad. Structural variation detection with
read pair information: An improved null hypothesis reduces bias. Journal of Computational
Biology, 24(6):581–589, 2017. doi: 10.1089/cmb.2016.0124. PMID: 27681236.

55. Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):
3094–3100, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty191.

14 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

Supplementary Note A: Strobemers construction

Algorithm 1: Minstrobes construction
Input: s, n, k, wmin, wmax
Output: Minstrobes of order n and their positions from s
S =[] # Initialize array of strobemers and their positions
`= k//n # Strobemer lengths
for i∈ [1, |s|−k+1) do

wu =min(wmax,(|s|− i)/(n−1)) # Second argument only active at end of s
wl =max(wmin− (wmax−wu), `)
m1 = s[i : i+ `)
m = m1
for j∈ [2,n] do

w′ = [i+wl+(j−2)wu, i+(j−1)wu] # Window to look for current strobe
p = argminp{p : h(s[p : p+ `))≤ h(s[i′ : i′+ `)),∀i′ ∈ w′}
m += s[p:p+`) # String concatenation

end
S +=(i,m)

end

Algorithm 2: Randstrobes construction
Input: s, n, `, wmin, wmax
Output: Randstrobes of order n and their positions from s
S = [] # Initialize array of strobemers and their positions
`= k//n # Strobemer lengths
for i∈ [1, |s|− `+1) do

wu =min(wmax,(|s|− i)/(n−1)) # Second argument only active at end of s
wl =max(wmin− (wmax−wu), `)
m1 = s[i : i+ `)
m = m1
for j∈ [2,n] do

w′ = [i+wl+(j−2)wu, i+(j−1)wu] # Window to look for current strobe
p = argminp{p : h(m⊕s[p : p+ `))≤ h(m⊕s[i′ : i′+ `)),∀i′ ∈ w′}
m += s[p:p+`) # String concatenation

end
S +=(i,m)

end

Algorithm 3: Hybridstrobes construction
Input: s, n, `, wmin, wmax
Output: Hybridstrobes of order n and their positions from s
S = [] # Initialize array of strobemers and their positions
`= k//n # Strobemer lengths
for i∈ [1, |s|− `+1) do

wu =min(wmax,(|s|− i)/(n−1)) # Second argument only active at end of s
wl =max(wmin− (wmax−wu), `)
wx = (wu−wl+1)//x # Partitioned window lengths
m1 = s[i : i+ `)
m = m1
for j∈ [2,n] do

r = h(m) % x # Compute residual
w′ = [i+wl+(j−2)wu+ rwx, i+(j−1)wu+(r+1)wx] # Window to look for current strobe
p = argminp{p : h(s[p : p+ `))≤ h(s[i′ : i′+ `)),∀i′ ∈ w′}
m += s[p:p+`) # String concatenation

end
S +=(i,m)

end

Kristoffer Sahlin | Strobemers bioRχiv | 15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

Supplementary Note B: Mapping analysis

A. Constructing Non-overlapping Approximate Matches (NAMs). The NAMs are produced as follows. Assume a query
sequence q and a reference sequence r, and two strobemers a and b where the match of a spans positions [qi, qj] and [ri, rj]
and the match of b spans [qi′ , qj′] and [ri′ , rj′] on q and r, respectively. If it holds that qi ≤ qi′ ≤ qj and ri ≤ ri′ ≤ rj we say
that they overlap where a precedes b and b supersedes a. A NAM spanning [q1, q2] och the query sequence and [r1, r2] on
the reference is a chain of overlapping strobemers such that no other strobemer produce neither a preceding nor a superseding
overlap with the NAM on both q and r. The definition of NAMs for k-mers is identical where a k-mer match, as opposed to a
strobemer match, spans k consecutive positions. Note that a NAM is not the same as a MEM even in the case of k-mers as, e.g.,
a length difference in a homopolymer region will break a MEM but will not break a NAM formed from k-mers.

B. SIRV reads to SIRV references. We downloaded SIRV ONT cDNA reads from ENA
with accession number PRJEB34849, and SIRV references from https://www.lexogen.com/wp-
content/uploads/2018/08/SIRV_Set1_Lot00141_Sequences_170612a-ZIP.zip. We preprocessed the cDNA reads using
pychopper (https://github.com/nanoporetech/pychopper) to produce full-length cDNA sequences. We then aligned the
full-length reads using minimap2 (55) to the references and subsampled 100 reads from each reference. For each SIRV
we subsampled from the pool of reads that had a primary alignment to the SIRV that started and ended not more than ten
nucleotides from the start and end of the SIRV, respectively. This was done to assure that in an ideal matching scenario, a
NAM from a read to a SIRV could cover the entire SIRV.

C. SIRV reads to each other. In this experiment, we took the 100 reads subsampled as described in the previous section, and
mapped each of the 100 reads to the other 99 reads within the pool for each SIRV.

D. E. coli genomes to themselves. We mapped the E. coli genome GCA_003018135.1
ASM301813v1 to the E. coli genome GCA_003018575.1 ASM301857v1 available at
https://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=368391.
We ran StrobeMap as follows

StrobeMap --queries GCF_003018135.1_ASM301813v1_genomic.fna
--references GCF_003018575.1_ASM301857v1_genomic.fna
--outfolder out/ --rev_comp

with the specific parameters

--k 30 --kmer_index

to produce k-mer NAMs and, for example,

--k 15 --strobe_w_min_offset 20 --strobe_w_max_offset 120 --n 2 [--w 20]

to produce hybridstrobes with parameters (2,15,20,120).

E. E. coli reads to E.coli genome. We downloaded E. coli reads from Sequence read archive with Run ID SRR13893500.
As the sample contains a fraction of reads from other bacteria, we selected the 1000 longest reads from the sample that aligned
to the E. coli genome with more than 95% of the total read length. As aligned portion we computed the span between the first
and last base that was aligned to the genome divided by the read length. This calculation excludes hard and softclipped ends but
does consider eventual poorly aligned internal regions of the read. This produced 1,000 reads with a median length of 19,601nt
where the longest read was 52,197nt and the shortest read was 17,360nt. The total length of the reads was 21,020,364 giving a
coverage of 6.65x. To obtain the subsampled reads, we ran minimap2 as follows and a custom script available in the strobemer
repository to select the reads from the SAM file.

minimap2 -ax map-ont --eqx GCF_003018135.1_ASM301813v1_genomic.fna \
SRR13893500.fastq > SRR13893500.sam

python select_longest_reads.py SRR13893500.fastq SRR13893500.sam \
1000 SRR13893500_1000_longest.fastq

We further estimated the read error rate from these reads by dividing the sum of substitutions and indels with the length of
the aligned region to get a median error rate of 17.0%. We mapped the 1,000 reads using StrobMatch to the E. coli genome
GCA_003018135.1 ASM301813v1 available at https://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=368373 and
measured the number of NAMs and the match coverage produced by the colinear chain of matches that covers the largest
fraction of the reads. We count the coverage only for the colinear chains as smaller matches to other region of the genome may
inflate the coverage of the read to the actual best aligned region. However, all matches to the genome contribute to the total
number of matches, because this is an important efficiency metric to select candidate alignments.

16 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

E E. coli reads to E.coli genome

Supplementary Note C: Runtime analysis
We compared the relative runtime of computing k-mers compared to strobemers using the construction described in the im-
plementation section. We used python v3.8 for the experiments. We simulated 1000 strings of length 100,000nt and com-
puted the runtime to extract k-mers and strobemers under different subsequence sizes (18,36,54,60,72) and window sizes
(1,10,20,30,40,50,100). The time to construct the strobemers is normalized with the time to construct k-mers. Runtime results
are showed in table 4.
In general, randstobes are the slowest to construct. For randstrobes, the construction time increases with window size, where the
construction time shows roughly a linear relationship with the window size. As expected, the construction time also increases
with the number of strobes. Minstrobes and hybrid strobes relies on the implementation of queues in python. For these
protocols, they have a better performance with larger window sizes, as the queues do not need to be updated as frequently. We
note that minstrobes and hybridstrobes have a similar runtime performance.
This runtime comparison comes with many caveats. First, it depends on out implementation and data structures used. Secondly,
it is further highly dependent on the programming language in which they are implemented. To illustrate this, we ran the exact
same code using pypy v7.3.3-beta (table 5). In this scenario, randstrobes are now, in relative terms, more than twice as fast to
compute compared to under python 3.8. Furthermore, minstrobes and hybridstrobes now suffer greatly for small window sizes
where the queues frequently needs to be updated. The relative numbers between k-mers and strobemers will change under an
other implementations and programming language. This illustrates that the it is perhaps more informative to investigate the
time complexity for the protocols in this scenario, as programming languages may have different overheads and datastructure
specific performances.
There are however several implementation tricks that one could perform to speed up construction time of, e.g., randstrobes.
In our python implementation, we have used lists to store hash values which implemented as arrays of pointers to the integers
and slow to iterate and compute minimum over. Using arrays in compiled languages could further speed up computation.
I addition, it is possible that the computation of strobemers, particularly randstrobes, could be sped up using, e.g., single
instruction multiple data (SIMD) implementations as is commonly used in bioinformatics (49, 50).
We excluded construction of spaced k-mers since they are, in our implementation, very time consuming to construct in python.
For efficient construction of spaced k-mers, an array based compiled programming language should be used.

Supplementary Note D: Memory requirement of StrobeMap
When benchmarking memory consumption used by our proof-of-concept tool StrobeMap, the peak memory usage for mapping
the two E. coli genomes to each other was 2.88Gb, 2.60Gb, 2.93Gb, for k-mers, hybridstrobes of order 2, and hybridstrobes of
order 3, respectively. The total time to produce the mapping was 34, 58, and 85 seconds for k-mers, hybridstrobes of order 2, and
hybridstrobes of order 3, respectively. For the experiments mapping reads to the E. coli reference, the total time to produce the
mappings was 44 and 179 seconds for the k-mers and hybridstrobes of order 3, respectively. The total memory consumption was
1.43Gb for k-mers and 0.97Gb for the hybridstrobes. For the experiments mapping E. coli reads to themselves, the total time
to produce the mappings was 107 and 280 seconds for the k-mers and hybridstrobes of order 3, respectively. The total memory
consumption was 3.48Gb for k-mers and 3.45Gb for the hybridstrobes. The large discrepancy in the memory consumption
mapping reads to the E. coli genome is caused by much fewer NAMs produced by the hybridstrobes in combination with
that StrobeMap stores in memory the NAMs for batches or reads only to invoke printing to file (and clearing matches) every
thousand reads. In our experiments, using k-mers is fastest while hybridstrobes of order two took roughly twice as long and
hybridstrobes of order 3 about 3-4 times as long.

Kristoffer Sahlin | Strobemers bioRχiv | 17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

Supplementary Note E: Figures

100 101 102

Island length

100

101

102

103

104

Co
un

t label
randstrobes-(3, 10, 25, 50)
hybridstrobes-(3, 10, 25, 50)
kmers
minstrobes-(2, 15, 25, 50)
spaced_kmers_dense

100 101 102 103

Island length

100

101

102

103

104

Co
un

t label
randstrobes-(3, 10, 25, 50)
hybridstrobes-(3, 10, 25, 50)
kmers
minstrobes-(2, 15, 25, 50)
spaced_kmers_dense

Fig. E.1. Histograms of island lengths for the SIM-R experiments for mutation rate 0.01 (a) and 0.1 (b).

SIRV

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 N
A

M
 le

ng
th

method
randstrobes-(3,10,20,70)
randstrobes-(2,15,20,70)
hybridstrobes-(3,10,20,70)
hybridstrobes-(2,15,20,70)
minstrobes-(3,10,20,70)
minstrobes-(2,15,20,70)
kmers

Fig. E.2. The plot shows the average normalized NAM length from all the NAM matches when matching ONT cDNA reads to 61 unique SIRV reference sequences. The
normalized NAM length is the length of the NAM divided by the SIRV reference. Each tick on the x-axis corresponds to a SIRV. The line shows the mean and the shaded area
displays the standard deviation of the reads. A high NAM coverage and low number of NAMs means long contiguous matches and facilitates accurate and efficient sequence
comparison.

Supplementary Note F: Tables

18 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

E E. coli reads to E.coli genome

SIRV

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

tio
n

co
ve

re
d

randstrobes-(3,10,20,70)
randstrobes-(2,15,20,70)
hybridstrobes-(3,10,20,70)
hybridstrobes-(2,15,20,70)
minstrobes-(3,10,20,70)
minstrobes-(2,15,20,70)
kmers

SIRV

0
5

10
15

20
25

N
um

be
r N

A
M

s

method
randstrobes-(3,10,20,70)
randstrobes-(2,15,20,70)
hybridstrobes-(3,10,20,70)
hybridstrobes-(2,15,20,70)
minstrobes-(3,10,20,70)
minstrobes-(2,15,20,70)
kmers

SIRV

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 N
A

M
 le

ng
th

method
randstrobes-(3,10,20,70)
randstrobes-(2,15,20,70)
hybridstrobes-(3,10,20,70)
hybridstrobes-(2,15,20,70)
minstrobes-(3,10,20,70)
minstrobes-(2,15,20,70)
kmers

Fig. E.3. Comparison between strobemers and k-mers when matching 100 ONT cDNA reads to themselves from each of the 61 SIRVs. For each reference SIRV, there are
9,900 sequence mappings as read self-mapping results, which produce perfect matches are excluded. Each tick on the x-axis corresponds to a SIRV. Panel A shows total
fraction of reference reads covered by NAMs from query reads (y-axis). Panel B shows the number of NAMs (y-axis) between the query and reference reads reads. Panel C
shows the average normalized NAM length from all the NAM matches. The normalized NAM length is the length of the NAM divided by the length of the read acting as the
reference in the given match. The line shows the mean and the shaded area displays the standard deviation of the reads. A high NAM coverage and low number of NAMs
means long contiguous matches and facilitates accurate and efficient sequence comparison.

Kristoffer Sahlin | Strobemers bioRχiv | 19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT
QRY

R
E
F

QRY

R
E
F

Fig. E.4. Dotplots of mapping two different E. coli genomes to each other using (A) hybridstrobes parametrized by (3,15,1,70), and (B) hybridstrobes parametrized by
(2,15,20,120) with minimizer thinning protocol using w = 20.

20 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

E E. coli reads to E.coli genome

SIM-R
0.01 0.05 0.1

m sc mc E m sc mc E m sc mc E

w = 10

k-mer 30 73.2 90.2 90.2 14.9 20.6 42.6 42.6 115.2 4.0 11.6 11.6 524.2

spaced k-mer
dense 65.5 87.1 90.7 22.2 12.1 30.7 36.3 215.3 1.4 5.4 7.0 1318.4
sparse 47.9 74.4 84.7 72.3 2.8 9.6 16.6 1067.0 0.1 0.5 1.2 7197.4

minstrobe
(2,15,25,50) 67.8 87.7 98.1 8.7 15.3 37.2 59.0 94.9 2.6 8.8 16.7 618.6
(3,10,25,50) 63.3 81.2 98.4 8.9 11.6 28.7 60.1 116.2 1.7 5.9 16.2 926.0

randstrobe
(2,15,25,50) 69.4 92.3 98.4 5.6 16.7 45.6 62.3 71.9 2.9 11.7 18.6 475.4
(3,10,25,50) 65.6 93.1 99.8 3.3 13.6 43.8 79.4 51.9 2.1 9.7 26.4 507.6

hybridstrobe
(2,15,25,50) 68.4 90.5 97.7 6.7 15.8 42.5 59.0 81.9 2.6 10.5 16.9 538.2
(3,10,25,50) 62.0 88.2 99.0 6.0 11.8 37.0 72.9 71.2 1.8 8.0 22.5 628.3

w = 20

k-mer 30 71.9 84.2 84.3 21.4 19.3 33.1 33.3 157.6 3.7 7.7 8.0 769.4

spaced k-mer
dense 64.5 78.1 85.2 31.8 11.4 21.7 27.7 298.1 1.3 3.2 4.5 1984.8
sparse 47.3 62.4 80.4 87.4 2.7 5.9 12.4 1430.7 0.1 0.3 0.7 8109.5

minstrobe
(2,15,25,50) 66.7 75.8 95.2 18.8 14.3 25.9 46.0 156.7 2.4 5.3 10.8 1026.6
(3,10,25,50) 62.2 59.6 95.9 20.3 10.8 18.5 46.1 209.0 1.6 3.4 10.1 1543.0

randstrobe
(2,15,25,50) 68.3 83.9 94.8 12.1 15.7 31.3 46.1 130.2 2.6 6.5 10.9 847.5
(3,10,25,50) 64.6 81.9 99.1 8.8 12.7 27.6 61.1 115.9 2.0 5.1 15.1 1002.0

hybridstrobe
(2,15,25,50) 66.1 82.2 93.0 13.6 13.8 28.2 41.6 154.5 2.2 5.4 9.2 1003.6
(3,10,25,50) 60.2 75.6 97.7 12.7 10.8 23.6 55.5 144.7 1.6 4.3 13.1 1180.6

Table 3. Match statistics under different sampling protocols under mutations rates of 0.01, 0.05, 0.1 using minimizer thinning with w = 10, and w = 20. Here, m denotes
the number of matches as a percentage of the total number of extracted subsequences for the protocol, sc (sequence coverage) and mc (match coverage) is shown as the
percentage of the total sequence length, and E is the expected island size.

Kristoffer Sahlin | Strobemers bioRχiv | 21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

k-mers minstrobes randstrobes hybridstrobes
k w 2 3 2 3 2 3
18 1 1.0 4.6 5.9 3.4 4.3 NA NA
18 10 1.0 2.7 4.3 7.1 13.5 3.9 7.2
18 20 1.0 2.4 3.4 8.8 16.9 3.0 5.3
18 30 1.0 2.5 3.7 13.5 26.3 3.3 5.8
18 40 1.0 2.6 3.7 17.6 34.1 3.2 5.7
18 50 1.0 2.6 3.8 21.2 41.1 3.5 5.9
18 100 1.0 2.5 3.5 39.1 78.3 3.2 5.6
36 1 1.0 3.8 8.3 3.6 5.8 NA NA
36 10 1.0 2.7 4.4 7.8 13.6 3.9 6.7
36 20 1.0 2.6 4.4 10.6 20.6 3.3 5.9
36 30 1.0 2.5 3.7 13.5 25.8 3.3 5.7
36 40 1.0 2.4 3.5 16.1 30.6 3.0 5.2
36 50 1.0 2.6 3.6 20.3 39.9 3.4 5.7
36 100 1.0 2.5 3.4 39.4 73.0 3.1 5.5
54 1 1.0 3.7 8.1 3.6 5.9 NA NA
54 10 1.0 2.7 4.3 6.8 12.3 3.5 6.3
54 20 1.0 2.6 3.9 10.3 19.2 3.3 5.8
54 30 1.0 2.6 3.7 13.7 26.0 3.2 5.9
54 40 1.0 2.5 3.5 17.0 32.5 3.2 5.7
54 50 1.0 2.5 3.6 20.0 40.8 3.3 5.8
54 100 1.0 2.5 3.6 37.7 74.8 3.4 5.8
60 1 1.0 3.7 8.1 3.6 5.8 NA NA
60 10 1.0 2.6 4.0 6.5 12.1 3.5 6.1
60 20 1.0 2.6 3.8 10.2 21.1 4.0 6.5
60 30 1.0 2.5 4.0 14.0 25.1 3.2 5.5
60 40 1.0 2.6 3.7 17.0 32.4 3.1 5.6
60 50 1.0 2.5 3.6 20.7 40.1 3.3 5.7
60 100 1.0 2.5 3.6 39.3 76.7 3.2 5.5
72 1 1.0 3.6 8.1 3.5 5.8 NA NA
72 10 1.0 2.7 4.1 6.7 13.2 3.9 6.4
72 20 1.0 2.5 3.9 11.0 21.7 3.6 6.1
72 30 1.0 2.6 4.0 14.1 27.8 3.3 5.8
72 40 1.0 2.4 3.5 17.4 32.9 3.3 5.6
72 50 1.0 2.5 3.4 19.9 39.9 3.1 5.7
72 100 1.0 2.4 3.5 38.1 77.7 3.8 6.4

Table 4. Relative time to compute k-mers compared to strobemers of order 2 and 3 using python v3.8 for various subsequence sizes (k) and window sizes (w = wmax−
wmin + 1). The computation time is normalized with the time to compute k-mers. Hybrid strobes are not defined for window sizes smaller than x (the number of partitions
of each window), which we here have set to 3.

22 | bioRχiv Kristoffer Sahlin | Strobemers

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

DRAFT

E E. coli reads to E.coli genome

k-mers minstrobes randstrobes
k w 2 3 2 3 2 3
18 1 1.0 3.9 7.6 3.0 4.9 NA NA
18 10 1.0 3.0 5.0 5.3 10.1 10.6 60.1
18 20 1.0 2.9 4.3 7.1 13.3 8.2 37.4
18 30 1.0 2.8 4.4 8.7 18.2 7.8 35.1
18 40 1.0 2.7 3.8 8.8 18.1 6.3 20.0
18 50 1.0 2.8 4.2 12.8 26.0 5.8 16.3
18 100 1.0 2.7 4.1 19.1 42.7 4.8 10.2
36 1 1.0 8.1 12.9 3.9 5.7 NA NA
36 10 1.0 3.3 5.5 5.5 10.0 8.3 49.6
36 20 1.0 2.6 4.1 6.4 12.4 8.1 35.3
36 30 1.0 2.7 4.4 8.9 17.7 5.5 23.0
36 40 1.0 2.6 4.0 10.3 19.9 4.9 17.0
36 50 1.0 2.7 3.9 11.9 26.0 5.1 14.9
36 100 1.0 2.7 4.0 20.6 44.7 4.5 10.4
54 1 1.0 3.4 7.4 3.3 5.0 NA NA
54 10 1.0 2.5 4.5 5.3 8.7 7.1 41.7
54 20 1.0 3.0 4.4 6.5 13.2 8.3 37.0
54 30 1.0 2.8 4.5 8.1 16.1 5.8 22.8
54 40 1.0 2.7 4.1 9.6 19.7 5.1 17.0
54 50 1.0 2.7 4.0 11.0 22.9 5.0 14.0
54 100 1.0 2.6 3.8 17.8 38.4 4.2 10.0
60 1 1.0 7.0 12.0 3.5 5.0 NA NA
60 10 1.0 3.1 4.9 5.0 8.8 7.1 42.0
60 20 1.0 2.8 4.3 6.4 12.2 7.9 34.3
60 30 1.0 2.8 4.4 8.4 16.5 7.8 28.5
60 40 1.0 2.8 4.2 9.8 20.0 7.4 23.2
60 50 1.0 2.8 4.0 11.8 22.9 6.5 18.9
60 100 1.0 2.6 3.9 18.1 39.1 6.4 10.0
72 1 1.0 7.0 10.8 3.3 4.7 NA NA
72 10 1.0 3.2 5.0 5.0 8.8 8.3 49.0
72 20 1.0 2.8 4.5 6.6 12.5 8.2 36.7
72 30 1.0 2.7 3.9 7.6 15.2 7.1 26.3
72 40 1.0 2.7 4.0 9.3 19.0 7.1 23.3
72 50 1.0 2.7 4.0 11.2 24.0 7.0 20.7
72 100 1.0 2.6 3.7 17.1 39.7 5.4 9.7

Table 5. Relative time to compute k-mers compared to strobemers of order 2 and 3 using pypy3 for various subsequennce sizes (k) and window sizes (w = wmax −
wmin + 1). The computation time is normalized with the time to compute k-mers.

Kristoffer Sahlin | Strobemers bioRχiv | 23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.01.28.428549doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.28.428549
http://creativecommons.org/licenses/by/4.0/

	Strobemers construction
	Mapping analysis
	Constructing Non-overlapping Approximate Matches (NAMs)
	SIRV reads to SIRV references
	SIRV reads to each other
	E. coli genomes to themselves
	E. coli reads to E.coli genome

	Runtime analysis
	Memory requirement of StrobeMap
	Figures
	Tables

