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Abstract

Motivation: Accumulating evidence has highlighted the importance of microbial interaction networks. Methods have been
developed for estimating microbial interaction networks, of which the generalized Lotka-Volterra equation (gLVE)-based
method can estimate a directed interaction network. The previous gLVE-based method for estimating microbial interaction
networks did not consider time-varying interactions.
Results: In this study, we developed unsupervised learning based microbial interaction inference method using Bayesian
estimation (Umibato), a method for estimating time-varying microbial interactions. The Umibato algorithm comprises
Gaussian process regression (GPR) and a new Bayesian probabilistic model, the continuous-time regression hidden Markov
model (CTRHMM). Growth rates are estimated by GPR, and interaction networks are estimated by CTRHMM. CTRHMM
can estimate time-varying interaction networks using interaction states, which are defined as hidden variables. Umibato
outperformed the existing methods on synthetic datasets. In addition, it yielded reasonable estimations in experiments on
a mouse gut microbiota dataset, thus providing novel insights into the relationship between consumed diets and the gut
microbiota.
Availability: The C++ and python source codes of the Umibato software are available at https://github.com/shion-h/

Umibato

Contact: shion hosoda@asagi.waseda.jp, mhamada@waseda.jp

1 Introduction

Comprehensive investigations of microbial community struc-
ture using metagenomic analysis have shown that the micro-
biota plays a key role in humans (Turnbaugh et al., 2007;
Wang and Jia, 2016) and the natural environment (Sunagawa
et al., 2015; Fierer, 2017; Sunagawa et al., 2020). Microbial
interactions, one of the elements of the community structure,
are considered as the main drivers of metabolic dynamics (Em-
bree et al., 2015) and have been suggested to influence the
host’s health (Fraune et al., 2015). Therefore, microbial in-
teractions have received attention as an important research
subject (Phelan et al., 2012; Li et al., 2016). Two main meth-
ods are employed for estimating microbial interactions using
metagenomic data: correlation-based methods and general-
ized Lotka-Volterra equation (gLVE)-based methods.

Correlation-based methods evaluate the co-variation of the
abundance of each microbe and estimate a positive or negative
relationship between the two microbes. Numerous correlation-
based methods have been proposed (Faust et al., 2012; Fried-

man and Alm, 2012; Kurtz et al., 2015; Fang et al., 2015; Ban
et al., 2015; Biswas et al., 2016). Recently, McGregor et al.
(2020) developed the MDiNE, a probabilistic model based on
partial correlation coefficients. They applied MDiNE to a hu-
man gut microbiota dataset, which included information of pa-
tients with Crohn’s disease, and observed differences between
cases and controls in interaction networks. An advantage of
correlation-based methods is that they can be used for cross-
sectional data and have a wide application range. However,
the information obtained by this method is limited because it
cannot be used to estimate the direction of microbial interac-
tions. The direction of interaction indicates the relationship
between microbes, such as symbiosis and competition, and al-
lows a detailed understanding of microbial dynamics (Hibbing
et al., 2010; Seipke et al., 2012; Li et al., 2016; Attar, 2016).

The gLVE-based method estimates directed microbial inter-
action networks by evaluating the contribution of one to the
growth of the other. The gLVE-based method represents the
microbial growth rate as a linear combination of the abun-
dance of microbes in the community. The growth rates have
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to be statistically estimated; this estimation requires time-
series microbiome data with quantitative abundance obtained
by experiments such as qPCR. Nevertheless, the gLVE-based
method has been widely employed to elucidate the dynam-
ics using directional information (Stein et al., 2013; Fisher
and Mehta, 2014; Buffie et al., 2015; Coyte et al., 2015; Gao
et al., 2018; Gibson and Gerber, 2018; Li et al., 2019). Bucci
et al. (2016) developed MDSINE, a method for estimating
directed microbial interaction networks considering perturba-
tions based on gLVE. They estimated the bacteria that inhibit
the growth of Clostridium difficile and suggested new strate-
gies for the rational design of probiotic cocktails.

A critical limitation of conventional gLVE-based methods
is their inability to account for temporal changes in the mi-
crobial interaction networks. Microbial interactions have been
reported to differ in environments that contain different nutri-
ents (Embree et al., 2015). In environments where nutrition
is expected to change dramatically, such as in the human gut,
where the nutrition is influenced by diet (Kolodziejczyk et al.,
2019), microbial interactions are expected to be time-varying.
However, conventional gLVE-based methods cannot estimate
such time-varying microbial interactions because they implic-
itly assume that the microbial interaction network is same at
all times.

In this study, we developed unsupervised learning based
microbial interaction inference method using Bayesian
estimation (Umibato) for estimating time-varying directed
microbial interaction networks. We proposed a novel Bayesian
model called the continuous-time regression hidden Markov
model (CTRHMM), which was included in Umibato. The
Umibato algorithm comprises the following two steps:

1. Gaussian process regression (GPR) estimates the growth
rates from time-series quantitative microbial abundances
(Section 2.3).

2. CTRHMM estimates the time-varying microbial interac-
tion networks from estimated growth rates and time-series
quantitative microbial abundances (Section 2.4).

The growth rates estimated by GPR are passed to the
CTRHMM together with the estimation uncertainty. This
procedure allows for the estimation of directed microbial in-
teractions, considering the uncertainty of growth rate estima-
tion. In addition, CTRHMM has the advantage of being rea-
sonably applicable to data with irregular sampling intervals
because it assumes a continuous-time Markov chain. We first
confirmed the effectiveness of the Umibato algorithm in syn-
thetic datasets (Section 3.1). We then applied the Umibato
algorithm to the mouse gut microbiome dataset and observed
that Umibato estimated the specific interaction network in a
low-fiber diet (Section 3.2). These results suggest that Umi-
bato can capture changes in the microbial interaction network.

2 Materials and methods

2.1 Generalized Lotka-Volterra equation

The gLVE, a differential equation describing the symbiosis and
competition relationship of microbes, is formulated as follows:

dxi(t)

dt
=

φi,0 +
M∑
j=1

φi,jxj(t)

xi(t),
where xi(t) is the quantitative abundance of the i-th microbe
at time t, φi,j(j > 0) is the interaction parameter from the
j-th microbe to the i-th microbe, φi,0 is the growth param-
eter of the i-th microbe, and M is the number of different
microbes. We defined gLVE parameters as interaction and
growth parameters. For computational convenience, gLVE is
transformed into the following form:

yi(t) = φi,0 +
M∑
j=1

φi,jxj(t), (1)

where

yi(t) =
d lnxi(t)

dt
=
dxi(t)

dt

1

xi(t)
. (2)

We call yi(t) the growth rates in this paper.

2.2 Overview of Umibato algorithm

The Umibato algorithm introduces time-varying gLVE param-
eters φi,j(t) into Eq. (1): To represent several different con-
ditions caused by environmental events (e.g., nutrient deple-
tion and compound surges due to host diet), we assume that
microbial interactions change discretely. Therefore, we de-
fined interaction states as categorical variables that determine
the discrete state of interaction. We used

∑K
k=1 zk(t)φk,i,j as

φi,j(t), where zk(t) is a stochastic process that has a value of
1 when the interaction state at time t is the k-th state and
0 otherwise; φk,i,j(j = 0) and φk,i,j(j > 0) are the growth
and interaction parameters when the interaction state is the
k-th state, respectively; and K is the number of interaction
states. Then, the Umibato probabilistic model is based on the
following equation:

yi(t) =
∑
k

zk(t)

φk,i,0 +

M∑
j=1

φk,i,jxj(t)

. (3)

{zk(t)}Kk=1 are modeled using a continuous-time Markov
chain. The detailed generative processes are described in
Section 2.4.1. To use Eq. (3) as a statistical model, we re-
placed xi(t), yi(t), and zk(t) with quantitative abundance data

{xn,i}Nn=1, growth rate data {yn,i}Nn=1, and latent state binary

variables {zn,k}Nn=1, respectively, whereN is the number of ob-
servations. We then obtained the following statistical model:

yn,i =
∑
k

zn,kφ
T
k,ixn + εn,i,

εn,i ∼ Normal
(
0, σ2

n,i

)
,
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where xn = (1, xn,1, . . . , xn,j , . . . , xn,M )
T

is the quantitative
abundance vector of microbes at the n-th observation point;
φk,i = (φk,i,0, . . . , φk,i,j , . . . , φk,i,M )

T
is the gLVE parameter

for the i-th microbe in the k-th state; εn,i is an error term of
yn,i; σ

2
n,i is the variance of εn,i; and Normal

(
µ, σ2

)
denotes

the normal distribution with a mean of µ and a variance of
σ2.

Umibato estimates the time-varying gLVE parameters
through the following two steps. First, Umibato estimates yn,i
and σ2

n,i from {xn,i}n for the i-th microbe using a Gaussian
process regression (cf. Section 2.3). Second, Umibato esti-
mates {zn,k}n,k and {φk,i,j}k,i,j from {xn,i}n,i, {yn,i}n,i, and{
σ2
n,i

}
n,i

using a continuous-time regression hidden Markov

model (cf. Section 2.4). We describe the detailed Umibato
procedure in Algorithm 1 (the notations are described in Sup-
plementary Table S1).

2.3 Gaussian process regression for growth
rate estimation from time-series quanti-
tative microbiome data

GPR is a probabilistic regression model based on a kernel
function. We used GPR to estimate the growth rates and
their variances from quantitative abundances. An essential
property of GPR is its ability to estimate the distribution of
the true function. In Umibato, the logarithmic abundance
trajectories of microbes are estimated as true functions, and
yn,i and σ2

n,i are given as follows:

yn,i = E[fi
′](tn),

σ2
n,i = V[fi

′](tn), (4)

where fi is the logarithmic abundance trajectory function of
the i-th microbe; fi

′ is the growth rate function, that is, the
time derivative of the estimated fi (Eq. (2)); E(·) and V(·)
are the expectation and variance with respect to the posterior
distribution of fi, respectively; and tn is the time of the n-th
observation point. E[fi

′] was obtained by differentiating the
kernel function, and V[fi

′] was approximated by sampling fi
′

from the posterior distribution.
Preliminary experiments have shown that the growth rate

estimation by GPR is more powerful than that by penalized
spline interpolation, which has been used in previous studies
(Supplementary Figure S1). In addition, GPR has another
advantage in that hyperparameters, such as a penalty coeffi-
cient in penalized spline interpolation, are not required. Note
that we used the term “hyperparameter” here as a parameter
that was not estimated in iterations.

2.3.1 Parameter estimation

We estimated the kernel parameters using the maximum like-
lihood estimation. We used a radial basis function kernel
and Gaussian noise and implemented GPR parameter estima-
tion using the Python library GPy (https://github.com/
SheffieldML/GPy). To avoid the logarithm of zero, we re-
placed zeros in the abundance matrix by a pseudo abundance,
where the pseudo abundance is set to be the largest 10r that
does not exceed the minimum non-zero value of the abundance
matrix (r is an arbitrary integer).

2.3.2 Outlier detection

In the growth rate estimation, we excluded the observation
points that were not in the middle 90% of the distribution
estimated by the GPR as outliers. We then conducted GPR
again, and the results were used as the final estimates.

2.3.3 Calculating the variance of the estimated
growth rate

We sampled fi from the posterior distribution estimated
by GPR 100 times and calculated the unbiased variance.
Variances below 10−4 were corrected to 10−4 because very
small variances would interfere with the estimation of the
CTRHMM.

2.4 Continuous-time regression hidden
Markov model for estimating time-
varying gLVE parameters

We proposed a novel Bayesian probabilistic model,
CTRHMM. CTRHMM was used to estimate the inter-
action states and the corresponding networks using growth
rates and their variances estimated by GPR. CTRHMM is
a model similar to the input-output hidden Markov model
(Bengio and Frasconi, 1994) but differs in that a continuous-
time Markov chain assumes the states. The continuous-time
Markov chain enables the application of the model to data
with irregular sampling intervals. This ability is useful
because periodic sampling of the microbiome is difficult in
some cases. For example, the sampling interval for human gut
microbiota studies depends on the defecation interval. The
continuous-time Markov chain, which can consider sampling
intervals, is therefore more suitable for modeling interaction
states than the discrete-time Markov chain. In Section 2.4.2,
we introduce a variational inference procedure for CTRHMM.
To the best of our knowledge, this is the first time variational
inference has been applied to continuous-time hidden Markov
models.

2.4.1 Generative process of CTRHMM

The generative process of CTRHMM is given as follows:

for each state k = 1 . . . K do
φk,i ∼ Normal

(
0, λ−1i IM+1

)
P(t) = exp(Qt)
for each subject s = 1 . . . S do

z
(s)
1 ∼ Multinomial(1K/K, 1)

for each observation point n = 2 . . . Ns do

z
(s)
n ∼

∑
k z

(s)
n−1,kMultinomial

(
pk(d

(s)
n−1), 1

)
y
(s)
n,i ∼

∑
k z

(s)
n,kNormal

(
φk,i

Tx
(s)
n , ησ

(s)
n,i

2)
Here, λi is the precision parameter for the prior distri-
bution of gLVE parameters to the i-th microbe; IM+1

is the (M + 1)-dimensional identity matrix; P(t) =

(p1(t), . . . ,pk(t), . . . ,pK(t))
T

is the transition probability ma-
trix for the elapsed time t; exp(·) is the matrix exponential
function; Q is the transition rate matrix; S is the number of

subjects; ·(s) denotes the s-th subject; z
(s)
n is a one-hot vector

indicating the interaction state of the n-th observation point of
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the s-th subject; Multinomial(p, N) denotes the multinomial
distribution with the event probability vector p and number
of trials N ; 1K is a K-dimensional vector in which all the el-
ements are 1; Ns is the number of observation points of the

s-th subject; d
(s)
n is the time interval of the s-th subject be-

tween the n-th observation point and the (n+1)-th observation
point; and η is the reciprocal of the inverse temperature in the
field of statistical physics, which adjusts for the influence of
likelihood and prior distribution. Figure 1 shows a graphical
representation of CTRHMM.

!!!!"# !!"#

"!

#! $

"!"# %

&!"

'(
Figure 1: Graphical representation of the proposed model
(CTRHMM). Only the n-th observation point is displayed,
and the subject indices are omitted. The shaded and white
circles represent the observed and unobserved variables, re-
spectively.

2.4.2 Variational inference for estimating
CTRHMM parameters

We present a variational inference procedure for CTRHMM.
Variational inference is a parameter estimation method for
Bayesian probabilistic models that introduces an approxi-
mate posterior distribution and maximizes the evidence lower
bound (ELBO) (Attias, 2000). Maximizing ELBO is equiva-
lent to minimizing the Kullback-Leibler divergence between an
approximate posterior distribution and the true posterior dis-
tribution. We introduce the following approximate posterior
distributions:

q(ζ(t),Z)q(Φ) ≈ p(ζ(t),Z,Φ|X,Y,Σ, η,Q,d,λ),

where X, Y, Σ, and Z, are the quantitative abundance matrix,
growth rate matrix, growth rate variance matrix, and one-
hot state matrix of all subjects at all timepoints, respectively;
ζ(t) is the stochastic process of states between observation
points; Φ is the gLVE parameter tensor; d is the time interval
vector between each observation point of all subjects; λ is the
parameter vector for the prior distribution of Φ; and Ns is the
number of observation points of the s-th subject. In addition,
we assume that the following factorization is possible for the
approximate posterior distribution:

q(ζ(t),Z)q(Φ) =

(
S∏
s=1

q(ζ(s)(t),Z(s))

)(
K∏
k=1

M∏
i=1

q(φk,i)

)
,

where φk,i is the gLVE parameter for the i-th microbe in in-
teraction state k. The detailed notations are described in Sup-
plementary Table S1. Then, ELBO L is written as

L =
〈

ln p(Y, ζ(t),Z,Φ|X,Σ, η,Q,d,λ)

− ln q(ζ(t),Z)q(Φ)
〉
ζ(t),Z,Φ

,

where 〈·〉ζ(t),Z,Φ denotes the expectation with respect to

q(ζ(t),Z)q(Φ). We maximize L in the variational inference.
Using the variational method, q(φk,i) satisfying ∂L

∂q(Φ) = 0 is

obtained as follows:

q(φk,i) = MultiNormal
(
φk,i|Σφk,i

tφk,i
,Σφk,i

)
, (5)

where MultiNormal(µ,Σ) denotes the multivariate normal
distribution with mean vector µ and covariance matrix Σ,
and

tφk,i
= XTLk,iy

(·)
·,i ,

Σφk,i
=
(
λiIM+1 + XTLk,iX

)−1
,

Lk,i = diag(γ
(·)
·,k)diag(ησ

(·)
·,i )
−1.

Here, diag(a) is the diagonal matrix whose diagonal elements

are a, γ
(·)
·,k is the expected vector of the k-th column of Z with

respect to q(Z), σ
(·)
·,i is the i-th columns of Σ, and y

(·)
·,i is the

i-th columns of Y. Similarly, q(Z(s)) is obtained as follows:

ln q(Z(s)) =

(
Ns∑
n=1

M∑
i=1

K∑
k=1

z
(s)
n,ke(s, n, i, k)

)
+ ln p(z

(s)
1 )

+

(
Ns−1∑
n=1

ln p(z
(s)
n+1|z(s)n ,Q, d(s)n )

)
− ln p̃(Y(s)),(6)

where 〈·〉φk,i
denotes the expectation with respect to q(φk,i),

ln p̃(Y(s)) is the normalization constant for q(Z(s)), and

e(s, n, i, k) =
〈

ln p(y
(s)
n,i|z

(s)
n,k = 1,φk,i,x

(s)
n , σ

(s)
n,i, η)

〉
φk,i

= −1

2
ln 2πησ

(s)
n,i

2

− 1

2ησ
(s)
n,i

2

{
y
(s)
n,i

2
− 2y

(s)
n,ix

(s)
n

T〈
φk,i

〉
φk,i

+x(s)
n

T
〈
φk,iφk,i

T
〉
φk,i

x(s)
n

}
.

The second and third terms on the right-hand side of Eq. (6)
are given by

ln p(z
(s)
1 ) +

Ns∑
n=1

ln p(z
(s)
n+1|z(s)n ,Q, d(s)n )

= −
K∑
k=1

z
(s)
1,k lnK +

Ns−1∑
n=1

K∑
k=1

K∑
l=1

z
(s)
n,kz

(s)
n+1,l ln pk,l(d

(s)
n ),

where pk,l(t) is the transition probability from the k-th state
to the l-th state for the elapsed time t. Eq. (6) can be com-
puted using the forward–backward algorithm (Baum et al.,
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1972). We used the true conditional posterior distribution

p(ζ(s)
n (t)|z(s)n ,Q, d

(s)
n ) as q(ζ(s)

n (t)|z(s)n ). p(ζ(s)(t)|Z(s),Q,d)
can be expressed as follows:

p(ζ(s)(t)|Z(s),Q,d) =

Ns−1∏
n=1

K∏
u=1

K∏
v=1

f(s, n, u, v)z
(s)
n,uz

(s)
n+1,v ,

where

f(s, n, u, v) = p(ζ(s)
n (t)|z(s)n,u = 1, z

(s)
n+1,v = 1,Q, d(s)n )

∝
∏
k

{
pu,k(t)pk,v(d

(s)
n − t)

}ζ(s)n,k(t)

.

The implementation does not calculate the distribution but
only the following expectations:〈

τ
(s,n,u,v)
k

〉
ζ
(s)
n (t)

=
1

pu,v(d
(s)
n )

∫ d(s)n

0

pu,k(t)pk,v(d
(s)
n − t)dt, (7)

〈
ν
(s,n,u,v)
k,k′

〉
ζ
(s)
n (t)

=
qk,k′

pu,v(d
(s)
n )

∫ d(s)n

0

pu,k(t)pk′,v(d
(s)
n − t)dt,(8)

where τ
(s,n,u,v)
k and ν

(s,n,u,v)
k,k′ are the time interval of state k

and the number of transitions from state k to k′ between the
n-th and (n+1)-th observation points of the s-th subject when

z
(s)
n,u = 1 and z

(s)
n+1,v = 1 hold, respectively; 〈·〉

ζ
(s)
n (t)

denotes

the expectation with respect to q(ζ(s)
n (t)|z(s)n , z

(s)
n+1); and qk,k′

is the (k, k′) element of the transition rate matrix Q. These
expectations can be obtained by calculating one matrix ex-
ponential according to a previous study on a continuous-time
hidden Markov model (Liu et al., 2015). Type II maximum
likelihood estimation of the other parameters were obtained
as follows:

qk,k′ =
〈νk,k′〉ζ(t),Z
〈τk〉ζ(t),Z

, (9)

λm =
(D + 1)K∑K

k=1

〈
φk,i

Tφk,i

〉
φk,i

, (10)

η =
1

NM

S∑
s=1

Ns∑
n=1

M∑
i=1

K∑
k=1

γ
(s)
n,k

σ
(s)
n,i

〈(
y
(s)
n,i − x(s)

n

T
φk,i

)2
〉
φk,i

,(11)

where 〈·〉ζ(t),Z denotes the expectation with respect to

q(ζ(t),Z); γ
(s)
n,k is the expectation of z

(s)
n,k with respect to

q(z
(s)
n,k); and τk and νk,k′ are the time interval of state k and

the number of transitions from state k to k′ at all periods, re-
spectively. 〈τk〉ζ(t),Z and 〈νk,k′〉ζ(t),Z can be calculated from〈
τ
(s,n,u,v)
k

〉
ζ
(s)
n (t)

,
〈
ν
(s,n,u,v)
k,k′

〉
ζ
(s)
n (t)

, and the expected number

of transitions between the observation points obtained by the
forward–backward algorithm. Finally, ELBO can be rewritten
as

L =

(
S∑
s=1

ln p̃(Y(s))

)

+

(
K∑
k=1

M∑
i=1

〈
ln p(φk,i|λm)

〉
φk,i

+
1

2
ln det

(
2πeΣφk,i

))
,(12)

when Eq. (6) holds, where det(·) denotes the matrix deter-
minant calculation. A detailed derivation of the variational
inference algorithm is provided in Supplementary Section S1.

2.4.3 State deletion

In the process of estimating the CTRHMM parameters, only
a small number of observations are assigned to one state. A
state that is allocated only the number of observation points
less than or equal to M + 1 is overfitting because it can recon-
struct the observation points without any errors. We intro-
duced heuristics to remove such states and the corresponding
parameters during estimation. In detail, we deleted a state
that satisfies the following conditions:(

S∑
s=1

Ns∑
n=1

γ
(s)
n,k

)
< M + 1. (13)

The heuristics were performed so that at most one cluster
was deleted per iteration. In the next iteration, where this
operation is performed, convergence is not determined because
ELBO may decrease.

2.4.4 Convergence determination

The learning process is terminated when the change in the
ELBO between the previous and current steps is less than
10−4, or when the total number of iterations exceeds 100.

2.4.5 Standardization of quantitative abundance ma-
trix

The quantitative abundance matrix X was standardized such
that the mean is 0 and the variance is 1 for each microbe to
equalize the effect of the prior distribution of Φ. Standardiza-
tion of X can also remove the 16S rRNA gene copy number
bias when comparing the interaction parameters to a microbe.
In other words, standardization discards information regard-
ing the scale of microbial abundances and enables the estima-
tion of contributions to growth rates that can be compared (cf.
Figure 5). In a synthetic data experiment (Section 3.1), we
corrected the gLVE parameters estimated using standardized
X to compare them with the true parameters. The detailed
procedure is described in Supplementary Section S2.

2.5 Synthetic data experiment

We generated gLVE parameters using a generative process and
prepared three different synthetic datasets according to gLVE.
The generative process is the same for the three datasets and
was set up based on the MDSINE assumptions regarding signs
(MDSINE assumes φi,j < 0(i = j) and φi,0 > 0). Each dataset
has a different combination of the number of states K (1 or
2) and the number of microbes M (5 or 10). The details of
the settings of states and parameters are described in Supple-
mentary Section S3. We conducted 100 CTRHMM trials for
each initial number of states Kinit = 1, . . . , 5. We adopted a
trial with the highest ELBO maximized in the learning pro-
cess. The performances of MDSINE and Umibato were eval-
uated using the two measurements: the Pearson’s correlation
coefficients and the mean absolute error (MAE). Pearson’s
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Algorithm 1 The Umibato algorithm

procedure Umibato algorithm(quantitative abundance
matrix X, time interval vector d)

Growth rate estimation (Section 2.3)
for each subject s = 1 . . . S do

for each microbe i = 1 . . . M do
Estimate f

(s)
i by GPR

Calculate Y(s) and Σ(s) by Eq. (4)

Interaction estimation (Section 2.4)
Initialize q(Φ), η,Q
for each iteration r = 1 . . . 100 do

Update q(Z) by Eq. (6)
Calculate 〈τi〉ζ(s)

n (t),Z
, 〈νi,j〉ζ(s)

n (t),Z
by Eq. (7) and (8)

Calculate the ELBO by Eq. (12)
if The ELBO converged then

Terminate iteration
Update q(Φ) by Eq. (5)
Update Q,λ, η by Eq. (9), (10), and (11)
if there is a state satisfying Eq. (13) then

Delete the state and the corresponding parame-
ters

correlation coefficients and MAE were calculated between the
true and estimated parameters at each observation point. To
evaluate Umibato, we compared the true parameter with the
parameter corresponding to the state of the maximum likeli-
hood path for each observation point.

2.6 Real data experiment

We used the time-series quantitative mouse gut bacterial
dataset of Bucci et al. (2016), which was obtained from the
feces of seven mice that had orally ingested 13 strains of
Clostridium. These 13 bacterial strains were determined based
on the work of Atarashi et al. (2013), which suggested that the
strains induced Treg cells. Supplementary Table S2 shows the
lineage of each strain. The data were measured using strain-
specific qPCR primers. All mice were fed a high-fiber diet, five
of the seven mice were temporarily switched to a low-fiber diet,
and two of the seven mice were not switched and acted as con-
trols. The first five mice had 56 observation points each, and
the latter two mice had 25 observation points each. We down-
loaded this dataset from the MDSINE software repository
(https://bitbucket.org/MDSINE/mdsine/downloads). We
conducted 10000 CTRHMM trials for each Kinit = 1, . . . , 15.
We adopted a trial with the highest ELBO maximized in the
learning process.

3 Results

3.1 Accuracy evaluation on synthetic
dataset

We tested the performance of Umibato compared with that
of MDSINE on synthetic datasets generated using known pa-
rameters according to gLVE (cf. Section 2.5). Four algo-
rithms, BAL, BVS, MLRR, and MLCRR, were implemented
in MDSINE (Bucci et al., 2016), and the performance of Umi-
bato was compared with those of all others. The performance

of Umibato was visualized over two settings: (1) the case in
which the number of true states was given as Kinit (called
“true model case”) and (2) the case in which several Kinit

were used similar to the real data experiment (called “practi-
cal case”).

Figure 2 shows the means of the correlation coefficients
between true parameters and parameters estimated by each
method for each synthetic dataset. First, Dataset 1 is a single-
state dataset; that is, it obeys the equations assumed in pre-
vious studies. The mean correlation coefficients of Umibato
in the true model case and practical case and those of BAL,
BVS, MLRR, and MLCRR in Dataset 1 were 1.0, 0.90, 0.32,
0.45, 1.0, and 1.0, respectively. Umibato exhibited high perfor-
mance in both cases. The estimation performance of Umibato
in the practical case was lower than that in the true model
case because the state estimation of some of the observation
points failed (Supplementary Figure S2). MLRR and MLCRR
showed high performance in Dataset 1 because Dataset 1 was
a single state. Second, Dataset 2 was generated by two states.
The mean correlation coefficients of Umibato in the true model
and practical cases and those of BAL, BVS, MLRR, and ML-
CRR in Dataset 2 were 0.99, 0.90, 0.16, 0.33, 0.53, and 0.56,
respectively. The performance of Umibato on Dataset 1 was
similar to that on Dataset 1; however, MLRR and MLCRR
were much less accurate for Dataset 1 than for Dataset 2. Pre-
vious gLVE-based methods were suggested not to accurately
estimate microbial interaction networks for multi-state data
such as Dataset2. For state estimation, Umibato in the true
model case failed for only four observation points, whereas
Umibato in the practical case failed for 88 observation points
(Supplementary Figure S3ac). Third, In Dataset 3, the num-
ber of different microbes was doubled compared to those in
Datasets 1 and 2. The mean correlation coefficients of Umi-
bato in the true model and practical cases and those of BAL,
BVS, MLRR, and MLCRR in Dataset 3 were 0.80, 0.89, 0.17,
0.14, 0.19, and 0.25, respectively. The estimation performance
of Umibato in the true model case was lower for Dataset 3
than that for Dataset 2, and in the practical case, Umibato
performed better than in the true model case. For state esti-
mation, Umibato in the true model case did not fail for any of
the observation points, whereas Umibato in the practical case
failed for 22 observation points (Supplementary Figure S3bd).
In summary, MDSINE showed high performance on Dataset
1 but low performance on Datasets 2 and 3 because MDSINE
assumed a single interaction in the microbiota, whereas Umi-
bato showed high performance on all datasets. The tendencies
discussed in this subsection can be observed in the MAE eval-
uation (Supplementary Figure S4).

3.2 Results on real mouse gut microbiome
dataset

We applied Umibato to the mouse gut bacterial dataset and
found that the maximized ELBO for a trial with Kinit = 6 was
the highest across all trials (Supplementary Figure S5). The
final number of states was 5, and we will discuss the results of
this trial in further analysis. As the estimated interaction pa-
rameters, we used the expectation of Φ with respect to q(Φ).
The computational time was described in Supplementary Sec-
tion S4.
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Figure 2: Pearson’s correlation coefficients between the true
parameters and parameters estimated by each method for each
synthetic dataset. The x- and y-axes indicate the mean of
the Pearson’s correlation coefficients of gLVE parameters of
all observation points for the datasets. The six bars indicate
Umibato in the true model case, Umibato in the practical case,
BAL, BVS, MLRR, and MLCRR in order from left to right.
The “true model case” and “practical case” are described in
Section 3.1.

3.2.1 Estimated interaction state trajectories

To see how the bacterial interaction states changed, we ex-
amined the maximum likelihood paths on the mouse gut mi-
crobiota dataset. Figure 3 shows the estimated state paths
and dietary information of the mice. We found that the State
5 was frequently estimated on low-fiber diet days and not in
the control mice. These results suggest that the switch from
the high-fiber to low-fiber diets altered bacterial interactions
in the mouse gut. States 1 and 2 were frequently estimated
just after the first day of the experiment and may be unstable
interactions caused by orally ingested bacteria. The transi-
tions between States 3 and 4 were frequently observed. This
result suggested that the states were not constant even with
the same diet (i.e., the high-fiber diet). To verify the robust-
ness of these observations, we also visualized the results for
Kinit = 3. We chose Kinit = 3 because States 3, 4, and 5 were
mainly estimated. The same tendency was observed for the
results estimated with Kinit = 3 (Supplementary Figure S6).

3.2.2 Estimated transition rate matrix of interaction
state

To investigate the relationship between the states, we next
examined the transition rate matrix Q. Figure 4a shows the
value of each element of P(1), that is, the transition probabil-
ity matrix of the state after one day. All diagonal components
are above 0.5, indicating that each state is likely to last for
more than one day. State 1 has a high probability of tran-
sition to State 3. States 1 and 3 may be the intermediate
states between the states after oral ingestion of bacteria and
the stable states. Figure 4b shows the value of each element
of P(7), that is, the transition probability matrix of the state
after one week. The diagonal components of States 3, 4, and
5 were approximately 0.5, whereas the diagonal components
of States 1 and 2 were 0.052 and 0.12, respectively. These re-
sults show that States 1 and 2 are short-term states that are

likely not to last for a week. States 3 and 4 have a high prob-
ability of transition to the other state, which suggests that
these states represent interaction networks stabilized by mu-
tual transitions. Note that the probability of each diagonal
component includes the probability of transitioning back in
time.

3.2.3 Directed interaction networks for each interac-
tion state

To understand the differences in the relationships between the
bacteria, we verified the interaction parameters of each state.
Figure 5 shows the directed networks based on the estimated
interaction parameters divided by the standard deviation of Y
for the parameters those above the threshold (0.25). We can
see several parasitism relationships in State 5. Here, the word
“parasitism” refers to a relationship between A and B such
that A contributes to the increase in B and B contributes to
the decrease in A. In particular, strains 6, 15, and 28 showed
three-way parasitism. The interactions of State 4 are active,
whereas those of State 3 are relatively inactive. Together with
the discussion in Section 3.2.1 and Section 3.2.2, our results
suggest that the interaction network frequently switches be-
tween dense and sparse states. These 13 strains were suggested
to synergistically amplify the induction of Treg cells in a mi-
crobial community-dependent manner (Atarashi et al., 2013).
Therefore, the processes required for Treg induction may cor-
respond to some or all states. A positive edge from strains
13 to 15 is common to States 3, 4, and 5. This positive edge
was also observed in the network estimation of a single-state
experiment (Supplementary Figure S7).

3.2.4 Simulated bacterial abundance trajectories us-
ing estimated parameters

The gLVE enables the simulation of bacterial trajectories.
Similarly, the continuous-time Markov chain can simulate
state trajectories because of its ability to generate states. To
assess the effect of a long-term low-fiber diet on the gut micro-
biota, we simulated the bacterial abundance trajectory using
the estimated parameters. After 20 days in State 5, which is
considered the bacterial interaction state on the low-fiber diet,
we randomly shifted the state according to estimated Q. The
procedure for generating bacterial trajectories is the same as
that for generating synthetic datasets (Section 2.5) described
in Supplementary Section S3, where Gamma(1, 2) was used
to generate the initial value of abundance. Figure 6 shows
the simulated interaction state and the bacterial abundance
trajectories. Strains 13, 26, 27, and 28 increased in State 5
and decreased in States 3 and 4, while strain 21 decreased and
increased. Strains 7 and 14 showed an increasing trend in all
periods. Slight variation was observed in the abundance of
strain 16. Strain 16 may be less affected by the abundance of
other bacteria. The abundance of strains 6 and 9 almost dis-
appeared during State 5 and could not be restored even after
a long period in States 3 and 4. This result suggests that a
long-term low-fiber diet may lead to an irreversible decrease
in the diversity of microbiota.
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Figure 3: Interaction state path estimated by Umibato on the mouse gut bacterial dataset. Each axis indicates each mouse
gut microbiome. The x- and y-axes indicate the days since the start of the experiment and the interaction states and low-fiber
diet days, respectively. Each square marker indicates the state estimated at the time point. For example, there is a marker in
(10, State3) in the figure of Subject 1, and it indicates that the interaction state of day 10 of subject1 is State 3. Subjects 4
and 7 were controls; that is, they were fed a high-fiber diet at all time points.
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Figure 4: Transition probability matrix P(·) of interaction
states estimated by Umibato on the mouse gut bacterial
dataset. The x- and y-axes represent the destination and
source state IDs, respectively. Darker colors indicate higher
probabilities. (a) P(1), that is, the transition probability ma-
trix after one day. (b) P(7), that is, the transition probability
matrix after one week.

4 Discussion

Here, we propose a new method, Umibato, for estimating
time-varying microbial interaction networks. The first step
of Umibato is growth rate estimation. Our proposed method
uses GPR, which enables accurate and hyperparameter-free
growth rate estimation. The second step is interaction es-
timation. Umibato adopted a new probabilistic model, the
CTRHMM, proposed in this study. CTRHMM can capture
changes of gLVE parameters in time by assuming discrete state
variables. Umibato was shown to outperform existing methods
for synthetic datasets. In the real mouse gut dataset, specific
states were estimated at the low-fiber dietary time, suggest-
ing that gut bacterial interactions changed in a diet-dependent
manner.

There is still room for improvement in the growth rate esti-
mation. First, we can utilize trajectory noise as well as vari-
ances of growth rates. Umibato estimated growth rate distri-
butions from trajectories of bacterial quantitative abundances
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Figure 5: Estimated bacterial interaction networks corre-
sponding to states. The number shown in each node indicates
the strain ID in Supplementary Table S2. The width of the
edge indicates that the estimated interaction parameter di-
vided by the standard deviation of the growth rate, and values
below 0.25 were omitted. The red arrow and blue T-shaped
edges indicate positive and negative interactions, respectively.

and used their expectations and variances in the CTRHMM.
By extending CTRHMM, we can also utilize the trajectory
noise. Specifically, the true quantitative abundance matrix X̃
is defined as a new latent variable, and X is assumed to be
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Figure 6: Simulated interaction state and bacterial abundance trajectories. We fixed the first 20 days in State 5 and randomly
shifted the state for the next 30 days. The trajectories were divided into two pains because of differences in the abundance
scale. The top, middle, and bottom figures show the simulated trajectory of the bacteria with high abundance and low
abundance and the simulated interaction states, respectively. The x-axis indicates the number of days elapsed, whereas the
y-axis indicates the abundance of bacteria or the interaction state.

stochastically generated from X̃. Here, the trajectory noise
estimated by the GPR is used as the noise of the distribution
of X. As suggested by Cao et al. (2017), noise exists in the
quantitative abundance matrix X. Therefore, it may be use-
ful to estimate gLVE parameters considering the trajectory
noise. Second, it is also possible to use growth rate estima-
tion methods based on the peak-to-trough ratio (PTR), which
has been proposed recently (Korem et al., 2015; Brown et al.,
2016; Emiola and Oh, 2018; Suzuki and Yamada, 2020). The
PTR-based growth rate estimation methods require a metage-
nomic shotgun sequencing dataset and are based on the fact
that the higher the growth rate, the more DNA is mapped
around the replication origin (Cooper and Helmstetter, 1968;
Bremer and Churchward, 1977). Adopting the PTR-based
growth rate estimation enables using cross-sectional datasets.
However, the performance of PTR-based methods is question-
able (Long et al., 2020), and the use of this method should be
considered carefully.

Three directions can be used to improve the interaction
state estimation by CTRHMM. The first direction is model
selection. In the synthetic dataset experiments, several ob-
servation points (> 20 points out of all 700 points) failed in
the state estimation of Umibato in the practical case, whereas
Umibato in the true model case could estimate the correct
state with few failures (< 5 points out of all 700 points) (Sec-
tion 3.1). Therefore, estimating the correct number of states
in advance, that is, accurate model selection, enables us to im-
prove the state estimation. A typical model selection method
involves the use of information criteria. One information cri-
terion that can be applied to mixture models is the WBIC
(Watanabe, 2013). However, WBIC assumes independent and
identically distributed latent variables and is not applicable
to HMMs. A mathematically justified method for applying
WBIC to HMMs has not yet been established. The second
direction is a Bayesian estimation of the transition rate ma-
trix Q. The Bayesian estimation of Q is expected to be more
robust than the maximum likelihood estimation adopted in
this study. Robust estimation of Q allows robust state esti-

mation because Q constitutes the prior distribution of interac-
tion states Z. To perform a Bayesian estimation of Q in vari-
ational inference, we compute the expectations with respect
to the approximation posterior distribution q(Q) for calcula-
tions involving Q, such as q(Z)(Eq. (6)) and q(ζ(t)|Z)(Eq. (7),
(8)), which cannot be computed analytically. Therefore, the
approximation of the matrix exponential or sampling approx-
imation of the expectations must be used. The third direc-
tion is semi-supervised learning. In the application of mouse
gut bacterial dataset (Section 3.2), State 5 interaction, which
seems to be due to low-fiber diets, was estimated without giv-
ing labels in an unsupervised learning framework. We also
suggested that there were two primary states (i.e., States 3
and 4) on high-fiber diets. As we have seen, unsupervised
learning is powerful, but we can also take an approach that uti-
lizes labels for learning. In the present case, semi-supervised
learning can be applied for state estimation using diet labels.
That is, CTRHMM is trained where some of the states of
the observation points are known. This method can be easily

implemented by fixing q(z
(s)
n ) of the observation points given

the label during the model learning iterations (Nigam et al.,
1998).

There are several candidates for the application of Umibato.
First, the most interesting candidate is the human gut micro-
biota. Relationships between the host’s disease and microbial
interactions have been suggested (Fraune et al., 2015; McGre-
gor et al., 2020); hence, changes in microbial interactions es-
timated by Umibato may reveal the dynamics of contracting
diseases. Indeed, simulations of bacterial trajectories (Sec-
tion 3.2.4) suggested the effect of a long-term low-fiber diet
on the gut microbiome. Some bacteria were eliminated by the
low-fiber diet. A decrease in community diversity in the hu-
man gut microbiome is called dysbiosis and has been reported
to be associated with several diseases (Tamboli et al., 2004;
Levy et al., 2017). Unfortunately, to the best of our knowl-
edge, there are no long-term quantitative time-series data of
human gut microbiota. Therefore, further data accumula-

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.01.28.428580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428580
http://creativecommons.org/licenses/by-nc/4.0/


tion is required. Second, the application of Umibato to the
microbiome data of the natural environment, such as ocean
and soil, may be useful. Umibato is expected to be effec-
tive for analyzing environmental data with dramatic changes
in conditions (Ramsby et al., 2018). Investigating the rela-
tionship between seasons/weather/temperature and microbial
interactions in natural environments through long-term sam-
pling may provide new insights into microbial research.
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