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1. Abstract 
 
Signals of brain electric neuronal activity, either invasively measured or non-invasively 

estimated, are commonly used for connectivity inference. One popular methodology assumes that 
the neural dynamics follow a multivariate autoregression, where the autoregressive coefficients 
represent the couplings among regions. If observation noise is present and ignored, as is common in 
practice, the estimated couplings are biased, affecting all forms of Granger-causality inference, both 
in time and in frequency domains. Significant nonsense coupling, i.e., nonsense connectivity, can 
appear when in reality there is none, since there is always observation noise in two possible forms: 
measurement noise, and activity from other brain regions due to volume conduction and low spatial 
resolution. This problem is critical, and is currently not being addressed, calling into question the 
validity of many Granger-causality reports in the literature. An estimation method that accounts for 
noise is based on an overdetermined system of high-order multivariate Yule-Walker equations, 
which give reduced variance estimators for the coupling coefficients of the unobserved signals. 
Simulation-based comparisons to other published methods are presented, demonstrating its 
adequate performance. In addition, simulations result are presented for a zero connectivity case with 
noisy observations, where the new method correctly reports no connectivity while classical analyses 
(as found in most software packages) report nonsense connectivity. For the sake of reproducible 
research, the supplementary material includes, in human readable format, all the time series data 
used here. 

 
 

2. Introduction 
 
Consider the multivariate autoregressive model (MAR) of order “p”, for the time series 

( ) 1nt X : 

Eq. 1 ( ) ( ) ( ) ( )
1

p

k

t k t k t
=

= − +X A X e  

where ( ) n nk A  for 1..k p=  are the autoregressive coefficients, and ( ) 1nt e  denotes the 

innovations with zero mean and innovations covariance matrix n n

ee

 . 

 
Technical details on the multivariate autoregressive model can be found in Kilian and Lütkepohl 

(2017). 
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Assume that the actual measurements ( ) 1nt Y  are contaminated with additive noise: 

Eq. 2 ( ) ( ) ( )t t t= +Y X w  

where ( )te  and ( )tw  are independent, and ( ) 1nt w  denotes the noise with zero mean and noise 

covariance matrix n n

ww

 . 

 
The problem of interest is: 

Eq. 3 Given measurements ( )tY  in Eq. 2, with ( )tX  modeled as in Eq. 1, estimate ( ) n nk A  for 1..k p= . 

 

( )tX  will be referred to as the unobserved signals, and ( )tY  as the observed noisy signals or 

noisy data. Furthermore, ee  is referred to as the innovations covariance, and ww  as the noise 

covariance. Innovations are not to be confused with observation noise. 
 
See e.g., Jamoos et al (2011), Mahmoudi and Karimi (2008), Qu et al (2011), and Rangarajan and 

Rao (2018) for the statement of this problem and several algorithmic solutions. 
 
In formal terms, the null-hypotheses for testing Granger-causal-influence from region “j” to 

region “i”, as used in connectivity inference, correspond to the following two cases: 

Eq. 4 ( ) ( ) ( )0 : 1 2 .. 0t

ij ij ijH A A A p= = = =  

and: 

Eq. 5 ( )0 : 0ijH A  =  

where ( )ijA k  corresponds to the ij-th element of ( )kA , and ( )ijA   corresponds to the complex 

valued discrete Fourier transform at frequency  for the sequence ( )ijA k  for 1..k p= . 

 
Evidence of Granger-causal connectivity corresponds to rejection of the null hypothesis Eq. 4 or 

Eq. 5. 
 
In most brain connectivity studies based on the MAR model, it is implicitly assumed that there is 

no noise, and Eq. 1 is fitted directly to the measured or estimated signals of electric neuronal activity. 
See e.g., Astolfi et al (2007), Barnett and Seth (2014), Pascual-Marqui et al (2014), Seth et al (2015), 
Richter et al (2017), Coito et al (2019), Barnett et al (2020). In all cases, in the presence of observation 
noise, connectivity may arise (rejection of the null hypotheses) even when there is true 
independence. 

 
In the next section, the method for estimating the connectivity parameters in an ideal, no noise 

case is presented first. 
 
Next, the same equations are applied to observations in the presence of noise, which is an 

inappropriate procedure. This reveals the bias in the incorrectly estimated parameters. 
 
Next, a simple example is worked out in detail, demonstrating how nonsense connectivity can 

appear in the case of signals of electric neuronal activity. This is due to the realistic fact that there is 
activity from other sources, which additively affect the measurements of interest, due to volume 
conduction and low spatial resolution. 
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Next, a solution to the problem in Eq. 3 is presented, denoted OHOYW: over determined high 
order Yule-Walker method for autoregressive coefficients estimation. See e.g. Friedlander (1983), 
and equation 2.138 in Najim (2008). 

 
Finally, simulated data is used for the comparison of the present method with other published 

solutions, and for further illustrating the nonsense connectivity problem. 
 
 

3. The classic multivariate autoregressive model 
 

Let the expectation operator  E •  denote average over time samples. Then, post multiplying Eq. 

1 by ( )T t i−X  and averaging gives: 

Eq. 6 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

p
T T T

k

E t t i k E t k t i E t t i
=

     − = − − + −     X X A X X e X  

equivalent to: 

Eq. 7 ( ) ( ) ( )
1

p

x x
k

i k i k
=

= −R A R  

with: 

Eq. 8 ( ) ( ) ( ) ( )T T

x xj E t t j j = − = − R X X R  

and: 

Eq. 9 ( ) ( )TE t t i − = e X 0  

 
The Yule-Walker equations correspond to Eq. 7, for 1..i p= , and can be used for estimating the 

autoregressive coefficients ( )kA  for 1..k p= , given sample autocovariances ( )x jR  for 0..j p= . See 

e.g., equation 5.85 in Shumway and Stoffer (2017). 
 

Eq. 9 follows from the causal independence of the present innovation ( )te  with past values of 

( )t i−X  for 0i  . 

 
The Yule-Walker equations (Eq. 7), for 1..i p= , are: 

Eq. 10 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 0 2 1 3 2 ... 1

2 1 1 2 0 3 1 ... 2

:

1 1 2 2 3 3 ... 0

x x x x x

x x x x x

x x x x x

p p

p p

p p p p p

 = + − + − + + −
 

= + + − + + − 
 
 
 = − + − + − + + 

R A R A R A R A R

R A R A R A R A R

R A R A R A R A R

 

equivalent to: 
Eq. 11 x x=C AD  

with: 

Eq. 12 ( ) ( ) ( ) ( ) ( )1 2 ..
n pn

x x x x p


 =  R R RC  

Eq. 13 ( ) ( ) ( ) ( ) ( )1 2 ..
n pn

p


 =  A A AA  
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Eq. 14 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 1 .. 1

1 0 .. 2

: : : :

1 2 .. 0

x x x

pn pnx x x

x

x x x

p

p

p p



 −
 

− − = 
 
 

− −  

R R R

R R R

R R R

D  

 
An estimator for the autoregressive coefficients is: 

Eq. 15 
1

x x

−=A C D  

 
 

4. The biased estimators for the autoregressive parameters in the presence of noise 
 
In this case the observations, i.e. the measurements, correspond to Eq. 2. The available data allow 

the computation of the autocovariances of ( )tY , which would then be plugged into the Yule-Walker 

equations with autoregressive coefficients ( )kB : 

Eq. 16 ( ) ( ) ( )
1

p

y y
k

i k i k
=

= −R B R  

with: 

Eq. 17 ( ) ( ) ( ) ( )T T

y yj E t t j j = − = − R Y Y R  

 
The relation between the autocovariances for the unobserved signals and the observed noisy 

signals are: 

Eq. 18 ( ) ( )0 0y x ww= +R R  

Eq. 19 ( ) ( ) , 0y xj j j= R R  

See e.g., equations 7 and 8 in Rangarajan and Rao (2018). 
 
Eq. 16, Eq. 18, and Eq. 19 give (in analogy to Eq. 11, Eq. 12, Eq. 13, and Eq. 14): 

Eq. 20 y y=C BD  

equivalent to: 

Eq. 21 ( )x x y= +C B D E  

with: 
Eq. 22 y x y= +D D E  

Eq. 23 ( ) ( ) ( ) ( ) ( )1 2 ..
n pn

p


 =  B B BB  

Eq. 24 
( ) ( )

..

..

: : : :

..

ww

pn pnww

y

ww



 
 
 = 
 
 
 







0 0

0 0

0 0

E  

 
Note that in general, the autoregressive coefficients B  obtained by solving Eq. 20 using noisy 

data, are different from the autoregressive coefficients A  obtained by solving Eq. 11 using non-noisy 
data, i.e.: 

Eq. 25 ( )
11

x x x x y

−
−   = + =    
A C D C D E B  
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By definition, both coefficients A  and B  are identical in the noiseless case with ww = 0 , 

equivalent to y =0E . 

 
In practice, most publications are computing and making connectivity inference based on the 

biased autoregressive coefficients B . 
 
The next section gives an explicit example of bias generating nonsense Granger causality from 

purely independent activity. 
 
 

5. Nonsense connectivity 
 
Consider the hypothetical case of two unobserved time series of cortical electric neuronal 

activity, that satisfy an autoregressive model of order p=1. It will be further assumed that the two 
signals are not interacting causally, i.e., the causal connectivity autoregressive coefficients in Eq. 27 
and Eq. 28 are zero: 

Eq. 26 ( ) ( )12 211 1 0A A= =  

 
The model can be written as: 

Eq. 27 ( ) ( ) ( ) ( )1 1t t t= − +X A X e  

with ( ) ( ) 2 1,t t X e , with autoregressive coefficients: 

Eq. 28 ( )
( )

( )
11 2 1

22

1 0
1

0 1

A

A


 
=  
 

A  

and with diagonal innovations covariance 2 2

ee

 . 

 

Note that the autocovariance matrices ( )0xR  and ( )1xR  are, by construction, diagonal. 

 

The measurements ( ) 2 1t Y  have added noise: 

Eq. 29 ( ) ( ) ( )t t t= +Y X w  

where it will be assumed that noise covariance is non-diagonal: 

Eq. 30 
11 12 2 2

12 22

ww


  

=  
  

  

 
The autoregressive coefficients for the noisy data are obtained from Eq. 16, Eq. 18, and Eq. 19. 

which give: 

Eq. 31 ( ) ( ) ( )1 1 0y y=R B R  

equivalent to: 

Eq. 32 ( ) ( ) ( )1 1 0x x ww = + R B R  

Eq. 33 ( ) ( ) ( )
1

1 1 0x x ww

−

 = + B R R  

 
Define: 

Eq. 34 ( )
( )

( )
11

22

1 0
1

0 1
x

x

x

R

R

 
=  
 

R  
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Then, from Eq. 30, Eq. 33, and Eq. 34, it follows that the estimated causal connectivity 

autoregressive coefficients are non zero: 

Eq. 35 ( )
( )

( )
11

12 12

1
1 0

0

x

x ww

R
b = −  

+ R
 

Eq. 36 ( )
( )

( )
22

21 12

1
1 0

0

x

x ww

R
b = −  

+ R
 

 
This demonstrates how nonsense, non-zero, false positive connectivity can occur: namely, by 

inappropriately fitting an autoregressive model to data contaminated by correlated observation 
noise. 

 
Note that this situation can occur in real life for signals of electric neuronal activity, where the 

recordings are contaminated with activity from a third independent region due to volume conduction 
and low spatial resolution. In this case, the observation noise is very highly correlated since it is 
basically a common signal. 

 
 

6. OHOYW: over determined high order Yule-Walker equations for noisy (and non-noisy) 
observations 

 
The main difficulty in solving the problem in Eq. 3 is the unknown noise covariance ww , for 

which there is no simple estimator. The number of publications on this multivariate problem is 
relatively scarce, but the diversity of algorithms is large, see e.g., Jamoos et al (2011), Mahmoudi and 
Karimi (2008), Qu et al (2011), and Rangarajan and Rao (2018). All these algorithms require an 
estimator for ww , which is either updated iteratively or by means of the Kalman filter based on a 

state-space formulation of the problem. 
 
The estimators presented here, for the autoregressive parameters of the unobserved signals, do 

not require an estimator for ww . 

 
The coupling coefficients, i.e. the autoregressive coefficients, for the unobserved signals are 

estimated directly from the autocovariances of the observed noisy data as shown next. 
 

Consider the set of high order Yule-Walker equations (Eq. 7), for ( )1 ...i p q= + , with: 

Eq. 37 2q p  

and: 

Eq. 38 ( )m q p p= −   

which gives m>p equations, for p coefficients: 

Eq. 39 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 1 3 2 ... 1

2 1 1 2 3 1 ... 2

:

1 1 2 2 3 3 ...

y y y y y

y y y y y

y y y y y

p p p p p

p p p p p

q q q q p q p

 + = + − + − + +
 

+ = + + + − + + 
 
 
 = − + − + − + + − 

R A R A R A R A R

R A R A R A R A R

R A R A R A R A R

 

Use has been made here of the fact that the lagged autocovariances for the noisy observed data and 
for the unobserved signals are equal, as indicated in Eq. 19. 
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Eq. 39 is equivalent to: 

Eq. 40 y y=F AG  

with: 

Eq. 41 ( ) ( ) ( ) ( ) ( )1 2 ..
n mn

y y y yp p q


 = + +  R R RF  

Eq. 42 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 .. 1

1 .. 2

: : : :

1 2 ..

y y y

pn mny y y

y

y y y

p p q

p p q

q p



 + −
 

− − = 
 
 

−  

R R R

R R R

R R R

G  

 
The least squares solution is: 

Eq. 43 ( )
1

T T

y y y y

−

A=F G G G  

 
The number of equations used in this work is twice the number of autoregressive coefficients: 

Eq. 44 2m p=  

corresponding to: 
Eq. 45 3q p=  

 
It has been argued, see e.g. Kay (1980), that the autoregressive coefficients estimated from the 

high order Yule-Walker equations have very high variance. This is certainly the case when the 
number of high order equations is limited to be equal to the number of coefficients. In our case, with 
the number of equations at least twice the number of parameters, the inverse matrix in Eq. 43 is much 
better conditioned than for the case of equal parameters and equations. This leads to estimators for 
the autoregressive coefficients with lower variance. See e.g. Friedlander (1983), and equation 2.138 
in Najim (2008) 

 

Summary of the algorithm 
Step#0: Referring to Eq. 1 and Eq. 2, and the problem defined in Eq. 3: given (possibly noisy) time 

series observations ( ) 1nt Y , and the autoregressive order p. 

Step#1: Compute: 

Eq. 46 ( ) ( ) ( ) ( )T T

y yj j E t t j = − = − R R Y Y  

for ( ) ( )1 ... 3j p p= + . Plug Eq. 46 into Eq. 41 and Eq. 42, and solve Eq. 43. This gives the estimator A  

for the coupling (autoregressive) coefficients of the unobserved time series ( )tX  that appear in Eq. 

1. 

 
 

7. Comparison of the present method with other published solutions 
 
Simulations from two publications are used here, namely from Mahmoudi and Karimi (2008), 

and from Diversi (2018), which study and compare the performance of several methods for solving 
the multivariate problem in Eq. 3. In all cases, noisy autoregressive models of order 2, for two time 
series, were used. 

 
Two overall measures of quality were used in Mahmoudi and Karimi (2008), namely, the relative 

error (RE) and the normalized root mean squared error (nRMSE): 
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Eq. 47 

( ) ( )

( )

2

1 1 1

2

1 1 1

p n n

ij ij
k i j

p n n

ij
k i j

A k A k

RE

A k

= = =

= = =

 − 
=

  




 

Eq. 48 

( )( ) ( )

( )

2

1 1 1

2
1

1 1 1

1 T

p n n

ij ijN
k i j

p n n
T

ij
k i j

A k A k

nRMSE
N

A k


= = =

=

= = =

 −
 

=

  





 

where ( )ijA k  is the true theoretical coupling coefficient at the k-th lag, from time series “j” to time 

series “i”, ( )( )ˆ
ijA k


 is its estimated value for the -th trial, ( )ijA k  is the estimated average over all 

trials, and TN  is the number of trials. 

 
Although Diversi (2018) does not report relative error nor root mean squared error, the data 

presented in that publication is sufficient for the computation of relative errors. 
 
Mahmoudi and Karimi (2008) perform three different simulations, consisting of 1000 trials, each 

with 4000 time samples, for: 

Eq. 49 ( ) ( )
0.8 0.3 0.5 0.7 1 0.001 0.4 0.05

1 , 2 , ,
0.6 0.2 0.2 0.4 0.001 1 0.05 0.6

ee ww

− − − − − −       
= = = =       

− − − −       
 A A  

 

Eq. 50 ( ) ( )
0.8 0.3 0.5 0.7 1 0.001 0.4 0.1

1 , 2 , ,
0.6 0.2 0.2 0.4 0.001 1 0.1 1.5

ee ww

− − − − − −       
= = = =       

− − − −       
 A A  

 

Eq. 51 ( ) ( )
0.5 0.3 0.5 0.3 1 0 0.3 0

1 , 2 , ,
0.2 0.65 0.2 0.1 0 1 0 0.1

ee ww

− −       
= = = =       

− −       
 A A  

 
Diversi (2018) performs one simulation, consisting of 200 trials, each with 4000 time samples: 

Eq. 52 ( ) ( )
0.71 0.32 0.57 0.15 1 0 2.1 0

1 , 2 , ,
0.88 0.24 0.49 0.3 0 1 0 2.7

ee ww

− −       
= = = =       
       

 A A  

 
In all cases, innovations and noise have zero mean Gaussian distribution with the specified 

covariances. 
 
Table 1 for the relative errors, and Table 2 for the root mean squared errors, show the 

comparative results for all methods studied in Mahmoudi and Karimi (2008) and for the method 
presented here. 
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Table 1: Relative errors (RE%) in the estimation of the autoregressive coefficients, for five methods, 
in three simulations (Eq. 49, Eq. 50, and Eq. 51). The simulations and the first four methods are 
described in Mahmoudi and Karimi (2008). The over determined high order Yule-Walker method for 
autoregressive coefficients (OHOYW) is the fifth method in the table. 

Method Simulation#1 Simulation#2 Simulation#3 
LS 24.0924 30.2876 16.9209 
MYW 0.5058 0.833 10.7929 
ILSV 1.1981 3.0951 0.9639 
HasanEtAl - - 1.1023 
OHOYW 0.78015  1. 0744 1.5259 

LS: least squares, MYW: modified Yule-Walker, ILSV: improved least-squares for vector processes, all 
referenced in Mahmoudi and Karimi (2008). HasanEtAl: Hasan et al (2003). OHOYW: over 
determined high order Yule-Walker method for autoregressive coefficients (method presented here). 

 
Table 2: Normalized root mean squared error (nRMSE%) in the estimation of the autoregressive 
coefficients, for five methods, in three simulations (Eq. 49, Eq. 50, and Eq. 51). The simulations and 
the first four methods are described in Mahmoudi and Karimi (2008). The over determined high 
order Yule-Walker method for autoregressive coefficients (OHOYW) is the fifth method in the table. 

Method Simulation#1 Simulation#2 Simulation#3 

LS 24.2461 30.4298 17.3643 
MYW 13.7287 17.4084 327.4975 
ILSV 6.8094 11.1532 10.5154 
HasanEtAl - - 11.6721 
OHOYW 12. 829 15. 346 43. 722 

LS: least squares, MYW: modified Yule-Walker, ILSV: improved least-squares for vector processes, all 
referenced in Mahmoudi and Karimi (2008). HasanEtAl: Hasan et al (2003). OHOYW: over 
determined high order Yule-Walker method for autoregressive coefficients (method presented here). 

 
Table 3 shows the comparison of relative errors for all methods studied in Diversi (2018) and for 

the method presented here. 
 

Table 3: Relative errors (RE%) in the estimation of the autoregressive coefficients, for four methods, 
in one simulation (Eq. 52). The simulations and the first three methods are described in Diversi 
(2018). The over determined high order Yule-Walker method for autoregressive coefficients 
(OHOYW) is the fourth method in the table. 

Method Simulation#4 

Frisch 2.2236 
EIV 4.7456 
IFILSM 54.7592 
OHOYW 5.2663  

Frisch: method developed in Diversi (2018), EIV: errors in variables method (Petitjean et al 2010), 
IFILSM: improved least-squares algorithm based on inverse filtering (Mahmoudi 2014). OHOYW: 
over determined high order Yule-Walker method for autoregressive coefficients (method presented 
here). 

 
 

8. Simulations related to cases of true independence (no-connectivity): from nonsense 
connections with classical algorithms to correct inference with the new algorithm 

 
Consider two unobserved independent time series modeled as: 
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Eq. 53 
( )
( )

( )
( )

( )
( )

( )
( )

1 1 1 1

2 2 2 2

1 21.5 0 0.95 0

1 20 1.8 0 0.96

x t x t x t e t

x t x t x t e t

       − −−   
= + +          − −−          

 

with noisy observations: 

Eq. 54 
( )
( )

( )
( )

( )1 1

2 2

1.8

1.5

y t x t
w t

y t x t

     
= +     

−    
 

with ee = I  and singular noise covariance: 

Eq. 55 
3.24 2.7

2.7 2.25
ww

− 
=  

− 
  

 
Note, from Eq. 54 and Eq. 55, that the noise consists of one single common source, affecting the 

measurements of both time series. 
 
Simulations consisted of 100 trials, each with 256 time samples. In all cases, innovations and 

noise have zero mean Gaussian distribution with the specified covariances. Table 4 shows statistics 
of the estimated model when using OHOYW (over determined high order Yule-Walker method). 

 
Table 4: Summary statistics of the estimated model when using OHOYW, for the simulation with 
parameters defined in Eq. 53, Eq. 54, and Eq. 55, based on 100 trials, each with 256 time samples.  

AR(1)  AR(2) 
True AR coeffs 1.5000 0.0000  -0.9500 0.0000 

0.0000 1.8000  0.0000 -0.9600    
 

  

Means 1.4920 -0.0048  -0.9441 0.0042 
-0.0020 1.7973  -0.0009 -0.9559    

 
  

StdDevs 0.0416 0.0270  0.0355 0.0245 
0.0324 0.0272  0.0377 0.0273    

 
  

RE(%) 0.4801 
 

 
  

nRMSE(%) 3.3968 
 

 
  

True AR coeffs: true autoregressive coefficients, as in Eq. 53; Means: mean values over 100 trials; 
StdDev: standard deviations over 100 trials; RE(%): relative errors; nRMSE(%): normalized root 
mean squared error. 

 
Table 5 shows statistics of the estimated model when using classical least squares estimation, 

which does not consider possible noise in the observations. 
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Table 5: Summary statistics of the estimated model when using classical least squares estimation, 
which does not consider possible noise in the observations, for the simulation with parameters 
defined in Eq. 53, Eq. 54, and Eq. 55, based on 100 trials, each with 256 time samples.  

AR(1)  AR(2) 
True AR coeffs 1.5000 0.0000  -0.9500 0.0000 

0.0000 1.8000  0.0000 -0.9600    
 

  

Means 1.1081 0.2840  -0.6008 -0.2737 
0.3686 1.5270  -0.3171 -0.7007    

 
  

StdDevs 0.1311 0.1097  0.1232 0.1073 
0.1166 0.1128  0.0996 0.1105    

 
  

RE(%) 33.2630 
 

 
  

nRMSE(%) 35.3430 
 

 
  

True AR coeffs: true autoregressive coefficients, as in Eq. 53; Means: mean values over 100 trials; 
StdDev: standard deviations over 100 trials; RE(%): relative errors; nRMSE(%): normalized root 
mean squared error. 

 
 

9. Discussion 
 
Table 1 and Table 3 show the relative errors in the estimated autoregressive coefficients for a 

wide range of published algorithms that deal with noisy time series observations. There are four 
simulations from the literature, and in all cases the simple, non-iterative method of overdetermined 
high order Yule-Walker equations (OHOYW: Friedlander (1983), and Najim (2008)) ranks very high 
in terms of performance. 

 
Table 2 shows the root mean squared error as a comparative performance measure, and in this 

case, the OHOYW method is second best in two out of five simulations. In the third simulation OHOYW 
comes out in fourth place (out of five). 

 
In summary, given the favorable comparative performance of the OHOYW estimators, and given 

the simplicity of the method, its use is recommended when estimating multivariate autoregressive 
coefficients in electrophysiology. 

 
The simulation results in Table 4 and Table 5 demonstrate one important point: The 

straightforward use of multivariate autoregressive modeling assuming no noise can produce 
nonsense brain connectivity results, which is the case of almost all previous published results. This 
is apparent from relatively low standard deviations of the coupling coefficients from Table 5, which 
are at least two times smaller than the coupling value, thus confirming non-zero significant nonsense 
connectivity. 

 
Also noteworthy from Table 4 and Table 5 are the performance measures, which show root 

squared mean error and relative error roughly 10 to 100 times worse for the least squares method. 
 
This problem is solved with proper modeling and estimation, using the OHOYW equations. 
 
The results shown in this work justifies the use of one of the two following procedures for 

connectivity inference: 
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Procedure#1 (confirmatory): Estimate the multivariate autoregressive coefficients using the 
OHOYW equations. 
Procedure#2 (exploratory): Perform two separate estimations of the multivariate autoregressive 
coefficients. One based on the classic least squares method that does not correct for noise, and the 
other using the OHOYW method. If the results are significantly different, use the OHOYW estimators. 

 
Actually, with respect to "Procedure#2", a test for equal autoregressive coefficients between the 

two methods (least squares and OHOYW) can be carried if the number of trials is relatively large. 
 
There are some practical instances when it can be safely assumed that the noise is negligible. This 

might be the case of ECoG recordings from electrode arrays, when the analysis is based on local 
bipolar signals, and not on the raw signals, as demonstrated in Trongnetrpunya et al (2016). Local 
bipolars will be very little affected by observation noise originating from activity outside the vicinity 
of the bipolars, which is, in practice, the main cause of nonsense connectivity. 

 
 

10. Limitation 
 
Most of the literature on this problem of noisy measurements assumes that the observation noise 

is white, in the sense that it is not serially correlated. In electrophysiology, due to volume conduction 
and low spatial resolution, this assumption is violated, since electric neuronal activity from other 
regions is not white in general. The quantitative effect of such a violation needs further study. 

 
 

11. References 
 
L. Astolfi, F. Cincotti, D. Mattia, M.G. Marciani, L.A. Baccala, F. de Vico Fallani, S. Salinari, M. Ursino, 

M. Zavaglia, L. Ding. Comparison of different cortical connectivity estimators for high‐resolution EEG 
recordings. Hum. Brain Mapp., 28 (2) (2007), pp. 143-157 

 
Barnett L, Muthukumaraswamy SD, Carhart-Harris RL, Seth AK. Decreased directed functional 

connectivity in the psychedelic state. NeuroImage. 2020 Apr 1; 209:116462. 
 
Barnett L, Seth AK. The MVGC multivariate Granger causality toolbox: a new approach to 

Granger-causal inference. Journal of neuroscience methods. 2014 Feb 15; 223: 50-68. 
 
Coito A, Michel CM, Vulliemoz S, Plomp G. Directed functional connections underlying 

spontaneous brain activity. Human brain mapping. 2019 Feb 15;40(3):879-88. 
 
R. Diversi: Identification of Multichannel AR Models with Additive Noise: a Frisch Scheme 

Approach. 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 2018, pp. 
1252-1256, doi: 10.23919/EUSIPCO.2018.8553415. 

 
Friedlander B. Instrumental variable methods for ARMA spectral estimation. IEEE Transactions 

on Acoustics, Speech, and Signal Processing. 1983 Apr;31(2):404-15. 
 
Hasan MK, Hossain MJ, Haque MA. Parameter estimation of multichannel autoregressive 

processes in noise. Signal processing. 2003 Mar 1;83(3):603-10. 
 
Jameson A. Solution of the equation AX+XB=C by inversion of an M*M or N*N matrix. SIAM 

Journal on Applied Mathematics. 1968; 16(5):1020-3. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.428625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428625
http://creativecommons.org/licenses/by-nc/4.0/


Pascual-Marqui, Achermann, Faber, Kinoshita, Kochi, Nishida, Yoshimura: Pervasive false brain connectivity from electrophysiological 
signals. Submitted to bioarxiv 2021-01-28 

Page 13 of 13 

 
Jamoos A, Grivel E, Shakarneh N, Abdel-Nour H. Dual optimal filters for parameter estimation of 

a multivariate autoregressive process from noisy observations. IET Signal Processing. 2011; 
5(5):471-9. 

 
Kay S. Noise compensation for autoregressive spectral estimates. IEEE Transactions on Acoustics, 

Speech, and Signal Processing. 1980; 28(3):292-303. 
 
Kilian L, Lütkepohl H. Structural vector autoregressive analysis. Cambridge University Press; 

2017. 
 
Mahmoudi A. Adaptive algorithm for multichannel autoregressive estimation in spatially 

correlated noise. Journal of Stochastics. 2014 Jun 19;2014. 
 
Mahmoudi A, Karimi M. Estimation of the parameters of multichannel autoregressive signals 

from noisy observations. Signal Processing. 2008; 88(11):2777-83. 
 
Najim M. Modeling, estimation and optimal filtering in signal processing. J. Wiley & Sons; London, 

2008. 
 
Pascual-Marqui RD, Biscay RJ, Bosch-Bayard J, Lehmann D, Kochi K, Kinoshita T, Yamada N, 

Sadato N. Assessing direct paths of intracortical causal information flow of oscillatory activity with 
the isolated effective coherence (iCoh). Frontiers in human neuroscience. 2014 Jun 20; 8:448. 

 
Petitjean J, Grivel E, Bobillet W, Roussilhe P. Multichannel AR parameter estimation from noisy 

observations as an errors-in-variables issue. Signal, Image and Video Processing. 2010 Jun;4(2):209-
20.  

 
Qu X, Zhou J, Luo Y. A new noise-compensated estimation scheme for multichannel 

autoregressive signals from noisy observations. The Journal of Supercomputing. 2011; 58(1):34-49. 
 
Rangarajan P, Rao RP. Estimation of vector autoregressive parameters and granger causality 

from noisy multichannel data. IEEE Transactions on Biomedical Engineering. 2018; 66(8):2231-40. 
 
Richter CG, Thompson WH, Bosman CA, Fries P. Top-down beta enhances bottom-up gamma. 

Journal of Neuroscience. 2017 Jul 12;37(28):6698-711. 
 
Seth AK, Barrett AB, Barnett L. Granger causality analysis in neuroscience and neuroimaging. 

Journal of Neuroscience. 2015 Feb 25;35(8):3293-7. 
 
Shumway RH, Stoffer DS. Time series analysis and its applications: with R examples. Fourth 

Edition. Springer. 2017. 
 
Trongnetrpunya A, Nandi B, Kang D, Kocsis B, Schroeder CE, Ding M. Assessing granger causality 

in electrophysiological data: removing the adverse effects of common signals via bipolar derivations. 
Frontiers in systems neuroscience. 2016 Jan 20;9:189. 

 
 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.428625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428625
http://creativecommons.org/licenses/by-nc/4.0/

