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Abstract 27 

Transcription Factors (TFs) are proteins that control the flow of genetic information by 28 

regulating cellular gene expression. Here we describe PredicTF, a first platform 29 

supporting the prediction and classification of novel bacterial TF in complex microbial 30 

communities. We evaluated PredicTF using a two-step approach. First, we tested 31 

PredictTF’s ability to predict TFs for the genome of an environmental isolate. In the 32 

second evaluation step, PredicTF was used to predict TFs in a metagenome and 11 33 

metatranscriptomes recovered from a community performing anaerobic ammonium 34 

oxidation (anammox) in a bioreactor. PredicTF is open source pipeline available at 35 

https://github.com/mdsufz/PredicTF. 36 

 37 

Keywords: Gene regulation, Transcription factors, Deep Learning, Transcription factor 38 

database, Microbial Communities 39 

 40 

Background 41 

The functional potential of microbial communities can be determined by the 42 

genetic content of its constituent members. However, genetic content alone does not 43 

guarantee that a given function or enzymatic reaction will be performed [1]. In this 44 

scenario, Transcription Factor proteins (TFs) play a central and critical role in gene 45 

regulation. These proteins are responsible for optimizing proteins and structural RNAs 46 

and the subsequent levels of metabolites and other properties, ensuring the survival and 47 

adaptation of organisms to the most diverse types of stress and environmental changes 48 

[2]. The activity of bacterial TFs is modulated by environmental signals (e.g. changes in 49 

the oxygen condition, temperature, pH or the lack of a specific substrate) [3]. 50 

Additionally, for many promoters, combinations of transcription factors work together 51 
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to integrate different signals [2,4]. TFs can also work with other DNA-binding proteins 52 

whose primary role is to sculpt the bacterial folded chromosome [2,5]. Knowledge of 53 

the TFs profile expressed by an organism is the first step to better understand the 54 

regulatory network that controls protein expression in an organism or a community. 55 

Since TFs may determine when and which genes are expressed, profiling TFs 56 

can help understand the regulation of gene expression and to build regulatory networks 57 

in complex microbial communities. Further, defining which factors control gene 58 

expression may offer insights into the mechanisms controlling ecosystem processes and 59 

even interactions between species of a microbial community. However, current TF 60 

databases are focused on single or small groups of genomes. These databases are largely 61 

manually curated based on literature evidence and pairwise sequence comparison of 62 

genomes from model organisms. Examples of these databases include RegulonDB for 63 

Escherichia coli K-12 [6], DBTBS for Bacillus subtilis [7], FlyBase for Drosophila [8], 64 

and FTFD for fungal species [9]. DBD [10], is a database generated from the prediction 65 

of TFs from 150 sequenced genomes from across the tree of life. Unfortunately, DBD 66 

has not been updated for more than 9 years. 67 

One of the major goals in the manipulation of microbiomes for ecological and 68 

biotechnological applications is to control the outcome of their functions [11]. As TFs 69 

are key to potentially control which genes are expressed, one of the best ways to study 70 

and understand gene regulation in a microbiome may be to profile its TFs. To date, no 71 

platform supports prediction and classification of novel bacterial TF from ‘omics data 72 

recovered from microbial communities.   73 

Deep Learning approaches have been used to predict DNA sequence affinities 74 

[12] and to identify TF-binding sites in humans [13]. Although deep learning has been 75 

used in gene regulation, it has never been used to predict bacterial TFs. Further, the 76 

need for a user-friendly tool for prediction of TFs that could assist in gene regulation 77 
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analysis motivated the development of PredicTF. PredicTF is a deep learning tool used 78 

to predict and identify TFs from full protein-length sequences. Further, we constructed a 79 

robust database for bacterial transcriptional factors (BacTFDB) that was used to train 80 

our Deep Learning model.  81 

 82 

Results and Discussion 83 

PredictTF is a command line software for prediction of novel transcription 84 

factors from genomic and metagenomic data. We created a bacterial transcription factor 85 

database (BacTFDB) by merging and manually curating TFs present in CollectTF [14] 86 

and the Universal Protein Resource (UniProt) [15]. CollectTF provides well described 87 

and characterized, in vivo validated, TFs while UniProt is a comprehensive resource for 88 

protein sequence and annotation data. We used BacTFDB to train a deep learning model 89 

to predict new TFs and their families in genomes and metagenomes. Five model 90 

organisms (Escherichia coli, Bacillus subtillis, Pseudomonas fluorescens, Azotobacter 91 

vinelandii and Caulobacter crescentus) were used to test the performance and accuracy 92 

of PredicTF. We used the same approach to predict TFs from a clinical isolate (P. 93 

aeruginosa PAO1) and a metagenome sample isolated from an anaerobic ammonium 94 

oxidation community. We also determined if the predicted TFs were expressed in 95 

transcriptomes (isolate) and metatranscriptomes (microbial community), respectively 96 

(Fig. 1).  97 

 98 

Database  99 

BacTFDB is a robust and versatile bacterial TF database, it contains 11.691 TFs 100 

amino acid sequences spanning 1049 TF families and 720 different bacterial species. 101 

Fig. 2 shows the database distribution based on TF families and regulatory elements 102 
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(Fig. 2A) and the distribution based on bacterial species (Fig. 2B). Although BacTFDB 103 

is composed by 11.961 TFs elements from 1049 different families and 720 organism’s 104 

species, Fig. 2 shows TFs families and species that accumulate more than 50 sequences. 105 

We will update BacTFDB annually by adding novel entries deposited in UniProt and 106 

CollecTF. BacTFDB was used in PredicTF’s deep learning model training. This model 107 

was later used to predict new TFs and their families in genomes and metagenomes.  108 

 109 

Performance and Accuracy 110 

The performance and accuracy of PredicTF were evaluated through the 111 

prediction of TFs in five model organisms (E. coli, B. subtillis, P. fluorescens, A. 112 

vinelandii and C. crescentus). For each model organism a different PredicTF model was 113 

trained to predict TFs from full protein-length sequences (described in the 114 

implementation section).  115 

The performance of PredicTF to identify TFs in the different model organisms 116 

ranged from 27% to 60% of the proteins described as TFs in the genomes of model 117 

organisms and the accuracy for experimentally validated TFs ranged from 73.91% and 118 

91.43% (Table 1). Further, PredicTF was able to identify putative annotated TFs in the 119 

genomes of E. coli and B. subtillis with accuracies 85.71% and 100%, respectively 120 

(Table 1). No novel TF was predicted in the genome of C. crescentus, P. fluorescens 121 

and A.vinelandii (Table 1). TFs predicted by PredicTF for each organism, sorted by TF 122 

family, are shown in Fig. 3. For all organisms tested the most predicted TF family was 123 

LysR followed by OmpR/PhoB. The degree of accuracy obtained by PredicTF suggests 124 

that the deep learning strategy used is promising for the prediction of TFs in genomic or 125 

metagenomic data of bacterial species. PredicTF performance and accuracy can be 126 

further improved by expanding the number and diversity of sequences present in 127 
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BacTFDB. As BacTFDB will be update yearly, we expect an improvement in TF 128 

identification of with every update.  129 

 130 

Table 1. PredicTF performance, accuracy for experimentally validated Transcription 131 

Factors (Accuracy EV) and accuracy for putative Transcription Factors (Accuracy PU) 132 

in genomes of model organisms. 133 

a Performance was calculated by the ratio of the total number of TFs predicted by PredicTF (Predicted TFs) to the total number of 134 
proteins annotated as TFs in NCBI (Annotated TFs) multiplied by 100; 135 
b Accuracy EV was determined by the ratio of the total number of TFs predicted by PredicTF in agreement with NCBI annotation 136 
(TFs predicted correctly) to the total number of TFs predicted by PredicTF (TFs predicted) multiplied by 100; 137 
c Accuracy TU was determined by the total number of putative TFs predicted correctly divided by putative TFs predicted multiplied 138 
by 100; Putative TFs predicted correctly is the total number of putative TFs predicted correctly by PredicTF in agreement with 139 
NCBI annotation; and, Putative TFs predicted is the total number of putative TFs predicted by PredicTF; 140 
d Currently there are no putative annotated TFs described in the genome of C. crescentus, P. fluorescens and A.vinelandii 141 
 142 

Mining and Predicting TFs in Genomes and Transcriptomes from a bacterial 143 

isolate using PredicTF 144 

PredicTF was used to predict TFs on the genome of P. aeruginosa PAO1 and 145 

these TFs were mapped in transcriptomes from the same isolate [16]. PredicTF 146 

predicted a total of 199 TFs in the P. aeruginosa PAO1 genome shown in Additional 147 

file 1: Fig. S1A by a family’s distribution graphic. These 199 TFs were mapped in the 148 

transcriptomic data of a reference of P. aeruginosa PAO1. Initially, the mapping was 149 

done in the transcriptome of P. aeruginosa PAO1 cultured in LB media. Using this 150 

strategy, we were able to map 69 of the 199 predicted TFs to the transcriptomes under 151 

the experimental conditions carried out by Hwang & Yoon, 2019 (Additional file 1: Fig. 152 

S1B) [16]. Next, the mappings were done for another three clinical mutants of P. 153 

aeruginosa PAO1 (Y82, Y71, Y89) cultured in LB media (absence of an antibiotic 154 

cocktail) (Additional file 2: Fig. S2A, S2C and S2F). The TFs family’s distribution for 155 

Organism Performancea Accuracy EVb Accuracy PUc 

E. coli k12 35.40% 88.51% 85.71% 
B. subtillis 27.23% 73.91% 100% 

C. crescentus 38.04% 83.93% -d 

P. fluorescens 51.19% 91.43% - 
A.vinelandii 60.53% 90.40% - 
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each P. aeruginosa PAO1 mutant cultured in presence of antibiotic cocktail is shown in 156 

the supplementary data (Additional file 2: Fig. S2B, S2D and S2F). These results 157 

demonstrate the potential of PredicTF in mapping regulatory elements in bacterial 158 

genomes and the use of this tool to map and compare TFs profiles after under different 159 

environmental conditions. 160 

 161 

Mining and Predicting TFs in a Metagenome and Metatranscriptome using 162 

PredicTF 163 

PredicTF was used to profile TFs in one metagenome recovered from an 164 

anaerobic ammonium oxidation community [17] followed by the mapping of the 165 

predicted TFs in metatranscriptomes recovered from the same community 166 

(metatranscriptomes accession numbers can be found in Additional file 3: Table S1). A 167 

total of 792 TFs (Fig. 4A) were predicted in LAC_MetaG_1, an anaerobic ammonium 168 

oxidizing microbial community from an anammox membrane bioreactor [17]. These 169 

792 TFs are distributed across 27 TF families (Fig. 4A) and are related to the regulation 170 

of functions such as the oxygen limitation response and late symbiotic functions 171 

(NarL/FixJ), phosphate regulon response (OmpR/PhoB), transcriptional activator for 172 

nitrogen-regulated promoters (NtrC/DctD) and ferric uptake regulation (Fur). To 173 

determine how a traditional annotation pipeline identify potential TF we used Prokka 174 

[18]. This tool was able to identify 1815 ORFs (Additional file 4: Table S2). PredicTF 175 

can be used with no previous knowledge regarding transcription factors, it is fast and it 176 

requires low memory when compared to Blast based annotation and it indicates only 177 

results of TFs with a specific TF family annotation. On the other hand, to identify TFs 178 

using Prokka one would need specialized training to mine the general annotation. 179 

Therefore, scientists with general microbiology background may take a long time to 180 

undergo this task. Further, Prokka gives no indication to the TF families of the putative 181 
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annotated TFs. Time is also a drawback of using Prokka to mine TFs, we calculated we 182 

needed over 400 h to perform mine one single metagenomics library; in comparison, 183 

PredicTF needed 2 h to identify TF in the same metagenomics library. 184 

Next, the 792 TFs were mapped in 11 metatranscriptomes collected in different 185 

dates from the same bioreactor where the metagenome was recovered (Additional file 5: 186 

Table S3, Fig. 4B). Clustering analysis demonstrated the presence of five different 187 

groups of TFs families based on the number of transcription factor families expressed in 188 

each library (Fig. 4B). It is interesting to note that the two most abundant clusters in the 189 

heatmap are directly related to the oxygen limitation caused by the anaerobic 190 

ammonium oxidizing cultivation. In a bioreactor where oxygen is limited, an increase in 191 

the amount of nitrogen and phosphate is expected. The presence of N and P diverts the 192 

metabolism of the microbial community towards the production of regulators (TFs) that 193 

help to maintain community stability. Clustering analyzes can be helpful to demonstrate 194 

the similarity between metatranscriptomic libraries based on the occurrence of TFs. This 195 

strategy can be useful to compare the profiles of TFs expressed in different 196 

environmental situations (comparing libraries with different metadata) creating patterns 197 

of TFs expression. Exploration of TF profiling in microbial communities (metagenomes 198 

or metatranscriptomes) will allow the exploration of regulation within complex 199 

microbial communities. Further, The recovery of metagenome assembled genomes is 200 

becoming standard in metagenomics studies [19–21]. The use of PredicTF together with 201 

the recovery of metagenome assembled genomes will allow the exploration of species-202 

specific molecular mechanisms involved in the regulation of different ecosystem 203 

processes. 204 

 205 

Conclusions 206 
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A better understanding of TFs in a bacterial community context open revenue 207 

for the exploration of gene regulation in ecosystems where bacteria play a key role. Our 208 

deep learning strategy was based on a novel and robust TF bacterial database 209 

(BacTFDB) with over 11 thousand TFs and their respective families. BacTFDB is a 210 

unique resource for the exploration of TFs and it provided the data to train a model 211 

within PredicTF capable of predicting novel TFs from genomes and metagenomes. 212 

PredicTF is the first pipeline designed to predict and annotate TFs in complex microbial 213 

communities. The prediction of TFs can provide information for those aiming to study 214 

and understand bacterial communities within a context of gene regulation. We also 215 

demonstrated that PredicTF can be used to predict novel TFs in metagenomes and 216 

metatrascriptomes creating the potential profile for regulatory elements in complex 217 

microbial communities. 218 

PredicTF is a flexible open source pipeline able to predict and annotate TFs in 219 

genomes and metagenomes and can be found at https://github.com/mdsufz/PredicTF. 220 

 221 

Methods 222 

BacTFDB - Bacterial Transcription Factor Data Base 223 

To create a novel Bacterial Transcription Factor Data Base (BacTFDB), we 224 

collected data from two publicly available databases. Initially, we chose to collect data 225 

from CollecTF [14], a well described and characterized database. Since CollecTF does 226 

not provide an application programming interface (API) for bulk download, we 227 

developed a Python code (version 2.7) using the Beautiful Soup 4.4.0 library to recover 228 

the data from CollecTF. With this strategy we listed 390 TF experimentally validated 229 

amino acid sequences distributed over 44 TF families. The script can be found at 230 

https://github.com/mdsufz/PredicTF. 231 
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Additionally, we retrieved TF amino acid sequences from UniProt using 232 

UniProt’s API. We downloaded sequences of interest by adding a filter with the key 233 

words (Transcription factor, transcriptional factor, regulator, transcriptional repressor, 234 

transcriptional activator, transcriptional regulator). After, we filtered for Reviewed 235 

(Swiss-Prot) - Manually annotated sequences that belonged to the bacteria taxonomy. 236 

The UniProt API was accessed on 8th September-2019 and a total of 21.581 TF amino 237 

acid sequences, with applied filters, were collected. We merged the data collected from 238 

CollecTF and UniProt databases which resulted in a total of 21.971 TFs. Next, we 239 

removed redundant TF entries and TF sequences lacking a TF family since PredicTF 240 

was designed to also assign TF family. Finally, a manual inspection was performed to 241 

remove case sensitive and presence of characters associated to the database header. The 242 

first version of BacTFDB contains a total of 11.691 unique TF sequences. A summary 243 

of the information contained in BacTFDB can be found in the supplementary data 244 

(Additional file 6: Fig. S4). To evaluate PredicTF in model organisms we created 5 245 

subsets of BacTFDB. The description of these subsets can be found in the 246 

supplementary data (Additional file 7: Table S4). 247 

 248 

Mapping Transcription Factors using PredictTF  249 

We used a deep learning approach similar to that found in DeepARG [22]. 250 

Supervised machine learning models are usually divided into characterization, training, 251 

and prediction units. Briefly, our approach uses the concept of dissimilarity-based 252 

classification [23] where sequences are represented and featured by their sequence 253 

similarity to known genes. BacTFDB was used to train and test the deep learning model 254 

(https://github.com/mdsufz/PredicTF) and latter validated in model organisms. Next, 255 

PredicTF was used to predict novel TFs from full protein-length sequences in genomes 256 
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and in one metagenome. After prediction, the data was mapped in transcriptomes and 257 

metatranscriptomes from samples where the genetic potential was determined. 258 

Using PredicTF, we trained five different models – one for each model organism 259 

(Additional file 3: Table S1). For each model, the TFs affiliated with the respective 260 

model organism were removed prior to training to avoid overfitting. PredicTF-no-coli 261 

was trained to predict TFs in E. coli, PredicTF-no-subtilis was trained to predict TFs in 262 

B. subtilis, PredicTF-no-crescentus was trained to predict TFs in C. crescentus, 263 

PredicTF-no-fluorescens was trained to predict TFs in P. fluorescens and PredicTF-no-264 

vinelandii was trained to predict TFs in A. vinelandii.  265 

 266 

Performance and accuracy calculation 267 

We evaluated PredicTF by calculating accuracy and performance. Performance 268 

can be deemed to be the fulfillment of a task. In PredicTF case, performance is how 269 

good TF predictions are. Using model organisms (see later in the session Prediction of 270 

Transcription Factors in model organisms), performance was calculated by quantifying 271 

the number of TFs that PredicTF was able to predict divided by number of TFs already 272 

described and annotated for our model organisms (Additional file 7: Equation 1). 273 

Accuracy indicates how correct the predictions performed by PredicTF are. Also using 274 

data of model organism, accuracy was determined by calculating the number of TFs 275 

correctly predicted divided by the total number of TFs predicted by PredicTF. We 276 

divided accuracy in two categories. In the first accuracy category, we determined 277 

accuracy against experimentally validated TFs (Additional file 7: Equation 2). In the 278 

second accuracy category, we determined accuracy against TFs without experimental 279 

validation (Additional file 7: Equation 3); i.e., putative TFs. The performance, accuracy, 280 

and accuracy for putative TFs were calculated as the ratio of predicted to annotated TFs. 281 
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Accuracy was quantified as the fraction of correctly predicted TFs among all 282 

predictions. 283 

 284 

Prediction of Transcription Factors in model organisms 285 

We selected bacterial species that have been widely studied as model organisms. 286 

Some bacterial species became model organisms for TF studies because they are easy to 287 

maintain and grow in a laboratory setting and to manipulate in pure culture experiments. 288 

Five complete genomes from model organisms (E. coli, B. subtillis, P. fluorescens, A. 289 

vinelandii and C. crescentus) were downloaded directly from NCBI. The strains details 290 

and accession number (RefSeq) for all selected organisms are listed in the 291 

supplementary data (Additional file 3: Table S1). By evaluating PredicTF using model 292 

organisms (Additional file 6: Table S3) we extrapolated performance and accuracy of 293 

our deep learn model. Since known TFs for each organism were removed from each the 294 

training dataset, we eliminate the possibility of mapping TFs already known and 295 

annotated for each of the different species. Performance, accuracy and accuracy for 296 

putative TFs of PredicTF for these five model organisms were calculated using 297 

Equations 1, 2 and 3. 298 

 299 

Prediction of Transcription Factors in a clinical isolate 300 

We demonstrated the use of PredicTF in a previously sequenced P. aeruginosa 301 

(PAO1) genome, a clinical isolate publicly available in NCBI (accession number 302 

NC_002516.2). P. aeruginosa PAO1 was selected because its genome has been 303 

sequenced and because of the availability of transcriptomes from three clinical mutants 304 

of PAO1 (Y71, Y82, and Y89) grown in the presence and absence of an antibiotic 305 

cocktail. The transcriptomes of P. aeruginosa PAO1 mutants Y71, Y82, and Y89 are 306 

available in NCBI (Bioproject identifier PRJNA479711) [16]. These clinical P. 307 
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aeruginosa PAO1 mutants were isolated from the sputa of three different pneumonia 308 

patients. Transcriptomes of P. aeruginosa PAO1 wild type and its mutants cultured in 309 

two different conditions (LB medium and LB medium in presence of antibiotic cocktail) 310 

have been previously described [16]. We used this data to determine the TF profile in 311 

these P. aeruginosa PAO1 mutants grown in two different conditions. 312 

PredicTF was first used to predict TFs in the P. aeruginosa PAO1 genome. 313 

Next, the predicted TFs were mapped to the transcriptomes of the P. aeruginosa PAO1 314 

mutants Y71, Y82 and Y89 (see later). Further description of the mapping of the 315 

transcriptomes to the genomes is available at https://github.com/mdsufz/PredicTF. The 316 

PredicTF model used in this step was trained with the full database BacTFDB. All 317 

accession numbers used in this work are listed in the supplementary data (Additional 318 

file 3: Table S1). 319 

 320 

Prediction of Transcription Factors in Complex Microbial Communities 321 

To test PredicTF in a complex microbial community, we used an anaerobic 322 

ammonium oxidizing (anammox) microbial community from an anammox membrane 323 

bioreactor metagenome (LAC_MetaG_1) (data publicly available at NCBI bioproject 324 

via accession number PRJNA511011) [17]. We removed short and low-quality reads 325 

using Trim Galore - v0.0.4 dev according developer’s instructions [24]. Over 50 million 326 

reads survived this step and were assembled using the de novo assembler metaSPADES 327 

- v3.12.0 [25]. The assembly was translated from nucleotide to amino acid sequences, 328 

considering all possible translation frames, using emboss transeq [26]. The translated 329 

assembly was then used as input for the prediction of transcription factors using 330 

PredicTF. The region from each predicted TF was extracted. These putative TFs were 331 

later used in the mapping TFs to metatranscriptomes.  332 
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We checked if the putative TFs predicted in the metagenomes were transcribed 333 

by checking if the metatranscriptomic libraries were mapping to those regions. The 334 

metatranscriptomic and metagenomic libraries used in this step belonged to the same 335 

bioreactor. These metatranscriptomes are publicly available at the European Nucleotide 336 

Archive under the accession numbers SRR7091385, SRR7523233, SRR7523244, 337 

SRR7523245, SRR7091400, SRR7091401, SRR7091381, SRR7091402, SRR7091406, 338 

SRR7523243, SRR7523246. These 11 metatranscriptomes were used to demonstrate the 339 

effectiveness of the pipeline and to indicate the potential of PredicTF to profile 340 

transcription factors in complex microbial communities. All accession numbers used in 341 

this work are listed in the supplementary data (Additional file 3: Table S1).  342 

To have a baseline comparison with a traditional annotation pipeline, we used 343 

Prokka [18] to annotate the same anammox membrane bioreactor metagenome 344 

(LAC_MetaG_1). We mined the annotation by hand with specialized knowledge of 345 

scientists specialized in Transcription Factors. We did not determine the families as this 346 

work would need to be done for every single hit individually using the output of Prokka. 347 

 348 

Mapping transcription factors to transcriptomes and metatranscriptomes 349 

Each transcriptomic and metatranscriptomic library was quality controlled by 350 

removing short and low-quality reads using Trim Galore - v0.0.4 dev [24]. The 7 351 

transcriptomic libraries for the P. aeruginosa PAO1 wild type and mutants showed at 352 

least 26 million paired end reads after quality checking. The 11 metatranscriptomic 353 

libraries yielded over 50 million reads per library after quality check. After, the 354 

remaining transcriptomic and metatranscriptomic reads were mapped to their respective 355 

assembled genome or metagenome using Bowtie2 - v2.3.0 [27]. The number of reads 356 

mapped, and the regions covered was extracted using SAMTools - v1.9  [28] and 357 

python 2.7. The regions of the genome or metagenome assembly covered by 358 
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transcriptomic or metatranscriptomic reads were then crossed-referenced with the 359 

regions of their respective assembly which PredicTF assigned as putative TFs creating a 360 

TF profile for each transcript and metatranscriptome. A detailed description on the 361 

mapping of RNA-seq data to their respective genome or metagenome assembly can be 362 

found at the PredicTF github (https://github.com/mdsufz/PredicTF). 363 

 364 
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Figure legends: 437 

 438 

Fig. 1 439 

PredicTF workflow and testing. We collected publicly available data on TFs from two 440 

different databases: CollecTF and UNIPROT. After removing redundancies and 441 

filtering TFs well characterized, this data (BacTFDB) was used to train a deep learning 442 

model to predict new TFs and their families. Five model organisms (Escherichia coli, 443 

Bacillus subtillis, Pseudomonas fluorescens, Azotobacter vinelandii and Caulobacter 444 

crescentus) were used to test the accuracy of PredicTF. Later, we used the same 445 

approach to predict TFs from an isolate (P. aeruginosa) and mapped TFs predicted in 446 

transcriptomics data (P. aeruginosa and mutants in two experimental conditions). 447 

Finally, we used our tool to predict TF for complex communities (metagenome) and 448 

mapped these TFs in their respective meta-transcriptomes.  449 

 450 

Fig. 2  451 

Database composition: Transcription Factor Database (BacTFDB) distribution. A) 452 

Database distribution based on the TFs and B) Regulatory Elements families and 453 

Organisms species. In these graphics only families with up to 50 sequences and only 454 

organisms that contributed with more than 50 sequences are shown.   455 

 456 

Fig. 3  457 

Prediction of TFs by PredicTF for genomes of model organisms. Prediction of TFs 458 

or 5 model organisms sorted by family. A) Escherichia coli B) Bacillus subtillis C) 459 

Caulobacter crescentus D) Pseudomonas fluorescens E) Azotobacter vinelandii  460 

 461 

 462 
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Fig. 4 463 

Recovery of novel Transcription Factors in one metagenome and eleven 464 

metatranscriptomes. A) PredicTF predicted 792 TFs were predicted in one anaerobic 465 

ammonium oxidizing microbial communities from anammox membrane bioreactor 466 

(LAC_MetaG_1) and were grouped by family. B) Using 792 TFs predicted in one 467 

metagenome, we mapped these TFs for 11 metatranscriptomes of reference from the 468 

same bioreactor where the metagenome was recovered. 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 
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 486 

 487 

 488 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.28.428666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428666
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Additional files 489 

Additional file 1: Fig. S1  490 

Transcription factor (TF) families predicted for Pseudomonas aeruginosa PAO1 491 

genome (accession number NC_002516.2) [18] using PredicTF and their mapping to P. 492 

aeruginosa PAO1 growing in LB medium. A) A total of 199 TFs distributed in 25 TF 493 

families were predicted in the P. aeruginosa PAO1 genome. B) These 199 TFs were 494 

mapped in the transcriptomic data of a reference of P. aeruginosa PAO1 (Bioproject 495 

identifier PRJNA479711) [18]. Initially, the mapping was done in the transcriptome of 496 

P. aeruginosa PAO1 cultured in LB media. Using this strategy, we were able to map 69 497 

of the 199 predicted TFs to the transcriptome. 498 

 499 

Additional file 2: Fig. S2 500 

Transcription Factor (TF) family profiles in three Pseudomonas aeruginosa PAO1 501 

mutants. After the prediction of Transcription Factors (TFs) using P. aeruginosa PAO1 502 

genome, we mapped transcriptomes from three P. aeruginosa PAO1 mutants (Y82, 503 

Y71, Y89) cultured in LB media (A, C and F). After, the mapping was done for each P. 504 

aeruginosa PAO1 mutant cultured in presence of antibiotic cocktail (B, D and E). P. 505 

aeruginosa PAO1 mutant Y82 (A, B); P. aeruginosa PAO1 mutant Y71 (C, D); P. 506 

aeruginosa PAO1 mutant Y89 (E, F). 507 

 508 

Additional file 3: Table S1  509 

Accession number for 5 model organisms, Pseudomonas aeruginosa PAO1 genome and 510 

transcriptomes and Complex Microbial Communities used to validate and test PredicTF. 511 

 512 

 513 

 514 
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Additional file 4: Table S2  515 

Transcription factors from the metagenome of an anaerobic ammonium oxidizing 516 

microbial community from an anammox membrane bioreactor (LAC_MetaG_1) mined 517 

and hand curated from a general annotation generated using Prokka.  518 

 519 

Additional file 5: Table S3  520 

Number of Transcription Factors (TFs) per TF family mapped to each of the 11 521 

metatranscriptomes of reference from the same bioreactor where the metagenome 522 

(accession number PRJNA511011, NCBI) used to predict the putative TFs was 523 

collected. The different metatranscriptomes are represented by their European 524 

Nucleotide Archive accession numbers. 525 

 526 

Additional file 6: Fig. S4  527 

Bacterial Transcription Factor Data Base (BacTFDB) were created from from two 528 

publicly available databases. We collect 390 TFs from CollecTF and 21.581 from 529 

UniProt (accessed 8-Sep-2019) accumulating 21.581 Transcription Factor (TF) amino 530 

acid sequences. We merged the data from CollecTF and UniProt databases resulting in a 531 

total of 21.971 TFs amino acid. We removed redundant TF entries and since PredicTF 532 

was designed to also assign TF family, TF sequences lacking a TF family were 533 

removed. Finally, a manual inspection was performed to remove misleading of spelling, 534 

case sensitive and presence of characters associate to the database header. The final 535 

database (BacTFDB) contains a total of 11.691 TF unique sequences. 536 

 537 

Additional file 7: Table S4 538 

Description of the bacterial transcriptional factors database (BacTFDB) subsets used to 539 

train models to predict Trancription Factors in model organisms 540 
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Additional file 8 541 

Equations used to calculate PredicTF’s accuracy and performance.  542 

 543 

 544 
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