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Abstract. Large-scale genotype-phenotype screens provide a wealth of data for identifying
molecular alternations associated with a phenotype. Epistatic effects play an important role
in such association studies. For example, siRNA perturbation screens can be used to identify
pairwise gene-silencing effects. In bacteria, epistasis has practical consequences in determin-
ing antimicrobial resistance as the genetic background of a strain plays an important role in
determining resistance. Existing computational tools which account for epistasis do not scale
to human exome-wide screens and struggle with genetically diverse bacterial species such as
Pseudomonas aeruginosa. Combining earlier work in interaction detection with recent advances
in integer compression, we present a method for epistatic interaction detection on sparse (hu-
man) exome-scale data, and an R implementation in the package Pint. Our method takes
advantage of sparsity in the input data and recent progress in integer compression to perform
lasso-penalised linear regression on all pairwise combinations of the input, estimating up to 200
million potential effects, including epistatic interactions. Hence the human exome is within the
reach of our method, assuming one parameter per gene and one parameter per epistatic effect
for every pair of genes. We demonstrate Pint on both simulated and real data sets, including
antibiotic resistance testing and siRNA perturbation screens.

1. Introduction

Epistatic gene interactions have practical implications for personalised medicine, and syn-
thetic lethal interactions in particular can be used in cancer treatment [3]. Discovering these
interactions is currently challenging, however. In particular, there are no methods able to
automatically infer interactions from genotype-phenotype data at the human genome scale.

For a given number of genes there are exponentially many potential interactions, complicat-
ing computational methods. If we restrict our attention to pairwise effects, it is possible to
experimentally knock out particular combinations of genes to determine their combined effect
[10]. This approach does not scale to the approximately 200 million pairwise combinations
possible among human protein coding genes, however. We instead consider inferring pairwise
interactions from large-scale genotype-phenotype data. These include mass knockdown screens,
in which we suppress a large number of genes simultaneously, and attempt to measure the
resulting phenotypic effect.

We have shown in [12] that a lasso-based approach to inferring interactions from an siRNA
perturbation matrix is a feasible method for large-scale interaction detection. In this additive
model, we assume fitness is a linear combination of the effects of each gene’s effect, and the
effect of every combination of these genes. For the sake of scalability, we consider only individual
and pairwise effects, and assume gene suppression is strictly binary. The fitness difference f
(compared to no knockdowns) in an experiment e is then the sum of individual and pairwise
effects

∑p
i gi +

∑p
i

∑n
j>i gi · gj , where gi = 1 if gene i is knocked down, 0 otherwise. With

sufficiently many such mass-knockdowns, we can infer pairwise interactions by finding the pairs
of genes whose effect is not the sum of the effects of each gene individually.
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2 LASSO-BASED INTERACTION INFERENCE

Neither of the previously tested inference methods for this model, glinternet and xyz,
are effective at the genome-scale however. glinternet suffers from prohibitively long running
times,1 and xyz does not accurately predict effects in our larger simulations. Our aim is to fit
a model including all p u 20, 000 human protein-coding genes, with as many as n = 200, 000
siRNAs. Doing so requires the development of new methods and software.

We have developed an R-package that is able to perform lasso regression on all pairwise
interactions on the same one thousand gene screen in twenty seconds, and is able to fit a
genome-scale data set with 19, 000 genes and 67, 000 siRNAs in under two hours using a single
eight-core CPU. This is made possible by taking into account that our input matrix X is both
sparse and strictly binary. Our package, Pint, is available at github.com/biods/pint.

To perform lasso-based regression on this matrix, we begin with an existing fast algorithm,
parallelise it, and adapt it for use on our binary perturbation matrices. We provide a detailed
explanation of this implementation, followed by the scalability analysis, below. We also perform
a simulation study to compare our method’s scalability with known methods, and analyse two
large-scale experimental data sets.

In the first, an siRNA perturbation screen from [29], we search for pairs of genes that have
an epistatic effect when simultaneously silenced. Out of five top interactions identified by our
method, two are known protein interactions and three appear to be novel.

The second data set is composed of genetic variants identified in the intrinsically antibi-
otic resistant bacteria Pseudomonas aeruginosa. P. aeruginosais an opportunistic pathogen
found in a variety of environments and is a leading cause of morbidity and mortality in im-
munocompromised individuals or those with cystic fibrosis [16, 22]. P. aeruginosais known to
acquire adaptive antibiotic resistance in response to long term usage of antibiotics associated
with chronic infections [5, 25, 26]. The genomes included in that data set are from strains that
have been isolated from chronic and acute infections as well as environmental samples. The
minimum inhibitory concentration for the antibiotic Ciprofloxacin has been used as the pheno-
typic marker for this dataset. Ciprofloxacin belongs to the fluoroquinolone class of bacteriocidal
antibiotics that targets DNA replication and is one of the most widely used antibiotics against
P. aeruginosa[32]. Our findings identified 16 pairs of interactions, most of which were found in
genes that are important in biofilm formation and maintenance, a characteristic of intrinsically
antibiotic resistant bacteria.

2. Methods

Our goal is to estimate both the main effects β1, . . . , βp, and the interaction effects β1,2, . . . , βp−1,p

where pairs of genotypes are simultaneously perturbed. As an example, consider pairwise effects
in a siRNA perturbation screen. We can estimate the effect of both silencing individual genes
(β1, . . . ) and pairs of genes simultaneously (β1,2, . . . ). To do this we add a column for each pair

of genes, converting the siRNA matrix X ∈ {0, 1}n×p into the pairwise matrix X2 ∈ {0, 1}n×p
′
,

where p′ = p(p+1)
2 . This model includes all pairwise interactions and fitting it is equivalent to

finding epistasis as in [12]. The same construction applies to any binary genotype-phenotype
data, and the effect βa,b will always estimate the simultaneous effect of both genes a and b.

We construct the matrix X2 as follows. For every column i from 0 to n we take every further
column j from i+ 1 to n and form a new column by taking the bit-wise and over all elements
of the columns i and j (Fig. 1).

1Finding interactions in an siRNA screen of 1, 000 genes with ten siRNAs per gene takes several days using
ten cores on an Opteron 6276.
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LASSO-BASED INTERACTION INFERENCE 3
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Figure 1. Creation of pairwise siRNA effect columns

This gives us the complete pairwise matrix X2, shown in Fig. 2.

β1x1,1 + . . .+ βpx1,p + β1,2x1,1∧2 + . . .+ β1,px1,1∧p + . . .+ βp−1,px1,p−1∧p + E1 = y1

β1x2,1 + . . .+ βpx1,p + β1,2x2,1∧2 + . . .+ β1,px2,1∧p + . . .+ βp−1,px2,p−1∧p + E2 = y2

β1xn,1 + . . .+ βpxn,p + β1,2xn,1∧2 + . . .+ β1,pxn,1∧p + . . .+ βp−1,pxn,p−1∧p + En = yn

...

Gene 1 Gene p Genes 1 and 2 Genes 1 and p Genes p− 1 and p

Figure 2. Matrix of Pairwise siRNA effects

2.1. Cyclic Linear Regression. Our approach to lasso regression is based on a cyclic coordi-
nate descent algorithm from [15], as described in [38]. This method begins with βj = 0 for all j
and updates the beta values sequentially, with each update attempting to minimise the current
total error. Here this total error is the difference between the effects we have estimated and the
fitness we observe, given the genes that have been knocked down. Where yi is the ith element
of Y, βj is the jth element of β, and xij is the entry in the matrix X2 at column j of row i, the
error is the following.

(1)
n∑
i=1

|yi −
p′∑
j=1

xij · βj |

The error affected by a single beta value (Eq. (5)) can then be minimised by updating βk
with the following:

(2) ∆βk =

{
max(0, βk +

∑n
i=1(xik(yi−ri))

Sk
− λ) for βk +

∑n
i=1(xik(yi−ri))

Sk
> 0

min(0, βk +
∑n

i=1(xik(yi−ri))
Sk

+ λ) for βk +
∑n

i=1(xik(yi−ri))
Sk

< 0

We cyclically update each βk until the solution converges for a particular lambda, reduce the
value of lambda, and repeat. See Appendix B for the full derivation and algorithm. Storing the
matrix in a sparse column format, this implementation scales up to p = 1, 000. It would still
take several days and use terabytes of memory for p = 20, 000. To overcome this, we compress
the matrix, and parallelise the beta updates (Section 2.3 and Appendix A).

2.2. Choosing Lambda. The lasso penalty requires a regularisation parameter lambda. This
parameter determines the extent to which we penalise large beta values, and can range from
allowing all values (λ = 0) to allowing only zero (λ→∞). Choosing the correct value of lambda
is essential if we want to include only the significant effects. This is typically done by choosing
an initial value sufficiently large that all beta values will be zero and gradually reducing lambda,
fitting the model for each value until a stopping point chosen with K-fold cross-validation [14].
Cross-validation requires fitting each lambda value K times, however, significantly increasing
the runtime. We instead provide two options for choosing lambda in our package. First, we can
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4 LASSO-BASED INTERACTION INFERENCE

choose lambda such that the number of non-zero effects is small enough for OLS regression. In
our package, this is called Limited-β and a default limit is 2, 000. Alternatively, we implement
a fast method for empirically choosing a reasonable stopping point, the adaptive calibration
lambda selection method from [8]. Both of these methods are significantly faster than cross-
validation, although using adaptive calibration we tend to predict very few non-zero effects.
The best empirical results are generally achieved with the Limited-β approach, and we use this
for the remainder of the paper. A detailed explanation of each and their performance impact
can be found in Appendix D.

2.3. Compression. To reduce memory usage and the time taken to read each column with
larger input data, we compress the columns of X2. Because we read the columns sequentially,
we replace each entry with the offset from the previous entry. This reduces the average entry
to a relatively small number, rather than the mean of the entire row. These small integers can
then be efficiently compressed with any of a range of integer compression techniques (Fig. 3),
a subject that has been heavily developed for Information Retrieval. We compare a number of
such methods, including the Simple-8b algorithm from [33] (which we implement and use in our
package) in Appendix C.1.


0 0 1 0 . . .
0 1 0 0 . . .
0 0 1 1 . . .
1 0 0 0 . . .
...



3 1 0 2 . . .
... ... 2 ...

X :


3 1 0 2 . . .
4 6 2 33 . . .
21 12 19 45 . . .
... ... ... ...

9523 9954 9895 9971 . . .



3 1 0 2 . . .
1 5 2 31 . . .
17 6 17 12 . . .
... ... ... ...
60 26 25 13 . . .


+1

+17

+3

}

Encode each column with Simple-8b

Figure 3. Compression of the sparse X2 matrix.

2.4. Parallelisation. While it is trivial to parallelise the update of a single β value, doing so
does not improve performance in practice, due to poor cache usage (see Appendix A for details).
We instead parallelise our method by assigning whole columns of the compressed X2 matrix to
threads in sections. Each thread is responsible for updating the β values corresponding to its
columns, and is therefore the only thread reading it’s section of the X2 matrix.

Simultaneously updating columns with entries in the same row leads to over-compensating
for these entries. This can harm performance or in the worst case prevent convergence entirely
(Appendices A.1 to A.3). To avoid this, it suffices to ensure that threads do not frequently
update the same columns at the same time. We achieve this by shuffling the order each thread
updates it’s columns every iteration. While it is in principle still possible to update enough
overlapping threads in parallel to cause problems, Bradley et al. [6] show that this is rarely a
problem in practice.

Updates to the shared β values are atomic, and every thread needs read access to all β values.
This limits our method to use on shared memory systems and results in poor performance on
NUMA systems. In practice we can only effectively use a single CPU socket, and we have
tested this up to eight cores. Fig. 4 summarises the shuffled parallel implementation and it’s
scalability. For the full details of the parallel implementation see Appendix A.
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Figure 4. (a) Each thread is assigned a set of columns, which is then shuffled
every iteration.
(b) Relative speedup as the number of cores used increases, running on a dual 8
core/16 thread NUMA system. Cores 1-8 are separate cores on node 1, 8-16 are
SMT threads on the same cores. Cores 17-24 are separate cores on the second
NUMA node, and 15-32 are SMT threads on those cores.

2.5. Limited Interaction Neighbourhoods. When searching for interactions within a large
sequence, it may be acceptable to limit the search to pairs that are relatively close on the
genome. In a study of epistatic interactions in yeast by Puchta et al. [28] the strength of
negative interactions decreases as distance between gene positions on the sequence increases.
The median distance between pairs in the hundred strongest interactions was only eighteen
nucleotides.

Limiting interactions to those within some distance d drastically reduces both the time and
space requirements. Instead of Θ(p2n), the size of the interaction matrix becomes Θ(pdn).
Similarly, an iteration of Algorithm 1 would require only Θ(pdn) operations. For d << p
this is a significant reduction. Limiting the interaction search distance to 100 positions, we
could process a set of 30, 000 genes and 200, 000 siRNAs using approximately 16GB of memory,
assuming a comparable density of interactions to our testing data. Such a search could be
performed directly on a laptop, without requiring access to a large server. The biological
implications of this restriction should be carefully considered before its use, however.

2.6. Data. We prepared two experimental data sets to evaluate our method and test the scal-
ability of our implementation. The first is an siRNA perturbation screen in which siRNAs
targeting kinases are applied to an infected human cell line. We predict off-target effects across
the entire exome, and use this larger set for our analysis.

The second data set contains single nucleotide variants (SNVs) from 259 isolates of Pseu-
domonas aeruginosa, and associated minimum inhibitory concentration (MIC) of Ciprofloxacin.

2.6.1. InfectX siRNA Data. To demonstrate our method on real genome-scale data, we use the
vaccinia group from InfectX [29]. This set contains 204, 288 siRNA perturbations in the presence
of the vaccinia virus. This set is significantly larger than the mock group (siRNA perturbations
with no pathogen present). Off-target effects are prediction using Risearch2 [1]. We include a
gene as an off-target effect whenever there is a match between the siRNA seed region and some
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6 LASSO-BASED INTERACTION INFERENCE

component of an mRNA for that gene (taken from [17]). We use an energy cutoff of −20 and
match the entire siRNA, not only the 3′ UTR, as suggested in [1].

We then form a matrix of off-target effects with columns for each gene, and rows for each
siRNA as in [12]. An entry i, j in this matrix is one if and only the predicted effect of siRNA
i on gene j is greater than zero. All other entries are zero. Our fitness vector Y is the result
of B-scoring then Z-scoring the number of cells in the well, to remove systematic within-plate
effects and experimentally introduced cross-plate biases. B-scoring corrects for biases across
the entire plate, and Z-scoring then normalises each well’s score with respect to the rest of it’s
plate.

2.6.2. Antibacterial Resistance. SNVs from 259 isolates of Pseudomonas aeruginosawere se-
quenced using illumina technologies (IPCD isolates on MiSeq and QIMR isolates on HISeq).
SNV’s from raw reads were mapped to the reference genome PAO1 using Bowtie2 (v. 2.3.4) [20]
read aligners. Variant reports were then read into a python script which sorted the reports into
a table. The table was set up so that each isolate was represented as a row and the presence
/ absence of each SNV was along the columns. Only genomes that had associated MIC values
were included. The resulting table contains 259 rows and over 700, 000 columns.

Since our method considers p2 interactions, the scale of this data presents a problem. In-
cluding all > 700, 000 columns, we would need to store over 250 billion interaction columns,
each with up to 259 entries. Even if every column fits into a single 64-bit word, simply storing
the compressed matrix would require on the order of two terabytes of memory. We instead
reduce this to a more manageable scale, by removing all duplicated columns, and then any of
the remaining columns that have less than 30 entries. Note that this is likely to remove point
mutations occurring from acquired resistance, and effects that are always found in the same
isolates cannot be distinguished. While it may be possible to address these limitations we do
not attempt to do so here. There are simply too many interactions (over 200 billion) among
the full set of variants for our current implementation. After these reductions we have a more
tractable 259 × 75, 715 entry matrix, sufficiently small that all approx. 5.7 billion effects and
interactions can be processed using under 250GB of memory.

2.6.3. Data Sources. P. aeruginosagenome sequences were selected from strains whose MIC val-
ues (Ciprofloxacin) were known. 167 genomes were sourced from the publicly available IPCD
International Pseudomonas Consortium Database [18] and 92 genomes were from QIMR Bris-
bane Australia [19]. The IPCD data consisted of 2 x 300 bp MiSeq reads whilst the QIMR data
was 2 x 150 bp reads. The MIC values were obtained as a combination of e-test strips [30] and
plate-based assays [31].

3. Results

In this section, we summarise the results of a simulation study we carried out to compare
our method against existing approaches. We also demonstrate our method on two large-scale
experimental data sets. Note that both sets are too large to attempt using known approaches
such as glinternet for comparison. In both cases the true interactions are unknown, making
the true accuracy of our method in these cases difficult to determine. We nonetheless include
these as reasonable examples of cases in which our method is applicable and validate the results
by comparing them with known protein interactions [34].

3.1. Simulation Performance. Our method aims to have comparable precision and recall to
the best performing approach in our previous work [12] while scaling to much larger data sets.
To evaluate the accuracy of our method, we compare precision and recall of our method with
glinternet, the most accurate of the methods tested [12].

Since we achieved the best results only using glinternet for variable-selection, then fitting
the non-zero beta values with ordinary least squares (OLS) regression, we do the same here.
We use Pint in the same way and restrict to the first 2, 000 non-zero beta values, rather than
using adaptive calibration, which returns too few columns for the OLS regression step.
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LASSO-BASED INTERACTION INFERENCE 7

Table 1. Runtime comparison between our method and glinternet.

X matrix size glinternet time (s) Pint time (s)
n = 100, p = 1, 000 178 2.00
n = 1, 000, p = 10, 000 4807 27.6

Table 2. Infectx proposed interactions

Gene Names Estimated Effect p-value
TTN KMT2D 0.085 4.35e-05
TTN PLEC 0.053 1.95e-2
TTN TTC7B 0.068 2.01e-3
TTN OBSCN 0.137 8.00e-11
TTN CDH23 -0.022 1.00e-1

Testing with the same data as in [12], our method is able to identify significantly more correct
interactions than glinternet (Fig. 5). Precision is largely comparable, with a few outliers in
which we see significantly more false positives with our method (Fig. 5a). The run time is
orders of magnitude faster than glinternet, typically taking 20 to 30 seconds rather than
several hours (Table 1 and Fig. 5c). To test the scalability of our implementation, we also run it
with the same 2, 000 effect limit on a much larger data set. With p ≈ 27, 000, n ≈ 30, 000, using
16 SMT threads on a single eight core CPU, we propose 97 main effects and 236 interactions in
one and a half hours.
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Figure 5. Searching for interactions with glinternet vs. our shuffled com-
pressed lasso, using p = 1, 000, n = 10, 000 data from [12]. (a) Precision. (b)
Recall. (c) Time taken (log scale).

3.2. InfectX siRNA Data. We run our lasso model on the InfectX data (Section 2.6.1) al-
lowing all pairwise interactions, and halting at λ = 0.05 or the first 2, 000 non-zero effects,
whichever comes first. Only the genes and gene-pairs with non-zero predicted effects are then
included in the matrix Z. Last, we fit the phenotype Y to this matrix using least-squares
regression Y ∼ Z, using these unbiased estimates and p-values as our final result.

We find 26 proposed effects (21 main and 5 interactions) in under two hours. Our method pro-
poses interactions between five genes and TTN, with varying estimated strengths (see Table 2).
Two of these interactions, OBSCN and PLEC, are known protein interactions [34].

We find the same set of interactions in repeated runs (bearing in mind that the matrix is
shuffled differently each time). This suggests that these are not random choices, but effects
strongly supported by the data. The Adjusted R2 value is only ≈ 0.088, however, indicating
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8 LASSO-BASED INTERACTION INFERENCE
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Figure 6. Adjusted R2 density of simulations in Section 3.1, with additional
lines indicating the values using InfectX data, or InfectX with simulated fitness,
instead.

that while a better than random fit has been found, the chosen effects do not explain the overall
observed fitness particularly well. To investigate this, we consider the difference between fitting
two different phenotypes. Firstly, the predicted effects with the measured cell counts from
InfectX, and secondly a simulated set that reflects our assumptions.

For the simulation we used the same X matrix, but simulated the fitness effects Y as a linear
combination of randomly chosen gene effects and gene-pair interactions. Every gene had a 10%
chance of being assigned an effect, which were sampled from N (0, 2). We gave every pair of
genes a 0.1% chance of an effect, which were also sampled from N (0, 2). For every row i of
X, the fitness value yi is the sum of both main and interaction effects present, with additional
random noise.

yi =

p∑
j=1

Xi,j effect(j) +

p∑
k=j+1

(effect(j, k))

 +N (0, 10)

With this simulated phenotype vector, re-running the interaction search with the same pa-
rameters, we have an R2 of ≈ 0.99.

After adjusting for the number of effects proposed, we find that while the fit is better than
random using the Z-scored InfectX cell-count as phenotypes, it is not nearly as good as in our
simulations. This suggests that at least some of our assumptions are incorrect, namely that
our fitness proxy (log cell count) is additive and can be largely explained with individual and
pairwise silencing effects, and that the off-target predictions are accurate. While all of these
assumptions are somewhat suspect, it should be noted that our siRNA off-target predictions
likely miss a significant number of strong effects, and include genes that are not completely
silenced [1]. With this in mind, it is plausible that even if the cell count responds to gene
silencing according to our assumptions, the predicted effects may not be significantly better
than random until accurate siRNA off-target predictions are available.

3.3. Antibacterial Resistance. We fit our antibacterial resistance data (see Section 2.6.2)
with three different sets of parameters. First, we allow all interactions. Second, we restrict to
interactions within 100 columns of each other. Finally, we restrict to interactions within 10
columns of each other. In all cases, we run until the adaptive calibration stopping condition
is met. In the first case, allowing all interactions, we find that repeated runs do not suggest
any of the same effects. Since the data only contains 259 samples for over 75, 000 effects (and
over 2.5 billion interactions) it is unsurprising that there are several equally good solutions. We
fail to find a reproducible result here because the data simply does not suggest one, and this
run is included only to demonstrate that our implementation works at this scale. The second
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LASSO-BASED INTERACTION INFERENCE 9

and third cases produce more consistent results, with some common interactions suggested in
both cases. While limiting to interactions within 100 columns rules out the majority of possible
interactions, it also limits the number possible solutions enough that we can find one reliably
with only 259 samples.

Moreover, when we reduce the interaction matrix to only the non-zero predicted effects, and
produce an unbiased fit with least-squares regression, we find that our fit explains the variance
in resistance extremely well. Restricting interactions to effects within 100 entries of each other,
we have a multiple R2 of 0.99, and an adjusted R2 of 0.86. Even limiting to interactions within
ten entries, we have a multiple R2 of 0.78, and an adjusted R2 of 0.63. These suggest that in
this case our model is a particularly good fit.

There were 16 sets of variants found in both limited-distance runs (interactions within 10
or 100 columns only). For each of the 16 SNVs their genes, functions, and interactions were
assessed. Genes were identified based on PAO1 reference co-ordinates using Artemis [7]. The
STRING[34] database was used to assess the validity of the protein-protein interactions.

Five of the SNV pairs occurred in the same gene. There were four pairs that had high
interaction scores > 0.7 and two of pairs were identified twice. Many SNV’s were found in genes
that encoded for proteins involved in biofilm formation and maintenance indicative of long term
chronic infections that are often associated with general antibiotic resistance. Other than pilY1,
no other gene was found to be mutated in the lab-based evolution study [31].

There were two pairwise effects that had significant p-values in both runs. The first of these
pairs occurred in a gene that encoded a copper resistance protein. The second pair was found
in a gene that encodes an RNA binding methyltransferase.

4. Discussion

Genotype-phenotype data sets have recently become available at a never before seen scale.
In principle, it is possible to infer not only the effect of individual genomic variants within such
data, but of pairwise combinations of their effects. While this has been shown to work in theory,
and a number of tools have been developed that work on a smaller scale, there is a shortage
of effective methods for human genome-scale data. In this paper we present a regression based
method for such large-scale inference of pairwise effects.

Our method performs coordinate descent lasso-regression on a matrix containing all pairwise
interactions present in the data. For such an approach to work at scale, we had to make
a number of improvements. First we parallelised the algorithm by dividing the matrix into
shuffled sets for each thread. We then drastically increased the scale of tractable data sets by
compressing columns of the matrix using Simple-8b. Combined with the typically sparse binary
nature of genotype-phenotype screens, our method is able to effectively consider hundreds of
millions of possible interactions.

We compared the accuracy and running time of our work to glinternet, the best of the
methods we used previously [12], and found that our method provides comparable accuracy
and precision while running hundreds of times faster. We also tested our method using two
genome-scale real data sets. One is an exome-wide siRNA perturbation screen (n u 67, 000
siRNAs and p u 19, 000 genes). The other measures antibacterial resistance with respect to
genetic variations in Pseudomonas aeruginosa, and includes over two billion possible pairwise
interactions. In both cases our method finds a number of effects that are either plausible or
previously known.

In some cases we can significantly improve the running time and memory use by only con-
sidering local interactions. If interactions are restricted to those within 1, 000 positions of each
other, we can search our siRNA screen using ≈ 40GB of memory in ≈ 20 minutes.

While our method is effective on this scale, there are some limitations that would make
it difficult to use on significantly larger data sets. Both the time and space requirements are
quadratic in the input sequence, and performance does not scale well with non-uniform memory
access. This essentially limits our approach to data that fits in memory on a single machine.
The pairwise additive model is also something of an oversimplification. It remains unclear to
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what extent genetic effects be treated as additive, and ignoring interactions among of more than
two items could well be leaving out the most important effects. In this case we may end up
spuriously associating phenotype changes with individual and pairwise effects that just happen
to be present, rather than the true, more complicated, interaction.

There are nonetheless a number of opportunities to expand upon this work. If the original X
matrix is sparse, and the pairwise interaction matrix X2 is very sparse, we would expect three-
way interaction columns of an X3 matrix to be even more so. If there are few enough non-zeros
in such a matrix, it may be possible to extend our method beyond pairwise interactions without
any fundamental changes. While there would be p3 columns in a three-way interaction matrix,
if the vast majority contain only zeros we may still be able to store it. The indices of non-zero
three-way interaction columns could themselves be stored in a compressed list of offsets. Any
column whose index is not in this list could then be presumed to be zero and left out of beta
updates. Since the memory and time requirements only grow with the number of non-zero
entries, this could provide a well be enough for sufficiently sparse data.

Alternatively, as we showed in Section 2.5, we can significantly increase the scale of interaction
inference methods by reducing the search space. A more targeted approach than restricting the
genome distance, estimating distance in 3D space using Hi-C [4] for example, would drastically
reduce the time and space requirements, allowing higher order interactions to be considered.

Finally, the interactions proposed in Section 3.2 that have not already been confirmed may
well be real, and are worth further investigation.

Our method is implemented in C, and an R package is provided at github.com/bioDS/pint.
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