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Abstract

The biological processes from genotype to phenotype are complex involving multi-scale
mechanisms. Increasing multi-modal data enables deeper understanding of underlying com-
plex mechanisms in various phenotypes. However, integrating and interpreting such large-scale
multi-modal data remains challenging, especially given highly heterogeneous, nonlinear rela-
tionships across modalities. To address this, we developed an interpretable regularized learning
model, deepManReg to predict phenotypes from multi-modal data. First, deepManReg em-
ploys deep neural networks to learn cross-modal manifolds and then align multi-modal features
onto a common latent space. This space aims to preserve both global consistency and local
smoothness across modalities and reveal higher-order nonlinear cross-modal relationships. Sec-
ond, deepManReg uses cross-modal manifolds as a feature graph to regularize the classifiers for
improving phenotype predictions and also prioritizing the multi-modal features and cross-modal
interactions for the phenotypes. We applied deepManReg to recent single cell multi-modal data
such as Patch-seq data including transcriptomics and electrophysiology for neuronal cells in
the mouse brain. We show that deepManReg significantly improves predicting cellular pheno-
types and also prioritizing genes and electrophysiological features for the phenotypes. Finally,
deepManReg is open-source and general for phenotype prediction from multi-modal data. deep-
ManReg is open-source available at https://github.com/daifengwanglab/deepManReg.

1 Introduction

Recent large-scale multi-modal data such as various next generation sequencing data allows
a deeper understanding of cellular and molecular mechanisms from genotype to phenotype.
Also, many of those data have been used to predict phenotypes, transforming the bioinfor-
matics research from descriptive to predictive [8]. However, it is still challenging to integrate
and analyze those multi-modal data which are typically high-dimensional and heterogeneous
across modalities for phenotype prediction. In particular, cross-modal features likely have the
nonlinear relationships that many computational methods may miss for predicting phenotypes
[19]. For example, feature extraction and feature selection are widely used to reduce the dimes-
tionality for prediction. However, the unselected features also likely have useful relationships

1

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428715doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428715


(likely nonlinear) which potentially are able to contribute to prediction [17]. Therefore, sys-
tematically identification of nonlinear features across modalities is key to improving phenotype
prediction from multi-modal data. Manifold alignment is a widely used technique that simul-
taneously reduces the dimensions of multiple data types and preserves the geometric nonlinear
local structures in and between data types (which is also known as multiview nonlinear dimen-
sionality reduction [22, 11, 13]). However, such methods suffer from a trade-off, being either
non-parametric–and thus incapable of generalizing to new data without re-training the whole
model from the beginning–or linear–that leads to inaccuracy alignment.

Besides, for improving phenotype prediction, feature selection and/or extraction (unsuper-
vised learning) are widely used as a preprocessing step prior to supervised learning. However,
since the preprocessing step is separated from the predicting step, highly predictive features
may have missed and thus affect the prediction performance. For instance, many disease genes
are not differentially expressed between disease and control [3]. To address this, regularization
is used as complementary approaches. Basically, regularization imposes prior information to the
supervised learning models. For example, previous methods impose the L1 regularization for
implicitly selecting features [10]. Other methods apply the Laplacian regularization for imposing
feature networks such as gene regulatory networks and protein-protein interactions [9]. Instead
of penalizing each network edge equally as in Laplacian regularization, another method penal-
izes each network feature equally [14]. However, these regularizations are from general biological
knowledge, lacking the rich details of concrete input biological datasets at hand, especially the
distance metric among all possible features of the inputs.

To address above issues, we developed an interpretable regularized learning model, deep-
ManReg to predict phenotypes from multi-modal data (Fig. 1). In particular, deepManReg
simultaneously (1) identifies nonlinear multi-modal relationships and (2) predicts phenotypes
from multi-modal features and relationships. In particular, it first learns coupled deep neural
networks to align cross-modal manifolds onto a common latent space. This step aims to pre-
serve both global consistency and local smoothness across modalities and reveal higher-order
nonlinear cross-modal relationships and, especially, solved the trade-off between nonlinear and
parametric manifold alignment. Second, deepManReg uses cross-modal manifolds as a feature
network [14] to regularize the classifier for improving phenotype predictions and also prioritizing
the features and cross-modal interactions for the phenotypes. To solve this learning problem, we
developed a novel optimization algorithm by backpropagating the Riemannian gradients on a
Stiefel manifold. We applied deepManReg to recental single cell mutli-modal data such as tran-
scriptomics and electrophysiology for neuronal cells in the mouse visual cortex. We show that
deepManReg improves predicting cellular phenotypes (e.g., cellular layers) and also prioritizes
genes and electrophysiological features for the phenotypes. Finally, deepManReg is open-source
and general for phenotype prediction from multi-modal data.

Finally, It is also worthy noting that there are differences between deepManReg and other
geometric-based learning methods: (a) structured-output learning methods, such as graph neu-
ral networks can only learn the structures or relationships among samples [16]; (b) graph-
regularized learning methods (mostly based on Laplacian graphs) use the relationships of fea-
tures to regularize the learning model but aim to penalize each network edge, rather than each
feature itself [14].

2 Methods

Under our recent multiview learning framework [13], deepManReg inputs multi-modal data of
samples, aligns multi-modal features and predicts the samples’ phenotypes. For instance, two
modalities of a set of samples can be modeled as T = {zk, tk, ok}pk=1 with zk ∈ IRn being
the data of Modal 1 and tk ∈ IRm being the data of Modal 2, and associated phenotypes
for both modalities (i.e., labels) ok ∈ O. There are two major phases in deepManReg: (1)
aligning multi-modal features by deep-neural-network based manifold alignment (deep manifold
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modal 1

modal 2

Figure 1: deepManReg: a deep manifold-regularized learning model for improving phenotype predic-
tion from multi-modal data. deepManReg inputs multi-modal datasets, e.g., Modal 1 (left top) and
Modal 2 (left bottom), across the same set of samples. In Phase 1 (top flow), deepManReg aligns
all features (the rows) across modalities by deep manifold alignment. In particular, it uses coupled
deep neural networks f(·;W) and g(·;Z), parameterized with W and Z to project the features onto
a common latent manifold space F. The similarity matrix S of features on the latent space is then
calculated, encoding the similarity of nonlinear manifolds among all pairs of both cross-modal and
within-modal features. In Phase 2 (bottom flow), deepManReg inputs all the samples (the columns
of the input data) into a regularized classification model, parameterized by U . The similarity matrix
of features on the latent manifold space S in Phase 1 is used to regularize this classification model
(i.e., via feature graph regularization), imposing similar features to have similar weights, when train-
ing. Finally, deepManReg outputs a regularized classification (i.e., deep manifold-regularized) for
improving phenotype prediction and prioritizing cross-modal features for the phenotypes.
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alignment) for identifying nonlinear, cross-modal feature relationships on a common latent space,
and (2) predicting the phenotypes of the samples from both multi-modal data and cross-modal
relationships via regularized classification.

2.1 Phase 1: Deep manifold alignment of multi-modal features

2.1.1 Deep manifold alignment via parametric nonlinear alignment between
the manifolds of multi-modal features

Manifold alignment is a class of techniques for learning representations of multiple data views,
such that each view’s representation is simultaneously the most predictive of, and the most
predictable by, the other. It can also be considered as a generalization of canonical correla-
tion analysis (CCA) whereas the intrinsic geometry of data views are preserved and/or the
projections are nonlinear [13].

Manifold alignment has been applied to identify linear (feature-level) projections, or nonlin-
ear (instance-level) embeddings of multi-modal data. While the instance-level version generally
produces more accurate alignments, it sacrifices a great degree of flexibility as the learned em-
bedding is often difficult to parameterize. The feature-level projections allow any new instances
to be easily embedded into a manifold space, and they may be combined to form direct mappings
between the original data representations. These properties are crucial for transferring knowl-
edge across modalities. Thus, deepManReg simultaneously learns different nonlinear mappings
for different data modalities and align them onto a common manifold latent space. This idea
combines appealing properties of both feature-level and instance-level projections for achieving
accurate alignment and generalization. Furthermore, traditional solutions for manifold align-
ment rely on the eigendecompostion that is typically computationally intensive. To address this,
we utilize stochastic gradient descent (SGD) as an implicit regularization and backpropagation
for speeding up training deepManReg models.

Particularly, deepManReg first aims to calculate the similarities in terms of nonlinear man-
ifolds among all possible features across modalities. To this end, deepManReg conducts a deep
manifold alignment between all features so that the features are aligned onto a common latent
manifold space. The distances of the features on the latent space thus reveal such similarities
of the features for nonlinear manifold structures, suggesting nonlinear, cross-modal feature re-
lationships. Mathematically, given two modal datasets, X = {xi}ni=1 and Y = {yj}mj=1 where
xi ∈ IRp are the features of Modal 1 and yj ∈ IRp are the features of Modal 2, and the partial
correspondences between the instances in X and Y , encoded by the matrix W(X,Y ) ∈ IRn×m,
we want to learn the two mappings f and g that map xi, yj to f(xi), g(yj) ∈ IRd respectively
onto the latent manifold space with dimension d� p that preserves local geometry of X,Y and
also matches cross-modal features from the correspondence.

Further, the instance xi is correspondent to the instance yj if and only if f(xi) = g(yj).
Besides, any prior correspondence information between the features from different modalities
can be used as partial information to initially build the corresponding matrix W(X,Y ). After
mappings, f(X) ∈ IRn×d and g(Y ) ∈ IRm×d represents the new coordinates of the features of
Modal 1 and Modal 2 on the latent manifold space with the dimension d, respectively. That

said, the concatenation of the new coordinates F =

[
f(X)
g(Y )

]
is the unified representation of the

features from X and Y on the common latent manifold space.
Then, according to [21], the loss function for manifold alignment can be formed as the

Laplacian eigenmaps [2] using the joint Laplacian and the joint adjacency matrix of the two
datasets:

`(F) =
∑
i,j

‖F(i, ·)− F(j, ·)‖2W (i, j)

where the sum is taken over all pairs of instances from both datasets, F is the unified represen-
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tation of both datasets, and W =

[
WX W(X,Y )

WT
(X,Y ) WY

]
is the joint similarity matrix (WX and

WY are similarity matrices within each dataset X and Y ).
Using the facts that ‖M(i, ·)‖2 =

∑
kM(i, k)2 and that the Laplacian is a quadratic differ-

ence operator, the above equation can be transformed into:

`(F) =
∑
i,j

∑
k

(F(i, k)− F(j, k))2W (i, j)

= tr(FTLF)

where L is the joint Laplacian [21] of both datasets.
For this loss function to work properly, i.e., avoiding the trivial solution of mapping all

instances to zero, we need an additional constraint,

FTDF = I

where D is the diagonal matrix of W and I is the d× d identity matrix.
Then, we have this equation for manifold alignment:

min tr(FTLF)

s.t.FTDF = I
Normally, this optimization can be solved by eigendecomposition [22] which is computa-

tionally intensive. Moreover, solving generalized eigenvector problem gives us merely the new
coordinates of the latent manifold (i.e., X ′ = f(X), Y ′ = f(Y )), not the closed form of mappings
themselves (i.e., f(·) and g(·)), and thus is incapable of generalizing for new instances. To solve
this, we parameterized the mappings f(·) and g(·) by using coupled deep neural networks and
finally form the optimization problem as below:

min tr(F̂T L̂F̂)

s.t.F̂T F̂ = I
if we set F̂ = FD1/2 and L̂ = D−1/2LD−1/2.

This actually an optimization problem on the Stiefel manifold, where the feasible set of the
orthogonality constraints Sn,p := {X ∈ IRn×p : XTX = I} is referred to as the Stiefel manifold,
which was due to Stiefel in 1935 [18].

2.1.2 Deep Neural Networks to represent nonlinear embedding of manifold
alignment

As above, we model the relationships between the observable data xi, yj and its latent represen-
tation f(xi), g(yj) using two nonlinear mappings f(xi;W), g(yj ;Z) where f(·;W), g(·;Z) denote
the mapping functions and W,Z denote the set of the function parameters. In deepManReg,
we employ the deep neural networks (DNNs) to model our mapping functions, since DNNs have
the ability of approximating any continuous mapping using a reasonable number of parameters.
Note that, of the two DNNs, the numbers of input features are unnecessary to be the same, but
the numbers of output represented features have to be exactly the same for allowing having a
common latent space. Precisely, if X ∈ IRm×p is a matrix of data vectors xi ∈ IRp, the number
of input features for the first network f(·;W) is p, and if Y ∈ IRm×p is a matrix of data vectors
yj ∈ IRq, the number of input features for the second network g(·;Z) is q. The numbers of
output represented features of both DNNs is d, the dimension of the common latent manifold
space.

5

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428715doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428715


2.1.3 Optimization on Stiefel Manifold to train two deep neural networks
for parametric nonlinear manifold alignment problem

There exist two key issues for generalizing backprop to the context of training our DNNs for
deep manifold alignment. The first one is preserving the manifold constraint in the output layer.
As we force the outputs to be on Stiefel manifolds, merely using the forward propagation in the
normal DNN cannot yield valid orthogonal outputs. While the gradient of loss function with
respect to output layer, i.e., F̂, can be calculated easily, computing those with hidden layers, i.e.
W,Z has not been well-solved by the traditional backprop, which may be the second key issue
for training the DNNs in deepManReg.

Algorithm 1: Deep Manifold Alignment

input : data for two modalities X & Y
params: training step T , learning rate η
output : parameters WT+1 & ZT+1

1 initialize W0 & Z0;
2 for t = 0 : T do

// forward pass

3 ft ← f(X;Wt);
4 gt ← g(Y ;Zt);

5 Rt ←
[
ft
gt

]
;

6 Calculate L ; // L is the joint Laplacian

// project the output onto Stiefel manifold

7 F̂t ← UtIV
T
t where Rt = UtΣtV

T
t is the SVD decomposition of Rt and I is the identity

matrix;

8 `← tr(F̂T
t LF̂t) ; // compute loss

9 et ← ∇F̂t
` ; // compute Euclidean gradient

10 // project Euclidean gradient onto the tangent space of Stiefel manifold

11 pt ← F̂tskew(F̂T
t et) + (I − F̂tF̂T

t )et;
// backpropagate the Riemannian gradient

12 Wt,Zt ← backprop(pt) Wt+1 ←Wt + g(Wt, η, t);
13 Zt+1 ← Zt + g(Zt, η, t) where g is an optimizer (e.g., SGD)

14 end

To solve the first issue of preserving the constraint, we construct the last layer by projecting

the output of the preceding layer

[
f(X)
g(Y )

]
onto the Stiefel manifold Sm+n,d. Specifically, we use

the classical projection operator π(·) which is defined as:

F̂ = π ◦
[
f(X)
g(Y )

]
= arg min

X∈Sm+n,d

∥∥∥∥[f(X)
g(Y )

]
−X

∥∥∥∥2
F

, it is known that the solution of this problem is given by

F̂ = UIm+n,dV
T

where

[
f(X)
g(Y )

]
= UΣV T is the SVD decompostion of

[
f(X)
g(Y )

]
. Thus, F̂ now is orthogonal output,

i.e. F̂TDF̂ = I
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As for the second issue, we developed a new way of updating the weightsW,Z by exploiting
an SGD setting on the Stiefel manifolds. The steepest descent direction for the corresponding
loss function `(R) with respect to R on the Stiefel manifold is the Riemannian gradient ∇̃Rl.

To obtain it, the Euclidean gradient ∇F̂` = ∂tr(F̂T L̂F̂)
∂F̂ = L̂F̂ + L̂>F̂ is projected onto tangent

space TF̂(Sm+n,d) of Stiefel manifold Sm+n,d. The projection is defined as

∇̃F̂` = π(∇F̂`) = arg min
X∈TM (Sm+n,d)

‖∇F̂`−X‖
2
F

= F̂skew(F̂T∇F̂`) + (I − F̂F̂T )∇F̂`.

, where skew(F̂T∇F̂`) = 1
2

(
F̂T∇F̂`− (∇F̂`)

T F̂
)

.

Putting all together, we summarized our optimization in Algorithm 1, which can be readily
implemented with the modern tools for automatic differentiation such as PyTorch.

2.2 Phase 2: Regularized classification by cross-modal feature
relationships learned from deep manifold alignment

After finding the common latent space from deep manifold alignment, we can now calculate the
distance matrix D for each row pairs of matrix F̂, and then similarity matrix S = 1

1+D . The
latter finally gives the similarities of all multi-modal features in terms of nonlinear manifold
structures, systematically revealing cross-modal feature relationships.

In Phase 2 of deepManReg, we want to improve phenotype prediction from multi-modal
data using such cross-modal feature relationships. In particular, back to the training set T =
{zk, tk, ok}pk=1, deepManReg learns a classifier paramaterized by a weight U by minimizing a
loss function `(z, t, o;U) over the training instances (zk, tk, ok) [14]. Now, with the similarity
information of features, provided by matrix S from the previous step, we can use S as an
adjacency matrix of a feature graph encoding the relationship between all pairs of features
within and across modalities. The degree of each vertex in the feature graph has to be sum to
one,

∑
j Sij = 1, to avoid some features dominating the whole graph. Because similar features

should have similar weights after training, we regularize each feature’s weight by the squared
amount it differs from the weighted average of its neighbors. Thus, the loss function for feature
network regularized learning is [14]:

loss(U) =

p∑
k=1

`(zk, tk, ok;U) + α

n+m∑
j=1

(Uj −
∑
i

SjiUi)
2 + β||U ||22

The hyperparameters α and β are to balance between the network regularization and the ridge
regularization. Finally, the combined regularization can be rewritten as UTMU where M =
α(I − S)T (I − S) + βI.

The classifiers can be general. In practice, here, we use a neural network as a classifier so the
optimization problem above can be solved easily with gradient descent methods. Also, we can
use other approaches for regularization such as the graph Laplacian [14]. The main difference
between Laplacian regularization and feature graph regularization is that Laplacian penalizes
each edge (between two features) equally while the latter penalizes each feature (e.g., nodes)
equally. The efficiency of the approaches should depend on the problem domain.
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3 Results

3.1 Predicting cellular phenotypes from single cell multi-modal
data

Recent Patch-seq technique measures multi-modal characteristics of single cells such as tran-
scriptomics, electrophysiology and morphology [4]. For example, the Brain Initiative project has
generated multi-modal data of neuronal cells in the human and mouse brains [6]. Using those
single-cell multi-modal data, ones have identified many cell types corresponding to various cel-
lular phenotypes. Here, we applied deepManReg to recent Patch-seq data for the mouse visual
cortex from Allen Brain Atlas for predicting neuronal phenotypes, including cell layers and tran-
scriptomic types. Specifically, this dataset includes the transcriptomic, and electrophysiological
data of 4435 neuronal cells (GABAergic cortical neurons) in the mouse visual cortex [6]. For
cellular phenotypes for our prediction, we included six major transcriptomic cell types (t-types):
Vip, Sst, Sncg, Serpinf1, Pvalb, and Lamp5, and five cell layers revealing the locations of cells
on the visual cortex: L1, L2/3, L4, L5, and L6.

3.2 Datasets and data preprocessing

The electrophysiological data includes the responses of three stimuli: short (3 ms) current pulses,
long (1 s) current steps, and slow (25 pA/s) current ramp current injections. We extracted 47
electrophysiological features (e-features) on stimuli and responses, identified by Allen Software
Development Kit (Allen SDK) and IPFX Python package [1]. We then filtered the e-features
with many missing values, extracted the cells from t-types and layers as above, and finally
selected 41 e-features for 3654 neuronal cells. The transcriptomic data quantifies gene expression
levels of the neuronal cells on the genome wide. In particular, we extracted the 500 genes that
have the highest express variations among the 3654 cells. Then, we input the gene expression
and e-features of those cells as input multi-modal data into deepManReg for predicting cellular
phenotypes, i.e., X is 500 genes by 3654 cells and Y is 41 e-features by 3654 cells. As shown in
Fig. 2, the latent space from deep manifold alignment (Phase 1) reveals that many genes and
e-features have strong nonlinear relationships (via aligned cross-modal manifolds).

3.3 deepManReg improves cellular phenotype prediction from
single cell transcripotimics and electrophysiology

After deep manifold alignment, we applied deepManReg to use the aligned latent spaces of
genes and e-features to regularize another deep neural network model to classify the cellular
phenotypes such as cell layers. In particular, the neural network for classification has the input
layer consisting of 541 nodes (500 genes + 41 e-features), two hidden layers (100/50 hidden
units) and the final output layer with the same number of units as phenotypes along with a
Softmax operation. For instance, for classifying cell layers, the output units represent L1, L2/3,
L4, L5, and L6. We randomly split all cells into the training/testing sets with a stratified
ratio of 80/20 and obtained 500 sets. For each training set, we oversampled the cells from each
label to be 941 cells and thus balance sample sizes across labels (e.g., L1: 262 cells; L2/3 1097
cells; L4: 385 cells; L5: 1176 cells; L6:734 cells) [15]. As shown in Fig. 3A, the prediction
accuracy of deepManReg for the testing sets to classify cell layers is significantly higher than
the classification without any regularization (k.s. test p¡ 7.85*1e-13). Also, its average accuracy,
44.6% (with a 95% confidence interval [28.0%, 53.0%]) is higher than both the baseline of 20%
(five labels) and the average accuracy of the classification without regularization (39.7% mean
accuracy, [7.1%, 52.8%] confidence interval). Moreover, as shown in Fig. 3B, deepManReg
also achieves relatively high AUC values of 0.93, 0.81, 0.74, 0.72, and 0.87 for the five layers
L1, L2/3, L4, L5, and L6, respectively. In addition to predicting cell types, we also found
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Figure 2: The genes and electrophysiological features (e-features) of neuronal cells in the mouse
visual cortex having highly correlations of their reduced dimensions on the aligned latent space by
deepManReg Phase 1 (i.e., deep manifold alignment). Cyan: genes. Yellow: e-features. Nodes are
connected by correlations of reduced dimensions (10-dim) > 0.85.
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that deepManReg outperforms the classification without regularization for predicting t-types
(k.s., test p¡ 1.62*1e-9), i.e., average accuracy 83.2% ([62.5%, 93.3%] confidence interval) for
deepManReg vs. 80.8% ([34.1%, 95.9%] confidence interval) for the latter. These results
demonstrate that the regularized classification by deep manifold alignment improves predicting
cellular phenotypes from single cell multi-modal data. This also suggests potential contributions
from the nonlinear manifold relationships of gene expression and electrophysiology to the cellular
phenotypes.

3.4 Prioritization of multi-modal features for cellular phenotypes
via integrated gradients

After training a deepManReg model, we further used a derivative-based method called inte-
grated gradient [20] for prioritizing genes and e-features for each phenotype (e.g., cell layers
in Supplemental Table 1). Specifically, we calculated the gradient of the model’s prediction
for each e-feature and/or gene to quantify the changes of the output response values (e.g., cell
layers) by a small change of input gene expression and e-feature values [12]. We used the recent
Python package, Captum [7] to implement the integrated gradient method and calculate the
importance scores of each gene/e-feature for output labels (i.e., cellular phenotypes). We then
ranked the genes and e-features by the scores and prioritized top ones for each phenotype. For
instance, we summarized top prioritized genes and e-features for each cell layer in Supplement
Table 1.

4 Conclusion

In this paper, we presented a novel regularized learning method, deepManReg for simultane-
ously (1) revealing nonlinear manifold relationships across multi-modal data and (2) improving
phenotype predictions via regularization by cross-modal manifolds. In particular, deepManReg
learns multiple deep neural networks for different modalities and jointly trains them to align
multi-modal features onto a common latent space. The distances of various features in and be-
tween modalities on the space represent their nonlinear relationships identified by cross-modal
manifolds.

Although we demonstrated that deepManReg works for two particular datasets (i.e., brain
disorders and single cells), deepManReg can be generalized to any multi-modal data such as
additional single cell omics (scATAC-seq, scHi-C, etc). Also, its deep neural networks for man-
ifold alignment can be designed specific for each modality. For example, if two modalities are
genomics and images, the neural network for aligning images can be changed to a convolutional
neural network. Also, one can model those neural networks by recent graph neural networks
[16], aiming to not only align multi-modal features but also underlying biological networks in
the modalities.

deepManReg solves the tradeoff between nonlinear and parametric manifold alignment (by
utilizing the nonlinearity and parametric of neural architecture which is trained by a Riemannian
optimization procedure). Besides, deepManReg works as both representation learning and reg-
ularized classification. However, training Deepalignomic requires a non-trivial hyperparameter
optimization since training two deep neural networks simultaneously includes a large combi-
nation of parameters. Another potential issue for aligning such large datasets in deepManReg
which may be computational intensive is the large joint Laplacian matrix (Algorithm 1). There-
fore, in future, we may use the Nystrom method [5] to approximate the Laplacian matrix for
making deepManReg more scalable.
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Figure 3: (A) Cumulative distributions of testing accuracies for classifying cell layers in the mouse
visual cortex by deepManReg (Blue) vs. the neural network classification without any regularization
(Orange). (B) Receiver operating characteristic (ROC) curves for classifying cell layers in the mouse
visual cortex by deepManReg. Blue: L1, Yellow: L2/3, Green: L4, Orange: L5, Purple: L6. x-axis:
False Positive Rate, y-axis: True Positive Rate.

11

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428715doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428715


Funding

This work was supported by the grants of National Institutes of Health, R01AG067025, R21CA237955
and U01MH116492 to Daifeng Wang and U54HD090256 to Waisman Center.

Conflict of Interest : none declared.

References

[1] Allen Institute. Intrinsic physiology feature extractor (ipfx) python package [internet].
available from:. https://ipfx.readthedocs.io/, 2021.

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373–1396, 2003.

[3] Ina S Brorson, Anna Eriksson, Ingvild S Leikfoss, Elisabeth G Celius, P̊al Berg-Hansen,
Lisa F Barcellos, Tone Berge, Hanne F Harbo, and Steffan D Bos. No differential gene
expression for cd4+ t cells of ms patients and healthy controls. Multiple Sclerosis Journal–
Experimental, Translational and Clinical, 5(2):2055217319856903, 2019.

[4] Cathryn R Cadwell, Federico Scala, Shuang Li, Giulia Livrizzi, Shan Shen, Rickard Sand-
berg, Xiaolong Jiang, and Andreas S Tolias. Multimodal profiling of single-cell morphology,
electrophysiology, and gene expression using patch-seq. Nature protocols, 12(12):2531, 2017.

[5] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral grouping using
the nystrom method. IEEE transactions on pattern analysis and machine intelligence,
26(2):214–225, 2004.

[6] Nathan W Gouwens, Staci A Sorensen, Fahimeh Baftizadeh, Agata Budzillo, Brian R Lee,
Tim Jarsky, Lauren Alfiler, Katherine Baker, Eliza Barkan, Kyla Berry, et al. Integrated
morphoelectric and transcriptomic classification of cortical gabaergic cells. Cell, 183(4):935–
953, 2020.

[7] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh,
Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al.
Captum: A unified and generic model interpretability library for pytorch. arXiv preprint
arXiv:2009.07896, 2020.

[8] Pedro Larranaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, Inaki Inza,
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