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Motivation: Single-cell RNA sequencing (scRNAseq) technologies allow for measurements of gene expression at a
single-cell resolution. This provides researchers with a tremendous advantage for detecting heterogeneity, delineating
cellular maps, or identifying rare subpopulations. However, a critical complication remains the low number of single-cell
observations due to limitations by the rarity of a subpopulation, tissue degradation, or cost. This absence of su�cient
data may cause inaccuracy or irreproducibility of downstream analysis. In this work, we present ACTIVA (Automated
Cell-Type-informed Introspective Variational Autoencoder): a novel framework for generating realistic synthetic data using
a single-stream adversarial variational autoencoder conditioned with cell-type information. Within a single framework,
ACTIVA can generate data representative of the entire population, or specific subpopulations on demand, as opposed
to two separate models (such as scGAN and cscGAN). Data generation and augmentation with ACTIVA can enhance
scRNAseq pipelines and analysis, such as benchmarking new algorithms, studying the accuracy of classifiers, and detecting
marker genes. ACTIVA will facilitate analysis of smaller datasets, potentially reducing the number of patients and animals
necessary in initial studies.

Results: We train and evaluate models on multiple public scRNAseq datasets. In comparison to GAN-based models
(scGAN and cscGAN), we demonstrate that ACTIVA generates cells that are more realistic and harder for classifiers to
identify as synthetic, which also have better pair-wise correlations between genes. We show that data augmentation
with ACTIVA significantly improves the classification of rare subtypes (more than 45% improvement compared to not
augmenting and 4% better than cscGAN) all while reducing training time by an order of magnitude in comparison to
both models.

Availability of data and code: Links to raw, pre- and post-processed data, source code and tutorials are available at
https://github.com/SindiLab.

Supplementary information: Supplementary material can be found as a separate file with the same pre-print submission.
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Fig. 1. Overview of our deep generative model, ACTIVA, and its training flow. Our model consists of three networks: (i) an encoder
that also acts as a discriminator (denoted by Enc), (ii) a decoder which is used as the generative network for producing new synthetic
data (denoted by Gen), and (iii) an automated cell-type classification network (denoted by ACTINN as in [Ma and Pellegrini (2019)]).
ACTIVA is a single-stream adversarial (Introspective) Conditional VAE without the need for a training schedule (unlike most GANs).
Due to this, our model has the training stability and efficiency of VAEs while producing realistic samples comparably to GANs. We
describe each component of our model and the objective functions in Section 3.

Introduction
Traditional sequencing methods are limited to measuring the average signal in a group of cells, which potentially mask
heterogeneity and rare populations [Tang et al. (2019)]. Single-Cell RNA sequencing (scRNAseq) technologies allow
for the amplification and extraction of small RNA quantities, which enable sequencing at a single-cell level [Tang et al.
(2009)]. The single-cell resolution thus enhances our understanding of complex biological systems. For example, in the
immune system scRNAseq has been used to discover new immune cell populations, targets and relationships, which have
been used to propose new treatments [Tang et al. (2019)].

While the number of tools for analyzing scRNAseq data increases, one limiting factor remains: low number of cells,
potentially related to financial, ethical, or patient availability [Marouf et al. (2020)]. Large well-funded projects have
generated the Human Cell Atlas [Regev et al. (2017)] and the Mouse Cell Atlas [Han et al. (2018)] which characterized
cell populations in organs and tissues in their respective species. Although a tremendous amount of scRNAseq is
available from these projects, they are limited to a broad overview of the cell populations in these tissues and organs.
The Atlases overlook sub-populations of these cells which tend to be smaller, rarer, and important players in normal
and dysregulated states. As Button et al. (2013) note, small numbers of observations reduce the reproducibility and
robustness of experimental results. This is especially important for benchmarking new tools for scRNAseq data, as the
number of features (genes) in each cell often exceeds the number of samples.

Given limitations on scRNAseq data availability and the importance of adequate sample sizes, in-silico data generation and
augmentation o�ers a fast, reliable, and cheap solution. Synthetic data augmentation is a standard practice in fields of
machine learning such as text and image classification [Shorten and Khoshgoftaar (2019)]. Traditional data augmentation
techniques, geometric transformations or noise injection, are being replaced by more recently developed generative models,
variational autoencoder (VAE) [Kingma and Welling (2013)] and Generative Adversarial Networks (GANs) [Goodfellow
et al. (2014)], for augmenting complex biological datasets. However, GANs and VAEs remain less explored for data
augmentation in genomics and transcriptomics. (We provide an overview of GANs and VAEs in Section 2.)
Recently, Marouf et al. (2020) introduced GAN-based models for scRNAseq generation and augmentation (called
single-cell GAN [scGAN] and conditional scGAN [cscGAN]), and demonstrated that they outperform other state-of-the-art
models. While scGAN augments the entire population by creating “holistic” cells, cscGAN is conditioned to generate cells
from specific subpopulations.
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In this work, we extend and generalize their approach by employing an introspective VAE for data augmentation. The
motivation and application of our generative model is closely related to Marouf et al.’s, with a focus on improving training
time, stability and generation quality using only one framework. We compare our proposed model, ACTIVA, with scGAN
and cscGAN and show how it can be leveraged to augment rare populations, improving classification and downstream
analysis. In contrast to these previously published GANs, our novel cell-type conditioned introspective VAE model allows
us to generate either “holistic” or specific cellular subpopulations in a single framework.

In Section 2 we provide an overview of GANs (both generally and in the context of scRNAseq data) and VAEs. In
Section 3 we detail ACTIVA, our proposed conditional introspective VAE. In Section 4 we describe our training data and
associated pre/post processing steps. In Section 5 we compare ACTIVA with competing methods - scGAN and cscGAN.
We demonstrate that augmenting rare cell populations with ACTIVA improves classification over GANs while providing
a more computationally tractable framework, mirroring both scGAN and cscGAN, in a single model. In comparison with
scGAN and cscGAN, ACTIVA’s generates cells are harder for classifiers to identify as synthetic (i.e. having Areas Under
the Curve closer to 0.5), with better pair-wise correlation between genes and that allow for improved classification of rare
subtypes (more than 4% improvement over cscGAN) all while reducing run-time by an order of magnitude in comparison
to both models. Finally, in Section 6, we review our approach, findings and limitations.

Background

2.1 Generative Adversarial Networks
GANs [Goodfellow et al. (2014)] are capable of generating realistic synthetic data, and have been successfully applied to
a wide range of machine learning tasks in computer vision [Dziugaite et al. (2015); Vondrick et al. (2016); Zhu et al.
(2016)], natural language processing [Fedus et al. (2018); Yang et al. (2017b)], time series synthesis [Engel et al. (2019);
Esteban et al. (2017)], and bioinformatics [Liu et al. (2019); Marouf et al. (2020)]. GANs consist of a generator network
(G) and a discriminator network (D) that train adversarially, which enables them to produce high-quality fake samples.
During training, D learns the di�erence between real and synthetic samples, while G produces fake data to "fool" D.
More specifically, G produces a distribution of generated samples Pg, given an input z ≥ Pz, with Pz being a random
noise distribution. The objective of GANs is to learn Pg, ideally finding a close approximation to the real data distribution
Pr, so that Pg ¥ Pr. To learn the approximation to Pg, GANs play a "min-max game" of

min
G

max
D

Ex≥Pr log[D(x)]+Ez≥Pz log[1≠D(G(z))],

where both players (G and D) attempt to maximize their own payo�. This adversarial training of G and D is critical in
GANs’ ability to generate realistic samples. Compared to other generative models, GANs’ main advantages are (i) the
ability to produce any type of probability density, (ii) no prior assumptions for training the generator network, and (iii) no
restrictions on the size of the latent space.

Despite these advantages, GANs are notoriously hard to train since it is highly non-trivial for G and D to achieve Nash
equilibrium [Wang et al. (2019)]. Another disadvantage of GANs are vanishing gradients where an optimal D cannot pro-
vide enough information for G to learn and make progress. That is, if D learns the distinction between real and generated
data too well, then G will fail to train, as shown by Arjovsky and Bottou (2017). Another issue with GANs is "mode
collapse", when G generates only a small set of outputs that can trick D. More explicitly, this occurs when G has learned
to map several noise vectors z to the same output that D classifies as real data. In this scenario, G is over-optimized,
and the generated samples lack diversity. Quantifying how much GANs have learned the distribution of real data is often
complicated, consisting of measuring the dissimilarity between Pg and Pr when Pr is not known or assumed. There-
fore, common ways of evaluating GANs involve direct evaluation of the output [Larsen et al. (2016)], which can be arduous.

Although some variations of GANs have been proposed to alleviate vanishing gradients and mode collapse (e.g. Wasserstein-
GANs (WGANs) [Arjovsky et al. (2017)] and Unrolled-GANs [Metz et al. (2016)]), the convergence of GANs still remains
a major problem. During the training progression, the feedback of D to G becomes meaningless, and if GANs continue to
train past this point, the quality of the synthetic samples can be a�ected and ultimately collapse. It is also important to
note that commonly used GANs cannot be trained as single-stream networks, and a necessary step is to define a training
schedule for G and D separately, adding another layer of complexity. Although all deep learning models are sensitive to
hyperparameter choices, Lucic et al. (2018) show all experimented GANs (including WGANs) are much more sensitive to
these choices than VAEs. This can be a drawback in using GANs for scRNAseq generation since the hyperparameters may
need to be re-tuned for every new dataset.
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2.2 Single Cell GANs
scGAN and cscGAN are the state-of-the-art deep learning models for generating and augmenting scRNAseq data. Marouf
et al. train scGAN to generate single-cell data from all populations and cscGAN to produce cluster-specific samples, with
the underlying model in both being a WGAN. For scGAN, the objective is to minimize Wasserstein distance between real
cells distribution, Pr, and generated data, Pg:

W (Pr,Pg) = inf
“œ�(Pr,Pg)

E(x,y)≥“Îx ≠yÎ, (1)

where x and y denote random variables, �(Pr,Pg) is the set of all joint probability distributions “(x,y) with marginals
Pr and Pg. Intuitively, Wasserstein distance is the cost of optimally transporting "masses" from x to y such that Pr is
transformed to Pg [Arjovsky et al. (2017)]. However, since the infimum in Eq. (1) is highly intractable, Arjovsky et al.
use Kantorovich-Rubinstein duality to find an equivalent formulation of Wasserstein distance with better properties:

W (Pr,Pg) = sup
ÎfÎLÆ1

Ex≥Pr f(x)≠Ex≥Pg f(x),

where the set of 1-Lipschitz functions is denoted by ÎfÎLÆ 1, with the solution being a universal approximator (potentially
a fully connected neural network) to approximate f . This function is approximated by D, which we denote as fd. Similarly,
we denote the function approximated by the generator as fg. Using these notations, we arrive at the adversarial objective
function of WGANs (used in scGAN):

min
fg

max
ÎfdÎLÆ1

Ex≥Pr fd(x)≠Ex≥fg(Pn)fd(x),

where Pn denotes a multivariate noise distribution.

As mentioned earlier, training a WGAN instead of a traditional GAN can alleviate the vanishing gradient issue. However,
the majority of GANs’ training instabilities can still be seen in WGANs, making WGANs less flexible and transferable
between di�erent datasets or domain-specific tasks. cscGAN uses a projection-based conditioning [Miyato and Koyama
(2018)] which adds an inner product of class labels (cell types) at the discriminator’s output. Based on instruction given by
the authors in the implementation, scGAN and cscGAN must be trained separately; however, our model learns to generate
specific cell populations (cell-types) or collective cell clusters with one training.

2.3 Variational Autoencoders
VAEs [Kingma and Welling (2013, 2019)] are generative models that jointly learn deep latent-variable and inference models,
i.e. they are comprised of a generative model and an inference model. VAEs are autoencoders that use variational inference
to reconstruct the original data, giving the ability to generate new (or random) data that is "similar" to those already in a
dataset x. VAEs assume that observed data and latent representation are jointly distributed as P◊(x,z) = P◊(x|z)P (z).
In deep learning, the log-likelihood P◊(x|z) is defined as a network Gen(·) with parameters ◊, and a noise model with
‘ ≥ P (‘) where x|z = Gen◊(·) + ‘. Due to the intractability of maximizing the expected log-likelihood of observed data
over ◊, Ep(x)

#
log

s
P◊(x,z)dz

$
, the goal is to instead maximize the evidence lower bound (ELBO):

EP (x)

5
EQ“(x)(z)

5
log

3
P◊(x|z)P (z)

Q“(x)(z)

466

¸ ˚˙ ˝
ELBO(◊,“)

Æ EP (x)[logP◊(x)],

where Q“(x)(z) is an auxiliary variational distribution (with parameters “(x)) that tries to approximate the true posterior
P◊(z|x).

Note that when Q“(x)(z) = P◊(z|x), the lower bound approaches the expected log-likelihood, therefore aiming to infer
P◊(z|x). We find the variational parameters “ for new inputs x using an inference network Enc(·) with parameters „,
such that Enc„(x) = “(x). As shown by Zhao et al. (2017), this maximization problem can be written as

argmin
◊,„

≠ELBO(◊,„)

= argmin
◊,„

!
KL(P (x)||P◊(x))+EP (x)

#
KL

!
Q„(z|x)||P◊(z|x)

"$"
,

where Q„(z|x) denotes the variational distributions Enc„(x) and KL(·) denotes the Kullback–Leibler (KL) divergence.
This yields to the objective function

L(x;◊,„) = Ez≥Q„(z|x) [logP◊(x|z)]≠KL(Q◊(z|x)||P (z))] .
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ELBO is the underlying objective function for this work, modified by Huang et al. (2018) to allow VAEs to train in an
adversarial manner while maintaining key mathematical properties, as described in Section 3.

The main issue with VAEs arises when the training procedure falls into the trivial local optimum of the ELBO objective;
that is, when the variational posterior and the true posterior closely match the prior (or collapse to the prior). This
phenomenon often causes issues with data generation since the generative model ignores a subset of latent variables that
may have meaningful latent features for inputs [He et al. (2019)]. This arises because of the KL(·) term in the VAE’s
objective function [Lucas et al. (2019)], i.e., when the divergence between the prior and the posterior is close to zero.
Studies that aim to alleviate posterior collapse can be broadly categorized as (i) solutions aiming to weaken the generative
model [Semeniuta et al. (2017); Yang et al. (2017a)], (ii) modifications to the training objective [Tolstikhin et al. (2018);
Zhao et al. (2018)], and (iii) modifications to the training procedure [He et al. (2019); Heydari et al. (2019)]. In our
experiments, we did not encounter posterior collapse. However, in our package, we provide an option for modifying
objective function weights adaptively using SoftAdapt [Heydari et al. (2019)].

VAEs have also been criticized for generating samples that are "blurry" (adhering to an average of the data points), as
opposed to sharp samples that GANs produce because of adversarial training. This issue has often been addressed by
defining an adversarial training between the encoder and the decoder, as done in introspective VAEs (IntroVAEs) [Huang
et al. (2018)], which we use in our framework. IntroVAEs are single-stream generative models that self-evaluate the quality
of the generated images. They have been used mostly in computer vision, which have performed comparably to their GAN
counterparts, in applications such as synthetic image generation [Huang et al. (2018)] and single-image super-resolution
[Heydari and Mehmood (2020)]. We describe the formulations of IntroVAEs and the individual components of our model
in Section 3, and provide a visual representation in Fig. 1.

VAEs’ natural ability to produce both a generative and an inference model presents them as an ideal candidate for
generation and augmentation of omics data. In this work, we demonstrate the ability of our deep VAE-based model
for producing realistic in-silico scRNAseq data. Our model, ACTIVA, performs comparably to the state-of-the-art GAN
models, scGAN and cscGAN, and trains significantly faster and maintains stability. Moreover, ACTIVA learns to generate
specific cell-types and holistic population data in one training (unlike scGAN and cscGAN that train separately). On the
same datasets and in the same environment, our model trains at least 6 times faster than scGAN. Moreover, ACTIVA
can produce 100K samples in less than 2 seconds on a single NVIDIA Tesla V100, and 87 seconds on a common research
laptop. ACTIVA provides researchers with a fast, flexible, and reliable deep learning model for augmenting and enlarging
existing datasets, improving downstream analyses robustness and reproducibility.

Methods and Approach
Our proposed model, ACTIVA, consists of three main networks, with a self-evaluating VAE as its core and a cell-type
classifier as its conditioner. In this section, we formulate the objective functions of our model and describe the training
procedure.

3.1 Encoder Network
The ACTIVA encoder network, Enc, serves two purposes: (i) mapping (encoding) scRNAseq data into an approximate
posterior to match the assumed prior, and (ii) acting as a discriminator, judging the quality of the generated samples
against training data. Therefore, Enc’s objective function is designed to train as an adversary of the generator network,
resulting in realistic data generation. To approximate the prior distribution, KL divergence is used as a regularization term
(denoted as LREG) which regularizes the encoder by forcing the approximate posterior, Q„(z|x), to match the prior,
P (z) (following notation from Section 1). In this work, we assume a center isotropic multivariate Gaussian prior, but it
is important to note that studies have considered negative binomial or zero-inflated binomials as the prior for scRNAseq
data [Anders and Huber (2010); Robinson and Smyth (2007)].

Given our assumption of the prior, the posterior probability is Q„(z|x) = N (z;µ,‡2), where µ and ‡ are the mean and
standard deviation, respectively, computed from the outputs of Enc. As in traditional VAEs, z is sampled from N (0, I)
which will be used as an input to the generator network (decoder in VAEs). Due to the stochasticity of z, gradient-
based backpropagation becomes di�cult, but using the reparameterization trick in Kingma and Welling (2013) makes this
operation tractable. That is, define z = µ+‡ § ‘ with ‘ ≥ N (0, I) which passes the stochasticity of z onto ‘. Now given
N cells and a latent vector in a D-dimensional space (i.e. z œ RD), we can compute the KL regularization:

LREG = 1
2

Nÿ

i=1

Dÿ

j=1

!
1+ log(‡2

ij)+µ2
ij ≠‡2

ij

"
.
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Fig. 2. Overview of ACTIVA networks.
Here we present A, the encoder net-
work, B the generator network, and C,
the cell-type classifier. ReLU denotes
Rectified Linear Units [Nair and Hinton
(2010)], and BN denotes batch nor-
malization operation [Ioffe and Szegedy
(2015)].

Similar to traditional VAEs, the encoder network aims at minimizing the di�erence between reconstructed and training
cells (real data). We denote this reconstruction loss as LAE . As in Huang et al. (2018), our reconstruction objective is to
minimize the mean squared error between training cells x œRM (M being the number of genes/features) and reconstructed
cells xr œ RM :

LAE = 1
2

Nÿ

i=1

Mÿ

j=1
Îxij ≠xr,ijÎ2

F . (2)

As the last part of the network, we introduce a cell-type loss component that encourages xr to have the same cell type as
x. That is, given a classifying network C, we want to ensure that the identified type of reconstructed sample C(xr) = tr

is the same as real cell C(x) = t. For this, we introduce LCT , shown in Eq. (5). We describe the explicit formulation
and the classifying network in Section 3.3. During the development of ACTIVA, Zheng et al. (2020) introduced a similar
conditioning loss to the IntroVAE framework for image synthesis, which provided significant improvements in generating
new data (images).

Given our model’s objectives, the loss function for Enc, LEnc, must encode training data and self-evaluate newly generated
cells from the generator network Gen:

LEnc = LREG(z)+–1
ÿ

s=r,g

[m≠LREG(zs)]+ +–2 (LAE(x,xr)+LCT (t, tr)) , (3)

where subscripts r and g denote reconstructed and generated cells from Gen, respectively. Note that reconstructed cells
xr correspond directly to training data x, but generated cells xg are newly produced cells. In Eq. (3), [·]+ = max(0, ·),
and m œ R+ determines our network’s adversarial training, as described in Section 3.4.

3.2 Generator Network
Generator network, Gen, aims at learning two tasks. First, Gen must learn a mapping of encoded training data, z œ RD,
from the posterior, Q„(z|x), back to the original feature space, RM . In the ideal mapping, reconstructed samples xr would
match training data x perfectly. To encourage learning of this objective, we minimize the mean squared error between x
and xr, as shown in Eq. (2), and force cell-types of reconstructed samples to match with original cells, as shown in Eq. (5).
The second task of Gen is to generate realistic new samples from a random noise vector zn œ RD ≥ P (z) (sampled from
the prior P (z)) that "fool" the encoder network Enc. That is, after producing new synthetic samples xg, we calculate
Enc(xg) = zg to judge the quality of generated cells. Given these two objectives, the generator’s objective function is
defined as

LGen = –1
ÿ

s=r,g

LREG (Enc(xs))+–2(LAE(x,xr)+LCT (t, tr)). (4)

3.3 Automated Cell Type Conditioning
Minimizing LAE alone does not encourage producing diverse samples from all populations explicitly, and for this reason,
we introduce a cell-type matching objective. The goal of this objective is to encourage the generator to generate cells that
are classified as the same type as the input data. More explicitly, the loss component LCT will penalize the network if
reconstructed cell-types are di�erent from the training data. Given a trained classifier C(·), we can express this objective
as

LCT = 1
2

Nÿ

i=1
Ît≠ trÎ2

F = 1
2

Nÿ

i=1
ÎC(x)≠C(xr)Î2

F . (5)

For ACTIVA’s conditioning, we use an automated cell-type identification introduced by Ma and Pellegrini (2019). This
network, called ACTINN, uses all genes to capture features, and focuses on the signals associated with cell variance. We
chose ACTINN because of its accurate classification and e�ciency in training compared to other existing models [Abdelaal
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et al. (2019)]; we provide an overview of ACTINN in the Supplementary Material. Our model is also flexible to use any
classifier as a conditioner, as long as an explicit loss could be computed between the predicted labels and the true labels1.
With ACTINN as the classifier, t and tr are logits (output layer) for x and xr respectively. Our implementation of ACTINN
is available as a stand-alone package at https://github.com/SindiLab/ACTINN-PyTorch.

3.4 Adversarial Training
The generator produces two types of synthetic cells: reconstructed cells xr from x and newly generated cells xg from a
noise vector. While both the Enc and Gen attempt to minimize LAE and LCT , the encoder tries to minimize LREG(z)
and maximize LREG(zr,g) to be greater than or equal to m. However, the generator tries to minimize LREG(zr,g) in
order to minimize its objective function. This is the min-max game played by Enc and Gen. Note that choosing m is an
important step for the network’s adversarial training; we describe the strategies for the choice of m in the Supplementary
Material.

3.5 Network Architecture

Our network architecture is shown in Fig. 2, with the input x œ RM . Latent vectors of our model live in a 128-dimensional
space, but for the sake of generality, we assume z œ RD. In the encoder and generator networks, Adam [Kingma and
Ba (2015)] optimizer is used with a learning rate lr = 0.0002, and moving averages decay rates —1 = 0.9, —2 = 0.999.
Gradients are calculated on mini-batches of size 128 with the adversarial constant m = 110. We describe each component
in more detail in the Supplementary Material.

3.6 Training and Inference Procedure
Unlike GANs, our model does not require a training schedule. The cell-type classifier in ACTIVA can be pre-trained or
trained simultaneously with Enc and Gen. To start the adversarial training and pick an appropriate m, we first train the
model as a VAE for 10 epochs while training ACTINN in parallel (these options are readily available and adjustable in our
package). After the initial warm-up, we train the IntroVAE component for 600 epochs with –1 = 1 and –2 = 0.5 (from
Eq. (3)-(4)). We also provide an option for dynamic weight-balancing using SoftAdapt that would be useful in the case of
a posterior collapse (which did not occur in our experiments).

For inference, we input a random noise tensor sampled from a multi-variate Gaussian to the trained generator. For cell-
specific generation, outputs are automatically filtered through the trained classifier to produce the desired sub-populations
on demand. Tutorials and notebooks on training and inference are available via link provided in abstract.

Datasets and Data Processing

4.1 Pre-Processing
We use the pipeline provided by Marouf et al. to pre-process the data. First, we removed genes that were expressed
in less than 3 cells and cells that expressed less than 10 genes. Next, cells were normalized by total unique molecular
identifiers (UMI) counts and scaled to 20000 reads per cell. Then, we selected a "test set" (approximately 10% of each
dataset). Testing samples were randomly chosen considering cell ratios in each cluster ("balanced split"). Links to raw
and pre-processed datasets are available via the link provided in abstract.

4.2 Datasets
68K PBMC: To compare our results with the current state-of-the-art deep learning model, scGAN/cscGAN, we trained
and evaluated our model on a dataset containing 68579 peripheral blood mononuclear cells (PBMCs) from a healthy
donor (68K PBMC) [Zheng et al. (2017)]. 68K PBMC is an ideal dataset for evaluating generative models due to the
distinct cell populations, data complexity, and size [Marouf et al. (2020)]. After pre-processing, the data contained 17789
genes. We then performed a balanced split on this data, which resulted in 6991 testing and 61588 training cells.

Brain Small: In addition to 68K PBMC, we used a randomly-selected subset of a larger dataset called Brain Large (both
by 10x Genomics). Brain small contains 20,000 random samples (out of approximately 1.3 million cells) from the cortex,
hippocampus, and the subventricular zone of two embryonic day 18 mice. Compared to 68K PBMC, this dataset has
fewer cells, and it varies in complexity and organism. The full dataset and and its subset, Brain Small, are available on
10X Genomics portal. After performing the pre-processing steps, the data contained 17970 genes, which we then split (via
"balanced split") to 1997 test cells and 18003 training cells.

1This is true for most classifiers.
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Fig. 3. Classifying synthetic data (AC-
TIVA and scGAN) from real data (test
set) for Brain Small (left plot) and 68K
PBMC (right plot). The metrics are re-
ported using a random forest classifier (de-
tailed in Section 5.2) with 5 fold cross-
validation (marked by pastel colors in each
plot). An area under the curve (AUC) of
0.5 (chance) is the ideal scenario (red dash
line), and an AUC closer to this value is bet-
ter.

4.3 Post-Processing
After generating a count matrix with a generative model (e.g. ACTIVA or scGAN), we add the gene names (from the real
data) and save as a Scanpy/Seurat object. We then use Seurat to identify 3000 highly variable genes through the use of
variance-stabilization transformation (VST) [Hafemeister and Satija (2019)], which applies a negative binomial regression
to identify outlier genes. The shared highly variable genes are then used for integration [Stuart et al. (2019)], which allows
for biological feature overlap between di�erent datasets in order to perform the downstream analyses presented in this
work. Next, we perform a gene-level scaling, i.e. centering the mean of each feature to zero and scaling by the standard
deviation. The feature space is then reduced to 50 principal components, followed by Uniform Manifold Approximation and
Projection (UMAP) [McInnes et al. (2018)] and t-distributed Stochastic Neighbor Embedding (t-SNE) [van der Maaten
and Hinton (2008)]. As noted by Marouf et al. (2020), analysis with lower-dimensional representations have two main
advantages: (i) most biologically relevant information is captured while noise is reduced and (ii) statistically, it is more
acceptable to use lower dimensional embeddings in classification tasks when samples and features are of the same order of
magnitude, which is often the case with scRNAseq datasets (such as the ones we used). Lastly, we use Scater [McCarthy
et al. (2017)] to visualize the datasets.
Results
Assessing generative model quality is notoriously di�cult and still remains an open research area [Lucic et al. (2018);
Theis et al. (2016)]. Here, we apply some qualitative and quantitative metrics for evaluating synthetic scRNAseq, as used
in Marouf et al. (2020). For qualitative metrics, we compare the manifold of generated and real cells using UMAP. For
quantitative metrics, we train a classifier to distinguish between real and synthetic cells. To study ACTIVA’s performance,
we compare our results to Marouf et al. alone since their models outperform other state-of-the-art generative models
such as Splatter [Zappia et al. (2017)] and SUGAR [Lindenbaum et al. (2018)]. Training and inference time comparisons
are shown in Supplementary Material. As we show, ACTIVA generates cells that better resemble the real data, and it
outperforms competing methods on improving classification of rare cell populations with data augmentation. ACTIVA
is one model that can be served as an alternative to both scGAN and cscGAN, and it trains much faster than both
GAN-based models (and it only needs one training).

5.1 ACTIVA Trains Faster than GAN-Based Models
To measure the e�ciency of ACTIVA in comparison to the state-of-the-art GAN-based models (scGAN and cscGAN), we
trained all three models in the exact same computational environment on a single GPU for each dataset (we describe the
hardware used in Computational Environment section). Note that since scGAN and cscGAN train separately, we repeated
this process five times to account for any variability, and then computed the average training time and standard deviation.
As shown in Table 1, ACTIVA trains orders of magnitude faster for both datasets (approximately 17 times faster on Brain
Small and 6 times faster on 68K PBMC) and only needs one training to produce cells from all populations (scGAN’s aim)
and specific cell populations (cscGAN’s purpose).
Table 1. Average training time with sample standard deviation (in seconds) for ACTIVA, scGAN and cscGAN in the same
computational environment. Here, we report the average of five training times for each model. ACTIVA (which has the capabilities of
scGAN and cscGAN combined) trains much faster than both scGAN and cscGAN (approximately 17 times faster on Brain Small and 6
times faster on 68K PBMC, on average). Individual run-times for each iteration are provided in Supplementary Material.

Brain Small 68K PBMC
ACTIVA scGAN cscGAN ACTIVA scGAN cscGAN

Average 8074.91 ±135.9
(¥ 2.2 hours)

142238.10 ±705.18
(¥ 39.5 hours)

145855.98 ±335.71
(¥ 40.5 hours)

26025.95 ±127.68
(¥ 7.2 hours)

164839.14 ±503.73
(¥ 45.7 hours)

176014.49 ±192.82
(¥ 48.9 hours)
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Fig. 4. ACTIVA generates high-quality cells that resemble both the cluster and gene expressions present in the training data.
Top row: UMAP plot of ACTIVA generated cells compared with test set and scGAN generated cells, colored by clusters for 68K PBMC
(A) and Brain Small (B). Bottom row: same UMAP plots as top row, colored by selected marker gene expressions. (C) corresponds the
log expression for CD79A marker gene (for 68K PBMC) and (D) illustrates the same for Hmgb2 (for Brain Small). ACTIVA’s cell-type
conditioning encourages to generate more cells per cluster rather than lose clusters, meaning that ACTIVA will generate more cells
from the rare populations (e.g. cluster 7 of PBMC and cluster 6 of Brain Small).

5.2 ACTIVA Generates Realistic Cells
To qualitatively evaluate the generated cells, we analyzed the two-dimensional UMAP representation of the test set (real
data) and in-silico generated cells (same size as the test set). We found that the distribution and clusters match closely
between ACTIVA generated cells and real cells (Fig. 4A-4B and Fig. S7). We also analyzed t-SNE embeddings of the real
cells and synthetic cells generated by ACTIVA, which showed similar results. These qualitative assessments demonstrated
that ACTIVA learns the underlying manifold of real data, the main goal of generative models. A key feature of ACTIVA
is the cell-type conditioning which encourages the network to produce cells from all clusters. This means that generating
cells with ACTIVA results in gaining cells within clusters rather than losing clusters. Due to this design choice, ACTIVA
can generate more cells from the rare populations than scGAN, as shown in Fig. 4A-4B. ACTIVA’s flexible framework
allows for adjusting the strength of the cell-type conditioning (which is a parameter in our model) for the cases where the
exact data representation is more desirable.

Next we quantitatively assessed the quality of the generated cells by training a random forest (RF) classifier (same as
in Marouf et al. (2020)) to distinguish between real and generated cells. The goal here is to determine how "realistic"
ACTIVA generated cells are compared to real cells. Ideally, the classifier will not di�erentiate between the synthetic and
real cells, thus resulting in a receiver operating characteristic (ROC) curve that is the same as randomly guessing (0.5
area under the curve [AUC]). The RF classifier consists of 1000 trees with the Gini impurity criterion and the square root
of the number of genes as the maximum number of features used. Maximum depth is set to either all leaves containing
less than two samples or until all leaves are pure. We generated cells using ACTIVA and scGAN and performed a five-fold
cross-validation on synthetic and real cells (test). ACTIVA performs better than scGAN with AUC scores closer to 0.5 for
both datasets (Fig. 3). For Brain Small test set, the mean ACTIVA AUC is 0.62±0.02 compared to scGAN’s 0.74±0.01.
For 68K PBMC, the mean AUC is 0.68±0.01 for ACTIVA and 0.73±0.01 for scGAN.

5.3 ACTIVA Generates Similar Gene Expression Profiles
In order to generate cells that represent all clusters, the marker gene distribution in the generated data should roughly
match the gene distribution in real cells. We used UMAP representations of ACTIVA, scGAN, and the test set, and colored
them based on the expression levels of marker genes. Fig. 4C-4D show examples of log-gene expression for marker genes
from each datasets (additional examples in Supplementary Material). In our qualitative assessment, ACTIVA generated
cells following the real gene expression closely. For a quantitative assessment, we calculated the Pearson correlation of top
5 di�erentially expressed genes from each cluster for both ACTIVA generated cells and real data. As shown in Fig. 5, the
pairwise correlation of genes from the ACTIVA generated cells closely match those from the real data for both datasets. To
quantify the overall gene-gene correlation for synthetic data, we define a metric to measure the discrepancy between the
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Fig. 5. Correlation of top five differentially expressed genes in each cluster for 68K PBMC (A) and Brain Small (B). Lower
triangular of matrices indicate correlation of generated data, and upper triangular show correlation of real data (same in both plots in
panels A and B). For 68K PBMC (A), we investigated pairwise correlation for a total of 55 genes and for Brain Small (B), we calculated
the Pearson correlation for 40 genes. In the ideal case, the correlation plots should be symmetric, and the Correlation Discrepancy
(CD), the metric defined in Eq. (6), should be zero. The gene correlations in ACTIVA match the real data more closely than scGAN, as
shown above and as computed through CD; ACTIVA has a CD score of 1.5816 and 4.6852 for 68K PBMC and Brain Small, respectively,
compared to scGAN’s 2.2037 and 5.5937.

correlations of generated data and the real data (test set). Specifically, given a correlation matrix of generated samples,
G, and a correlation matrix of the real data, R, we compute the 1-norm of the di�erence in correlations to measure the
performance of the synthetic data, shown in Eq. (6), which we refer to as Correlation Discrepancy (CD) for simplicity:

CD(G,R) = max
1ÆjÆn

nÿ

i=1
|Gi,j ≠Ri,j |. (6)

(In the ideal case, CD(G,R) = 0, therefore values closer to zero indicate better performance.) Using Eq. (6), we find
that for 68K PBMC, ACTIVA has a CD score of 1.5816, as opposed to scGAN’s 2.2037, and for Brain Small ACTIVA
outperforms scGAN with a CD score of 4.6852 compared to 5.5937. These values further quantify that generated cells
from ACTIVA better preserve the gene-gene correlation present in the real data.

Additionally, we plotted marker gene distribution in all cells against real cells. Fig. S6 illustrates the distribution of five
marker genes from cluster 1 (LTB, LDHB, RPL11, RPL32, RPL13) and cluster 2 (CCL5, NKG7, GZMA, CST7, CTSW).
We also investigated known marker genes for specific cell populations, such as for B-cells in PBMC data, finding that
ACTIVA generated cells expressed these markers (CD79A, CD19, and MS4A1) in the appropriate clusters (Fig. 4C and
other figures not shown here) similar to real data. Following Marouf et al., we calculated the maximum mean discrepancy
(MMD) between the real data distribution and the generated ones using ACTIVA and scGAN. Simply stated, MMD is
a distance metric based on embedding probabilities in a reproducing kernel Hilbert space [Gretton et al. (2012)], and
since MMD is a distance metric, a lower value of MMD between two distributions indicates the distribution are closer to
one another. For consistency, we chose the same kernels as Marouf et al. and calculated MMD on the first 50 principal
components. As shown in Table 2, ACTIVA had a lower MMD score than scGAN, demonstrating an improvement in the
quality of the generated cells compared to scGAN.

Based on qualitative and quantitative evaluations of our model, we conclude that ACTIVA has learned the underlying
marker gene distribution of real data, as desired. However, we suspect that assuming a di�erent prior in model formulation
(e.g., Zero-Inflated Negative Binomial) could further improve our model’s learning of real data.

Table 2. MMD values for ACTIVA, scGAN and positive control (training set) compared to the test set. In this metric, ACTIVA
outperforms scGAN for both datasets, since it has a lower MMD score.

Brain Small 68K PBMC
Training Set ACTIVA scGAN Training Set ACTIVA scGAN

MMD 0.0619 0.7715 0.9686 0.0539 0.7952 0.9047
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Fig. 6. RF classifier distinguishes two
real sub-populations from synthetic
data for Brain Small. ACTIVA out-
performs cscGAN in producing realistic
samples on this dataset, since the ROC
curve is closer to chance (red dashed
line).

5.4 ACTIVA Generates Specific Cell-Types on Demand
Since we minimize a cell-type identification loss in the training objective, ACTIVA is encouraged to produce cells that
are classified correctly. Therefore, the accuracy of the generated cell-types depends on the classifier selected. In Tables
S4 and S5, we show that ACTIVA’s classifier accurately distinguishes rare cell-types, achieving an F1 score of 0.89 when
trained with only 1% sub-population in the training cells. ACTIVA generates specific cell-types from the manifold it has
learned, which then filters through the identifier network to produce specific sub-populations. To quantify the quality
of the generated samples, we trained an RF classifier (as in Section 5.2) to distinguish between generated and real sub-
populations in the data. Fig. 6 illustrates ACTIVA’s performance against cscGAN for the Brain Small dataset, which shows
ACTIVA achieving better AUC scores. Similar results were obtained for 68K PBMC sub-populations, although the AUC
gap between cscGAN and ACTIVA were narrower.

5.5 ACTIVA Improves Classification of Rare Cells
A main goal of designing generative models is to augment sparse datasets with additional data that can improve downstream
analyses. Given the performance of our model and conditioner, we hypothesized that classifying rare cells in a dataset
can be improved through augmentation with ACTIVA, i.e. using synthetic rare cells alongside real data. We next directly
compared against cscGAN to demonstrate the feasibility of augmenting rare population to improve classification. We
utilized the data-augmentation experiment presented by Marouf et al. (2020). That is, we chose the cells in cluster 2
of 68K PBMC, and downsampled those cells to 10%, 5%, 1% and 0.5% of the actual cluster size, while keeping the
populations fixed. The workflow of the downsampling and exact sizes is shown in Fig. S4 (Supplementary Material). We
then trained ACTIVA on the downsampled subsets, and generated 1500 synthetic cluster 2 cells to augment the data
(Marouf et al. generated 5000 cells). After that, we used an RF classifier to identify cluster 2 cells versus all other cells.
This classification was done on (i) downsampled cells without augmentation and (ii) downsampled cells with ACTIVA
augmentation. F1 scores are measured on a held-out test set (10% of the total real cluster 2 cells), shown in Fig. 7. The
classifier is identical to the one described in Section 5.2 with the addition of accounting cluster-size imbalance, as it was
done by Marouf et al, since RF classifiers are sensitive to unbalanced classes [Zadrozny et al. (2003)]. Most notably, our
results show an improvement of 0.4526 in F1 score (from 0.4736 to 0.9262) when augmenting 0.5% of real cells, and an
improvement of 0.2568 (from 0.6829 to 0.9397) on the 1% dataset. ACTIVA also outperforms augmentation with cscGAN
for the rarest case, since cscGAN achieves an F1 score of 0.8774 as opposed to ACTIVA’s 0.9262. These results indicate
a promising and powerful application of ACTIVA in rare cell-type identification and classification.

Conclusions and Discussion
In this manuscript, we propose a deep generative model for generating realistic scRNAseq data. Our model, ACTIVA,
consists of an automatic cell-type identification network, coupled with IntroVAE that aims to learn the distribution of
the original data and the existing sub-populations. Due to the architectural choices and single-stream training, ACTIVA
trains orders of magnitude faster than the state-of-the-art GAN-based model, and produces samples that are comparably
in quality. ACTIVA can be easily trained on di�erent datasets to either enlarge the entire dataset (generate samples from
all clusters) or augment specific rare populations.

ACTIVA can generate hundreds of thousands of cells in only a few seconds (on a GPU), which enables benchmarking
of new scRNAseq tools’ accuracy and scalability. We showed that, for these datasets, using ACTIVA for augmenting
rare populations improves downstream classification by more than 40% in the rarest case of real cells used (0.5% of the
training samples). We believe that ACTIVA learns the underlying higher dimensional manifold of the scRNAseq data,
even where there are few cells available. The deliberate architectural choices of ACTIVA provide insights as to why this
learning occurs. As Marouf et al. also noted, the fully connected layers of our three networks share information learned
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Fig. 7. Augmentation with ACTIVA improves classification of rare populations. Mean F1 scores of RF classifier for training data
(with no augmentation), shown in blue, and training data with augmentation, shown in red. Error bars indicate the range for five different
random seeds for sub-sampling cluster 2 cells.

from all other populations. In fact, the only cluster-specific parameters are the ones learned in the batch normalization
layer. This is also shown with the accuracy of the conditioner network when trained on rare populations. However, if
the type-identifying network does not classify sub-populations accurately, this can directly a�ect the performance of the
generator and inference model due to the conditioning. We keep this fact in mind and therefore allow for the flexibility of
adding any classifier to our existing architecture.

Lopez et al. (2018) demonstrate that the latent manifold of VAEs can also be useful for analyses such as clustering or
denoising. Deep investigation of the learned manifold of ACTIVA can further improve the interpretability of our model,
or yield new research questions to explore. We also hypothesize that assuming a di�erent prior such as a Zero Inflated
Negative Binomial or a Poisson distribution could further improve the quality of generated data. Our experiments show that
ACTIVA learns to generate high-quality samples on complex datasets from di�erent species. ACTIVA potentially reduces
the need for human and animal sample sizes and sequencing depth in studies, saving costs and time, and improving
robustness of scRNAseq research with smaller datasets. Furthermore, ACTIVA would benefit studies where large or diverse
patient sample sizes are not available, such rare and emerging disease.

Computational Environment
Development and testing were done on Accelerated Computing EC2 instances (p3.2xlarge and p3.8xlarge) of
Amazon Web Services. All requirements and dependencies are automatically installed by our package and are listed in a
requirements file, but for the sake of completeness, they are as follows: Python v3.7.6, PyTorch v1.5.1, NumPy v1.18.5,
SciPy v1.4.1, Pandas v1.2.0, Scanpy v1.6.0, AnnData v0.7.5, and Scikit-learn v0.24.0. For data pre and post processing,
we used LoomPy v3.0.6, SeuratDisk v0.0.0.9013, Seurat v3.2.3, and R v4.0.3. The scGAN package was run in a Docker
container. Reported training times for ACTIVA/scGAN were averages of 5 times on a single NVIDIA-Tesla V100 GPU.
Inference times were averages of 5 measurements on (i) V100 GPU (GPU time) and (ii) 2.3 GHz Quad-Core Intel Core i7
(on a 2020 MacBook Pro).
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