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Abstract  
 
16S rRNA gene sequencing is a common and cost-effective technique for 
characterization of microbial communities. Recent bioinformatics methods enable high-
resolution detection of sequence variants of only one nucleotide difference. In this 
manuscript, we utilize a very fast HashMap-based approach to detect sequence 
variants in six publicly available 16S rRNA gene datasets. We then use the normal 
distribution combined with LOESS regression to estimate background error rates as a 
function of sequencing depth for individual clusters of sequences. This method is 
computationally efficient and produces inference that yields sets of variants that are 
conservative and well supported by reference databases. We argue that this approach 
to inference is fast, simple, scalable to large datasets, and provides a high-resolution 
set of sequence variants which are less likely to be the result of sequencing error. 
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Introduction 
 
Amplicon sequencing is a popular and cost-effective method for investigating microbial 
communities. A challenging step in using amplicon sequencing to identify members of 
microbial communities is to infer true sequences from artifacts. Sequence errors 
commonly occur both during PCR amplification and DNA sequencing. These errors 
include single nucleotide substitutions and gap errors due to mismatching bases and 
polymerase slippage, respectively1. For many years, standard practice was to lump 
sequences with 97% identity together into Operational Taxonomic Units (OTUs) in order 
to reduce noise and cluster closely related taxa2-4. However, recently developed 
bioinformatic tools attempt to infer true biological sequences at 100% identity by 
estimating the error profile and correcting point errors in sequences through denoising 
processes1, 5, 6. These pipelines rely on different assumptions and implement various 
statistical models. For example, DADA2 models error rate as a function of quality scores 
for each possible nucleotide transition and then these error rates are used in a Poisson-
based model to infer true sequences from sequence errors5. Deblur compares 
sequence-to-sequence hamming distances to an upper-bound error model combined 
with a greedy algorithm6. Unoise2 uses two parameters that are pre-set values and are 
used for filtering low abundant sequencing and clustering of sequences based on their 
abundances1. All of these algorithms provide a higher resolution of taxonomic 
composition of a microbial community compared to the traditional OTU picking 
approach. 
 
Despite the important progress that they represent, these algorithms all have some 
limitations. Deblur depends on construction of a multiple-sequence alignment which 
means that it does not scale to an entire dataset but works instead on each sample 
individually. This leads to the possibility of dependencies on the sequencing depth of 
each sample where variants might be called as real or artifactual differently in different 
samples depending on the properties of individual samples. Since Deblur sorts the 
abundance of sequences in each sample individually, it is also possible that the relative 
abundance of each variant within each sample can impact overall variant calling in 
complex ways. Deblur also has a number of free parameters and it is not immediately 
obvious how to optimize these parameters for new sequence datasets that might have 
different properties from the Illumina MiSeq and HiSeq training sets that were used for 
setting Deblur’s default values. Unoise2 is not freely available and also requires user-
setting of parameters for which optimal values may not be entirely clear. As we will 
show, DADA2 can sometimes in practice yield larger numbers of sequence variants 
than can be considered biologically reasonable and often requires additional filtration of 
low abundance variants. Since DADA2 uses the Poisson distribution, it assumes that 
processes that control errors have similar rates for high and low abundance variants. 
These sorts of assumptions can be problematic in genomics. For example, in RNA-seq 
analysis it has long been understood that the relationship between mean and variance 
can have a relationship that is dependent on sequencing depth 7.  
 
Here, we present HashSeq a very simple and fast algorithm for inferring sequence 
variants. We demonstrate that with enough sequence depth every possible unique one-
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mismatch variant for a sequence will be observed. We propose that the inference of true 
variants can therefore be determined relative to this background probability of observing 
one-mismatch variants, which can be approximated with a two-parameter normal 
distribution. We applied this method to six publicly available datasets and show that this 
simple approach is fast and scales well even to large datasets. Our approach provides a 
conservative set of variant calls that is well supported by a reference database and 
behave almost identically to DADA2 calls in supervised classification. 
 
 
Results 
 
With sufficient sequencing depth, all one-mismatch “child” variants for a “parent” 
sequence are likely to be observed and this is well modeled by a simple Poisson 
process.  
 
We used a HashMap data structure, which identifies every unique sequence in linear 
time proportion to the total number of sequences, to identify all sequence variants in six 
publicly available Illumina datasets. Sequences from these projects were obtained from 
three fecal microbiota (China, Autism, and RYGB datasets), one vaginal microbiota, and 
one soil microbiota dataset as well as one microbial mock community (MMC, see 
methods). This method of sequence variant detection is very fast (less than 1 hour even 
for the largest dataset with 416,450,026 sequences), but it results in a large number of 
sequence variants ranging from 6,166 for the smallest dataset (mock community) to 
814,494 for the largest dataset (Vaginal dataset). The majority of these variants are 
presumably sequencing errors or other artifacts. In order to detect sequence errors, we 
clustered sequences that had only one nucleotide difference (Figure 1). Under this 
approach, sequence variants were sorted according to their abundances. Starting with 
the most abundant sequence variant, considered as the first “parent sequence”, clusters 
were formed by adding all the one-mismatch variants to each cluster (one-mismatch 
children). This resulted in 2,002 clusters of parents plus children (when present) for the 
smallest dataset (MMC dataset) and 387,903 clusters for the largest dataset (Vaginal 
dataset). We assessed the relationship between the abundance of parents and the 
number of one-mismatch children present in each cluster. Figure 2 shows the fraction of 
all possible one-mismatch children as a function of the abundance of each parent 
sequence for six datasets. When the abundance of a parent sequence is high enough, 
almost all possible unique one-mismatch children for that parent sequence can be 
observed (Figure 2). For example, the read lengths for both the China and Vaginal 
datasets are 250 bp, therefore, there are 750 possible one-nucleotide differences for a 
parent sequence in these datasets. For these datasets, the most abundant parent 
sequences have more than 10,000 reads and almost all of the possible child variants 
were observed (the rightmost points in Figure 2). For the least abundant parent 
sequences (the leftmost points in Figure 2), almost no one-mismatch variants were 
observed. 
Interestingly, these data were surprisingly well fit with a simple Poisson distribution with 
a single parameter across all datasets. The single parameter is the probability (p) that a 
single nucleotide will be different between two sequence variants (see methods). Even 
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though this model does not contain any information about different error rates for 
different nucleotides, or any information about the biology of any of these diverse 
ecosystems, all the datasets were reasonably well fit with a parameter of p=10-4  (Figure 
2, red curves) although for some datasets a slightly better fit could be obtained with a 
slightly different value for p (Figure 2, green curves). The consistency of this fit across 
datasets is perhaps surprising given that not all the datasets used the same primers for 
PCR amplification as well as the wide biological variability of these samples extending 
from the vaginal to the gut and soil microbiome. This analysis suggests that a common 
baseline error-rate exists across multiple Illumina datasets and that the probability of 
seeing a one mismatch variant is well-modeled as a simple function of the abundance of 
the parent sequence. Our results demonstrate that with enough sequencing depth, 
every possible one-mismatch child is likely to be observed for all variants and in the 
absence of any other information, it is possible to predict the likelihood of seeing a 
unique child variant given only the abundance of the parent. 
 
The background Poisson distribution underestimates the true abundance of one-
mismatch “child” variants, while a normal distribution-based model provides a 
better fit. 
 
Since we have demonstrated that the number of one-mismatch variants accumulate as 
a simple function of sequencing depth, the challenge for all algorithms in finding 
sequence variants is to discriminate true variants from the many stochastically produced 
artifactual variants. One possible approach to this problem might be to use the 
estimated error rate derived from the presence or absence of one-mismatch variants (as 
described in the previous section) to predict the background abundance of sequence 
errors and only consider “true” variants if the abundance of sequence variants is 
significantly enhanced over the expected background noise. However, when we tried to 
use this background error rate as a threshold for determining true variants from artifacts 
using the Poisson test (see methods), we rejected the null hypothesis that the sequence 
variant was due to random sequencing error for more than 83% of one-mismatch 
children even after correcting for multiple hypothesis testing (Supplementary Figure 1). 
This suggests that the distribution of children abundance does not follow the Poisson 
distribution. Indeed, the Poisson distribution assumes that the mean equals the 
variance, and clearly this assumption does not hold as the variance of children 
abundance shows clear over-dispersion, that it is larger than the mean of children 
abundance for most parent sequence variants across datasets (Figure 3). As a result, 
the Poisson distribution underestimates the true variance and is therefore anti-
conservative and call nearly all one-mismatch variants as true variants.  
 
As we observed that the Poisson distribution appears to be extremely anti-conservative, 
we next examined whether the distribution of one-mismatch children could be better 
explained by a normal distribution since it is more flexible in terms of the relationship 
between the mean and variance compared to the Poisson distribution. For this, the 
abundances of children were log10 transformed and the distributions of log10 -
transformed abundances of children were plotted for each parent sequence. The 
histograms of children abundances (shown for the most abundant parent for each 
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dataset in Figure 4) suggest that the distribution of one-mismatch children approximates 
a normal distribution. Interestingly, we observed that the mean abundance of children 
for each cluster can be well fit by a Locally Estimated Scatterplot Smoothing (LOESS) 
function of the parent abundance, especially for high abundance parents (>1,000 reads) 
across all the six datasets (Figure 5). The smooth relationship between mean and 
standard deviation and sequencing depth across the six datasets suggests that there is 
a general error rate across all variants that is dependent on sequencing depth but not 
dependent on the biology of each particular parent sequence. This further suggests that 
the LOESS fit may represent a good model for general inference. However, when 
parents have a lower abundance, generally below 1,000 sequences across all samples, 
a smaller number of one-mismatch variants are present (Figure 1) and therefore 
variance in the mean abundance of children significantly increases (Figure 5) 
presumably due to sparsity effects. 
 
Normal-based Inference of one-mismatch “children” is fast, conservative and 
produces comparable results to DADA2 in supervised classification analyses. 
 
The above results suggest that we can assume that the background distribution of 
children variants is reasonably normally distributed and is well fit for sequences with 
abundance >~1,000 reads by a simple localized regression (or LOESS). In this section, 
we explore an inference scheme in which the background mean and standard deviation 
are the higher of the mean and the standard deviation found for each parent (black dots 
in Figure 5) or the LOESS regression of the mean and standard deviation (red lines In 
Figure 5). In this scheme, we use these estimates of mean and standard deviation as 
our background null hypothesis that the abundance of the one-mismatch child variant is 
a sequence error and can therefore be explained by the background level of sequencing 
error of the parent. From these background mean and standard deviation, we generate 
a one-sided p-value (using “pnorm” in R) for rejecting the null hypothesis. A small p-
value for this null hypothesis indicates that a child variant has an abundance level 
above this expected background for its parent (see methods). 
 
When using a 5% false discovery rate, this method results in a considerably lower 
number of sequence variants compared to DADA2 with default parameters for the non-
mock biological datasets (Table 1) and compared to the inference test based on the 
Poisson distribution described above (Supplementary Figure 1). When we mapped the 
inferred sequence variants with BLAST to the SILVA132 dataset, the great majority of 
sequence variants had a high degree of identity (>99%) to the SILVA database (Table1 
and Figure 6) suggesting that many of the variants that we detected had been 
previously observed. This supports an assertion that these variants are not sequencing 
error. Interestingly, although HashSeq calls more variants in the MMC dataset 
compared to DADA2, the parent sequences include the eight bacterial taxa that are 
present in the mock (Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus 
subtilis, Escherichia coli, Salmonella enterica, Lactobacillus fermentum, Enterococcus 
faecalis, and Staphylococcus aureus), which further confirms that our clustering strategy 
is able to find major taxa in a dataset. Overall, these results suggest that our normal 
distribution-based inference approach is often more conservative compared to DADA2 
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and less prone to infer superius variants as “true” sequences. However, because we do 
not look for variants in low-abundance regions where the LOESS regression does not 
show a consistent relationship to sequencing depth, our algorithm is less sensitive to 
low abundant true sequences. 
 
Next, for each dataset we performed a Random Forest classification to study the 
association between the sequence variants with metadata variables of interest in the 
five publicly available non-mock datasets. Compared to DADA2, our approach performs 
nearly identically in terms of association studies between the gut microbiota and 
biological variables (Figure 7). 
 
Finally, we compared run-time and memory usage between our pipeline and DADA2. 
On average across datasets, our pipeline is 43 times faster than DADA2 and the 
memory usage is 3 times less than DADA2 (Figure 8). For the Vaginal dataset, the 
largest dataset, HashSeq was 6.5 times faster than DADA2; however, it was 
comparable to DADA2 in terms of memory usage.  
 
 
Discussion 
 
In this paper, we utilized a very simple HashMap based algorithm to detect all sequence 
variants in a dataset. This resulted unsurprisingly in a large number of one-mismatch 
sequence variants. We assume that nearly all these spurious sequences are caused by 
sequencing error. Our paper provided two lines of evidence to support this assertion. 
First, the number of distinct one-mismatch children for each parent sequence can be 
well modeled by a simple Poisson process, suggesting that when sequence depth is 
high enough every possible one-mismatch variant of a parent sequence can be 
observed. This seems unlikely to be explained by biological variance. A second line of 
support for the assertion that most variants are related to sequencing error is the 
excellent fit to a smooth LOESS curve with sequencing depth over 1,000 sequences 
(Figure 5), suggesting that sequencing depth and not the biology of a particular cluster 
control the abundances of observed variants.   
 
Given a postulate that nearly all sequence variants are the result of error, a natural 
approach is to use the background error rate for inference to detect the relatively rare 
occurrence of a variant that cannot be explained by background sequencing error. This 
approach of using a background rate to generate p-values for an event that is 
reasonably uncommon has long been an approach to inference in genomics8. A natural 
question is how to parametrize the expected background rate. Since we know that there 
is a dependency on sequencing depth, the simplest approach would be a Poisson 
based model in which the mean equals the variance. However, the Poisson model failed 
to control the distribution of one-mismatch children in each cluster presumably because 
the Poisson assumption of equal mean and variance is not met. In a similar way, 
previous studies have shown that when the Poisson distribution is used to test for 
differential gene expressional in RNA-seq datasets, the Poisson estimated variance is 
smaller than the observed variance in real data, resulting in increased false 
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discoveries7, 9.  Therefore, over-dispersion (where variance is higher than mean) is a 
general feature of sequence count genomic datasets, including sequence variants, and 
this problem causes inference based on the Poisson distribution to fail.  
 
We therefore argued that inference of a true variant should utilize a model in which the 
variance was not constrained to equal the mean. Previous algorithms designed for 
RNA-seq datasets, such as DESeq and EdgeR, model count data with a negative 
binomial distribution which assumes the variance is greater than the mean7, 10.  We 
preferred the normal distribution over the negative binomial distribution to model the 
background error for two reasons. First, the negative binomial distribution is not defined 
when the variance is less than mean, and although for the majority of sequence variants 
the variance is greater than the mean, there are still a large number of children 
sequences that have a mean greater than the variance (Figure 3). Second, the negative 
binomial as a count model does not work on log-transformed data, which contains non-
integer values. The normal distribution instead gives us more flexibility in terms of the 
relationship between the mean and variance as well as more naturally allowing for the 
transformation of count data. Regardless of the limitations of the negative binomial 
distribution, at high sequencing depth the negative binomial distribution is well 
approximated by the normal distribution, further justifying the use of the normal 
distribution.   
 
In order to use a normal distribution-based model to infer true sequences from the 
background noise, we used the mean and standard deviation predicted by a localized 
regression fit between mean and standard deviation and parent sequences (Figure 5).  
In order to be as conservative as possible, we chose the mean and standard deviation 
for our inference test to be the higher of the mean and the standard deviation found for 
each parent directly or predicted by the LOESS regression. This conservative approach 
detected sequence variants that had a good match to existing variants in the SILVA 
database, suggesting that many of the variants that we detected had been previously 
observed and therefore are unlikely to be sequencing error. This provides further 
confirmation of the conservative nature of our method.  
 
Our normal-distribution-based algorithm for detection of sequence variants which we 
here call HashSeq has a number of advantages. First, it is very fast and can detect 
sequence variants in less than three hours on a single CPU even for a very large 
dataset. It can run all sequences in a dataset together and does not require running 
sequences from each sample independently. This eliminates any potential problems in 
which the characteristics of individual samples impact overall variant calling in 
potentially complex ways. Second, our algorithm compared to the popular algorithm 
DADA2 is fairly conservative and calls a fewer number of sequence variants as true. 
The conservative nature of our method potentially increases the power of a study to 
detect a signal since fewer number of spurious variants are reported and therefore there 
will be a fewer number of hypothesis to be corrected for in downstream analyses using 
FDR multiple hypothesis correction. By determining where the smooth relationship 
between parent abundance and mean of children abundance breaks down, our 
algorithm offers a natural way to set a threshold for removing low abundance variants. 
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This was set at a parent abundance of 1,000 reads for all of our datasets except the 
largest one, where it was set to 10,000. Setting a low abundance threshold in this way is 
an appealing alternative to removing taxa based on arbitrary thresholds of rarity or 
prevalence. In addition, because our algorithm provides explicit p-values for a null 
hypothesis that a child sequence was derived from sequencing error of a parent 
sequence, our results may be easier to interpret than algorithms that do not assign a 
score to variants or assign scores based on arbitrary scales. 
 
 Finally, our algorithm is simple and is based on a two-parameter model. By contrast, 
DADA2 assumes that each nucleotide transition has its own parameter which is 
calculated from the transition probabilities and quality scores. DADA2 assumes that the 
parameters obtained from quality scores are independent of sequencing depth while our 
model explicitly considers background mean and variance as a function of sequencing 
depth. Despite these differences in parametrization, using our variants or DADA 2 
variants produces essential identical power for machine learning based supervised 
classification. 
 
Our algorithm has some limitations to be noted. First, our algorithm is not sensitive to 
detect true low-abundance sequences. Therefore, we recommend using more sensitive 
algorithms, such as DADA2, to detect low-abundance sequence variants. Another 
limitation is that our algorithm does not consider two- or more mismatches. However, 
we believe that one-mismatch errors are more likely to happen compared to two- or 
more mismatches and therefore the abundances of two- or more mismatches will 
reliably fall below the detection limit of the algorithm (usually <1,000 reads).  This 
assertion is supported by simulation results (supplementary Figure 2) which suggest 
that variants with more than one mismatch error occur very infrequently in short-reads.  
This assumption of the rarity of multiple-mismatch sequences, however, may not be 
appropriate for long-read technologies such as PacBio, and this is another potential 
limitation of our method.  Finally, our algorithm does not explicitly model insertions or 
deletions (indels) and will treat indel events as a separate parent sequence. Users who 
need to capture indel variation in relationship to a parent might consider use of Deblur 
or other methods that incorporate multiple sequence alignments. 
 
In summary, we described HashSeq, a very simple and fast algorithm to infer true 
variants from background sequencing error. This algorithm can be easily used for small 
or large 16S rRNA gene datasets generated from a diverse range of ecosystems.  
Source code is freely available at https://github.com/FarnazFouladi/HashSeq as an R 
package. 
 
 
Methods 
 
Publicly available datasets 
 
Six datasets were included in this study: one publicly available microbial mock 
community (MMC) consisting of three samples (PRJEB24409) and five publicly 
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available 16S rRNA gene datasets, including three human gut microbiota datasets to 
which we refer as “China” (PRJNA349463, n=80), “Autism” (PRJNA533120, n=81), and 
“Roux-en-Y Gastric Bypass (RYGB)” (SRP113514, n=71), one Vaginal microbiota 
dataset (SRP115697, n=2367), and one Soil microbiota dataset (PRJEB14409, n=40)11-

16. For all datasets except for the Soil dataset, forward and reverse reads were merged 
using the PEAR software17, and the paired reads were then trimmed to a constant 
length and shorter reads were discarded (250 nucleotides for China, Vaginal, and MMC, 
200 nucleotides for RYGB dataset, and 151 nucleotides for Autism dataset). For the Soil 
dataset, only forward reads were used, due to concerns about sequence quality for the 
reverse reads, and the reads were trimmed to 250 nucleotides. For the Soil, RYGB, and 
MMC datasets primers were present in the public sequences and were removed by our 
pipeline. Information regarding primers and the variable region of 16S rRNA gene that 
were sequenced can be found in the Supplementary Table1. For all datasets, singletons 
in each sample as well as sequences with N’s were removed. 
 
Cluster of sequences composed of a parent and one-mismatch children 
 
We used a HashMap, a simple data structure, to detect all 16S rRNA gene sequence 
variants, excluding sequence variants with only one read in a sample (singletons). In 
our method, sequence variants are sorted according to their abundance. Starting with 
the most abundant sequence variant (considered as a “parent” sequence), all possible 
one-mismatch sequence variants in the dataset are identified and considered as the 
one-mismatch “children” for that parent sequence. Similar searches for parents and 
children sequences are performed for the remaining sequences until all sequences are 
assigned as a parent sequence or as a one-mismatch child sequence, resulting in the 
formation of numerous clusters of sequences that are composed of one parent and one-
mismatch children (Figure 1). 
 
Poisson model of frequency of one-match children variants 
  
In order to estimate the rate of observing a one-mismatch sequence variant, we fit our 
data to a very simple model based on the Poisson distribution. This model has one free 
parameter which is the probability (p) of a single-nucleotide sequencing error. In this 
approach, we treat each nucleotide within a set of parent and children sequence 
variants independently. Given the background error rate of p and a parent sequencing 
depth of Pi (a parent belonging to the cluster i), the probability of seeing at least one 
error for a given nucleotide is given by: 
 
  1- dpois (0, Pi * p / 3)          (Eq. 1) 
 
We divide p by 3 in the above equation because there are 3 possible distinct 
nucleotides that can be tabulated as an error (for example 'A' can be erroneously 
observed as either 'C', 'G' or 'T). If p is close to 1, we would expect to always see all 
three possible variants of the nucleotide and if p is close to zero, we would expect to 
never see a mutation at that position in the sequence. We will argue that we can fit Eq. 
1 to our datasets by considering the fraction of all unique one-mismatch children 
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observed for a parent sequence divided by the number of all possible one-mismatch 
children as shown in Figure 1 as described in the results. If p is high, then we would 
expect to see most of the all possible one-mismatch variants of a parent sequence and 
if p is low, we would expect to see few. 
 
This model makes a number of simplifying assumptions. A key assumption is that the 
error rate p can be estimated independently for each nucleotide and that not 
considering sequences with more than one nucleotide difference between parent and 
children does not bias our error rate estimate. We think this is a reasonable assumption 
as simulating a polymerase with the same error rate as the Poisson equation above and 
examining the resulting distribution of one-mismatch children observed from among all 
resulting sequences yields an essentially identical distribution as the Poisson equation 
above (the simulation code is available 
here: https://github.com/afodor/metagenomicsTools/blob/master/src/binomFit/HowMany
Variants.java  and Supplementary Figure 2). This concordance occurs because the 
overall error rate is low enough that sequences with more than one mismatch occur 
infrequently and can therefore be ignored without altering our baseline error rate 
estimate. For example, for a 250 base-pair sequence length with a p = 0.00015 error-
rate, sequences with more than one mismatch are seen only in about 1 of 1,600 
sequences in our simulation code. Obviously, this assumption of independence of 
sequence variants that allows us to ignore sequences with multiple mismatches 
becomes more problematic for read lengths greater than the 250 base-pair that we 
examine here and for overall higher error-rates. 
 
In addition, in order to see whether the estimated error rate derived from the presence 
or absence of one-mismatch variants using the above model can be used to predict the 
background abundance of sequence errors and therefore to infer true variants whose 
abundances are above the background noise, we used a Poisson test using 
“poisson.test” in R with the following parameters: 
 
poisson.test (Cji, Pi , p/3, alternative="greater")          (Eq. 2)  
 
where Cji is the abundance of a jth child sequence of the cluster i, Pi is the abundance of 
a parent sequence of the cluster i and p is the estimated error rate from the Poisson 
model above (Eq. 1). P-values generated by the Poisson test (Supplementary Figure 1) 
were adjusted for multiple hypothesis testing using the Benjamini-Hochberg Procedure. 
 
Normal distribution of the background noise 
 
As equation 2 based on the Poisson distribution underestimates the abundances of 
one-mismatch children (see result section), we further examined if the abundances of 
one-mismatch children can be better fit by the normal distribution. For this purpose, 
abundances of sequence variants were log10 transformed and their histograms were 
plotted for each parent sequence. Next, the mean and standard deviation for each 
parent were calculated. The relationship between the mean abundance of children and 
the parent sequences as well as the standard deviation abundance of children and the 
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parent sequences were fitted to a local regression or Locally Estimated Scatterplot 
Smoothing (LOESS). We will show that for parent sequences with depths above > 1,000 
reads, the LOESS regression is a reasonable fit for most datasets, however, for parents 
with depths below 1,000 reads, variance of the means and standard deviations are 
increased due to the sparsity of one-mismatch children, and therefore the LOESS 
regression does not fit as well (Figure 5). Therefore, as a default, sequence variants 
with total abundance less than 1,000 across all samples are filtered (i.e., removed) in 
our pipeline. This threshold of 1,000 can be changed by users based on their data. For 
example, for the Vaginal dataset we increased the threshold to 10,000 as the 
sequencing depth is significantly higher for this dataset compared to other datasets and 
the LOESS regression is a good fit when sequences have depths higher than 10,000 
reads (see Figure 5).  
 
The means and standard deviations estimated from the LOESS regression were 
assumed to be the background noise and therefore any variant above this background 
noise would be called a true sequence variant. Based on this assumption, for each child 
variant, a one-sided p-value was generated using the “pnom” function in R and the 
following formula: 
 
 
pnorm(log10(Cji), lower.tail = FALSE, Mi ,Si)          (Eq. 3)  
 
Mi=max (mean (Ci), mean for LOESS fit)               (Eq. 4)  
 
Si=max (sd (Ci), SD for LOESS fit)                         (Eq. 5)  
 
where Cji is the abundance of jth child of the cluster i, Mi and Si are, respectively, the 
estimated mean and standard deviation of the cluster i, which are the maximum of the 
mean and standard deviation predicted by the LOESS regression from the abundance 
of the parent sequence in cluster i and the mean and standard deviation estimated 
directly from the children abundance of the cluster i (Eqs 4 and 5). Taking the maximum 
of the mean and standard deviation enables us to be more conservative especially for 
low abundance sequences where data becomes sparse and the LOESS fit is less 
reliable. P-values generated by the “pnorm” test were adjusted for multiple hypothesis 
testing using the Benjamini-Hochberg Procedure. Corrected p-values less than 0.05 
were considered significant, rejecting the null hypothesis that the variant child is a 
sequence error. 
 
Comparison to DADA2 
 
We compared the performance of HashSeq to the performance of the DADA2 pipeline5. 
For this purpose, reads for each dataset were trimmed to the same length as discussed 
above. Trimming was performed with the function “filterAndTrim” in DADA2 with default 
parameters. Inference of sequence variants were performed as described in  
https://benjjneb.github.io/dada2/bigdata.html with default parameters. Filtering and 
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inference were preformed using separate scripts in order to better compare the run time 
and memory usage between the DADA2 algorithm and HashSeq.  
 
In order to compare the DADA2 and our algorithm, we used “blastn” to map sequence 
variants inferred from both algorithms to the SILVA132 database. Percent identity was 
calculated as: 
 
(alignment length – (# of mismatches + gaps)) / max (alignment length, sequence length) *100 
 
(Eq. 6) 
 
Where “sequence length” is the known length of the query sequence and all other 
parameters were reported by BLAST. This formula penalizes both mismatches and 
gaps in either sequence or in the alignment. For each sequence variant, the first hit with 
the highest bit score with the database was selected.  
 
Finally, we compared DADA2 and our algorithm in terms of associations between the 
inferred sequence variants and the variable of interest in the metadata. For this 
purpose, we preformed Random Forest classification for each algorithm and dataset 
with four cross-validations and ten repeats using RandomForestClassifier with 100 
decision trees and RepeatedKFold methods from Scikit-learn library in python 3.8.1. 
 
 
Data availability  
 
Our pipeline is written in Java (JDK 1.8) and R (4.0.2) but can be installed as an R 
package and run from an R environment. Source code with instructions for installing 
HashSeq package can be found at https://github.com/FarnazFouladi/HashSeq. All 
codes and figures for the analyses of this manuscript can be found at 
https://github.com/FarnazFouladi/HashSeq_Manuscript . 
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Figure 1.  Cluster formation of parents and their one-mismatch children in the 
HashSeq algorithm. In this clustering strategy, sequence variants are sorted according 
to their abundances. Starting with the most abundant sequence variant, considered as 
the first “parent sequence”, clusters are formed by adding all the one-mismatch variants 
(one-mismatch children) to each cluster. 
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Figure 2. The presence or absence of unique one-mismatch variants can be 
surprisingly well modeled with a simple one-parameter Poisson distribution with 
an almost constant error-rate across six independent 16S rRNA gene Illumina 
datasets. Plots show the relationship between the abundance of parent sequences on 
the log10 scale and the fraction of all possible unique one-mismatch variants for the 
parent sequences. These data are well modeled by a simple one-parameter Poisson 
distribution. The red line corresponds to an error rate of p = 10-4. The China, Vaginal, 
and Soil datasets were best modeled using slightly different error rates for each dataset 
(green lines, China and Soil p = 1.5 *10-4, Soil p = 5*10-5).  
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Figure 3. The variance of the one-mismatch children abundance in each cluster is 
not equal to their mean abundance. Plots show the relationship between the variance 
and mean abundance of one-mismatch children from each parent cluster across six 
different 16S rRNA gene datasets. The red line represents the Poisson assumption of 
equal mean and variance.  
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Figure 4. The abundance of one-mismatch children within a cluster is 
approximately normal on a log10 scale. Histograms showing the distribution of 
abundance of one-mismatch children for the most abundant parent on a log10 scale 
across the six different 16S rRNA gene datasets.  
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Figure 5. Mean and standard deviation of one-mismatch children in each cluster 
is a smooth function of their parent abundance on a log10 scale for the most 
abundant parent sequences. Plots show the relationship between the mean and 
standard deviation of one-mismatch children abundance in each cluster and their parent 
abundance on a log10 scale. The mean and standard deviation of abundance of one-
mismatch children for each cluster can be well fit by a smooth LOESS function of the 
parent abundance especially for high abundance parents (>1,000 reads) across six 
different 16S rRNA gene datasets (red line).  
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Figure 6. Sequence variants generated by the HashSeq pipeline have a high 
degree of identity to the SILVA132 database. For each dataset, the cumulative 
fraction of inferred sequence variants for a range of 90-100% identity to the SILVA132 
database is plotted for both the HashSeq and DADA2 pipelines.   
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Figure 7. HashSeq performs almost identically to DADA2 in terms of association 
studies between the gut microbiota and biological variables. Random forest 
classification was used to study the association between the sequence variants with 
metadata variable of interest for five different 16S rRNA datasets. The area under the 
curves (AUC) of the ROC curves were essentially superimposable between our 
inference-based approach and DADA2. For the China dataset, we examined if the gut 
microbiota can predict rural versus urban samples. For the RYGB dataset, we tested if 
the gut microbiota can predict pre-surgical versus post-surgical samples. For the 
Vaginal dataset, we studied the association between the microbiota and ethnicity (black 
women versus white women). For the Autism dataset, we examined if the gut microbiota 
can predict children with Autism versus the control group. For the Soil dataset, the 
association between the microbiota and two types of Soil, Amazon Dark Earth (ADE) 
and agricultural Soil (AGR) was examined. 
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Figure 8. HashSeq is faster and more efficient in memory usage compared to 
DADA2. Run-time and memory usage by DADA2 and HashSeq are plotted across for 
each 16S rRNA gene datasets.  
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Table 1. Results of mapping of sequence variants inferred by HashSeq and 
DADA2 to the SILVA132 database using BLAST. The table shows the number of 
sequence variants inferred by DADA2 and HashSeq as well as the percent Identity of 
the sequence variants to the SILVA132 database.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parents Children

Dataset Pipeline #SVs Parents-
Children Identity=100 %

100 % > 
identity
≥ 99 %

99 % > 
identity
≥ 97 %

97 % >
identity Identity=100 %

100 % > 
identity
≥ 99 %

99 % > 
identity
≥ 97 %

97 % >
identity

China
HashSeq 451 255-196 194 34 21 6 67 102 23 4
DADA2 4974 --- 1050 540 400 2984 --- --- --- ---

RYGB
HashSeq 718 402-316 373 21 5 3 147 169 0 0
DADA2 3385 --- 1648 966 191 580 --- --- --- ---

Autism
HashSeq 422 229-193 214 8 6 1 82 101 9 1
DADA2 2398 --- 1295 493 230 385 --- --- ---- ---

Vaginal HashSeq 1305 530-775 222 191 72 45 68 400 195 112
DADA2 12106 --- 3284 4335 1562 2925 --- --- ---- ---

Soil HashSeq 49 39-10 37 1 1 0 9 1 0 0
DADA2 5761 --- 1256 1387 1466 1652 --- --- ---- ---

MMC HashSeq 35 9-26 9 0 0 0 5 21 0 0
DADA2 26 --- 14 8 1 3 --- --- ---- ---
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Supplementary Figure and Table Legends 
 
 
 
Supplementary Figure 1. The simple one-parameter Poisson model 
underestimates the abundance of sequence errors. Plots show the relationship 
between the abundance of parent sequences and the abundance of one-mismatch 
children sequences on the log10 scale. The Poisson test with error rates estimated from 
the Poisson model (the best fit for each dataset; green lines in Figure 1) was used to 
test the null hypothesis that a one-mismatch child can be explained by sequencing 
error. Red and black dots indicate significant and insignificant p-values, respectively, at 
FDR 5%. 
 
Supplementary Figure 2. The fraction of all possible unique one-mismatches for a 
sequence can be well fit to a Poisson model as well as simulated data.  Black 
circles in the plot show the relationship between the abundance of parents on a log10 
scale and the fraction of all possible unique one-mismatches that are observed for each 
parent sequence in the China dataset. The red line shows the fraction of all possible 
one-mismatches predicted by a one-parameter Poisson model that includes an error 
rate of 0.00015. The blue line shows the fraction of all possible one-mismatches that are 
simulated from Java code (see methods) with an error rate 0.00015 for sequences with 
different sequence depths. 
 
 
Supplementary Table 1. Datasets used in this study. The table includes the project 
numbers associated with each dataset and the information regarding sequencing, 
including the sequencing instrument, the variable region in the 16S rRNA gene, and 
primers where available. 
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